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The lateral movement of soil carbon has a profound effect on the carbon budget of terrestrial ecosystems;
however, it has never been quantified in China, which is one of the strongest soil erosion areas in the world.
In this study, we estimated that the overall soil erosion in China varies from 11.27 to 18.17 Pg yr21 from 1982
to 2011, accounting for 7–21% of total soil erosion globally. Soil erosion induces a substantial lateral
redistribution of soil organic carbon ranging from 0.64 to 1.04 Pg C yr21. The erosion-induced carbon flux
ranges from a 0.19 Pg C yr21 carbon source to a 0.24 Pg C yr21 carbon sink in the terrestrial ecosystem,
which is potentially comparable in magnitude to previously estimated total carbon budget of China (0.19 to
0.26 Pg yr21). Our results showed that the lateral movement of soil carbon strongly alters the carbon budget
in China, and highlighted the urgent need to integrate the processes of soil erosion into the regional or global
carbon cycle estimates.

T
he rapid increase in the atmospheric concentration of carbon dioxide (CO2) has raised concerns regarding
the identification of carbon sources and sinks1–3. Numerous attempts have been made to quantify the
location and magnitude of terrestrial ecosystem carbon sinks4–6. However, the latest IPCC (AR5) report

highlighted that some important processes are still missing in terrestrial carbon estimations7. Soil carbon lateral
movement at the land surface, which represents one of the most important processes in the global carbon cycle
induced by soil erosion, is poorly or not represented at all in the current carbon cycle models of earth system
models that are widely used to predict future climate change8–9, and this potentially results in large uncertainties in
our knowledge of terrestrial carbon sink patterns.

The global soil erosion rate is estimated to be 75–201.1 Pg yr21, and 1.6–6 Pg C yr21 of soil organic carbon
(SOC) is redistributed simultaneously10–13. The detachment, transport and deposition processes of SOC strongly
regulate the magnitude of terrestrial carbon sink or source by changing three carbon exchange processes12,14. First,
soil erosion may accelerate soil degradation at eroding sites and reduce plant production and available SOC for
decomposition15,16. Second, deep burial of allochthonous and autochthonous SOC inhibits decomposition upon
burial at deposition sites17–19. Third, the chemical or physical breakdown of soil at the detachment and transport
processes increases decomposition of SOC12.

China is one of the strongest soil erosion areas, and its area-average rate of soil erosion is approximately 14.7 t
ha21 yr21, which is approximately 1.44 times of the global average erosion rate (10.2 t ha21 yr21)11. More than 3.67
3 106 km2,or approximately 38% of the country land area, often experiences severe soil erosion20,21. The Loess
Plateau and Himalayan-Tibetan regions are considered the global hot spots of soil erosion11,12,22, and the erosion
rate in Loess Plateau generally ranges from 50 to 200 t ha21 yr21.

Although the substantial impacts of soil erosion on the lateral redistribution of SOC in China have been
highlighted9,23, few studies have quantified erosion-induced changes of carbon flux between soil and the
atmosphere. In the present study, we calculated the lateral displacement of soil in China using the Revised
Universal Soil Loss Equation (RUSLE)24. Based on the soil erosion rate, we then estimated the lateral
redistribution rate of SOC and the potential impacts of erosion on the soil carbon budget. Our main
objectives were to quantify lateral redistribution rate of soil and SOC caused by water erosion in China,
investigate spatiotemporal pattern of the erosion, and estimate erosion-induced carbon fluxes between the
soil and atmosphere.
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Results
In order to investigate the performance of RUSLE, we collected 68
observations and simulations of erosion rate over the entire China
from 1982 to 2010 (Table S1). RUSLE model explained about 79% of
the variation of soil erosion rate across all these sites (Fig. 1). On
average, the RUSLE just underestimated the soil erosion rates in
China by 5.3 6 12.2% (Fig. 1).The simulations showed that substan-
tial amounts of soil were eroded by water over the entire country of
China. The overall annual eroded soil in China varied from 11.27 to
18.17 Pg yr21, with a mean value of 15.41 Pg yr21 (Fig. 2a). Severe
erosion-induced redistributions of the surface soil occurred in areas
of steep slopes and high-relief topography (e.g., the Tibetan Plateau),
and their erosion rates generally ranged from 5 to 40 Mg ha21 yr21.
Southwestern China and the Loess Plateau in central China suffered
from the strongest soil erosion, where erosion rates exceeded 40 Mg
ha21 yr21 (Fig. 2a). In contrast, the plains in eastern China and
deserts in northwestern China exhibited the lowest soil erosion rates,
i.e., less than 1 Mg ha21 yr21, because of low rainfall and flat terrain.
Modeled total soil erosion decreased significantly (p 5 0.006) from
1982 to 2011 (Fig. 2b), likely a result of climate and land-use changes.

In combination with the spatial distribution of soil organic carbon
(SOC), we simulated the lateral movement of SOC, which showed a
similar spatial pattern with soil erosion. The lateral movement rates
of SOC were low in the eastern plains and northwestern desert,
medium in the mountainous areas and high in southwestern China
and the Loess Plateau (Fig. 2b). On average, the area-average erosion
rate of SOC in China was 0.094 Mg C ha21 yr21 when the enrichment
ratio (ER) of SOC was set to 1.8 (median value, see Methods). The
total redistributed carbon varied annually from 0.64 to 1.04 Pg C
yr21 with a mean value of 0.88 Pg C yr21. During the period of 1982–
2011, the total redistributed carbon by water erosion was estimated to
be 14.83 Pg C.

Four coefficients, derived from observations and experiments,
were used to calculate the possible range of erosion-induced carbon
exchange between soil and atmosphere (Ec) (see Methods). Ec were
estimated to range from a 0.19 Pg C yr21 carbon source to a 0.24 Pg
C yr21 carbon sink in China (Fig. 3), which are comparable in mag-
nitude to the total carbon budget of China estimated without con-
sidering the influences of lateral carbon redistribution (a sink of 0.19
to 0.26 Pg C yr21)6. For example, according to the first coef-

ficient12,19,25, which assumed 20% of eroded SOC decomposed to
atmosphere, lateral carbon movement would induce a 0.13–
0.24 Pg C yr21 carbon source (Table 1), which is nearly equivalent
to the estimated terrestrial carbon sink over the entire China.

Discussion
The potential impacts of soil erosion on the biogeochemical cycling
of carbon remain one of the large uncertainties in our knowledge of
global climate change9,26. In recent years, it has increasingly been
recognized that lateral fluxes induced by soil erosion are of key
importance in the global carbon budget estimates37. This study used
the empirical RUSLE model to simulate the spatial and temporal
patterns of soil erosion and the redistribution of SOC in China,
and the results were comparable to previous estimates11,13,27. The
estimated mean area-average erosion rates in China from 1982 to
2011 ranged from 11.7 to 18.9 Mg ha21 yr21 and were consistent
overall with the estimation by Yang et al. (14.7 Mg ha21 yr21 in
1980s, 2003)11. The mean annual eroded soil and redistributed car-
bon were estimated to be 15.41 Pg yr21 and 0.88 Pg C yr21, respect-
ively, and China therefore would contribute 7–21% to the global total
of soil erosion10,13,19 and 14–21% of the global redistributed SOC12.
However, as the verification suggested a mean underestimation of
soil erosion rate by 5.3% in China (Fig. 1), the mean annual eroded
soil and carbon were potentially underestimated by 0.82 Pg yr21 and
0.05 Pg C yr21, respectively. Moreover, due to the limited observa-
tions, most of the validation sites are located in areas that are prone to
erosion, such as Karst regions and Loess Plateau; thus the verified
data may not be able to fully represent the soil erosion rates across
China. Therefore, more studies in the other areas of China would be
benefit for quantifying the impacts of lateral redistribution of soil
carbon on carbon budget.

Although it has been highlighted that lateral transportation of
SOC could substantially alter ecosystem carbon budget, there are
still scientific disagreements concerning the role of erosion-induced
carbon changes in ecosystem carbon budget28,29. Stallard (1998)15

estimated a net carbon sink of 0–2.0 Pg C yr21 by the processes of
carbon burial and dynamic replacement. Using 137Cs and carbon
inventory measurements from a large-scale survey in Europe and
North America, Van Oost et al. (2007)14 found consistent evidence
for an erosion-induced sink of atmospheric carbon equivalent to
approximately 26% of the lateral transported carbon by soil erosion.
On the contrary, Lal (2003)12 suggested that the accelerated miner-
alization of SOC, primarily due to the breakdown of aggregates,
could represent a globally significant source of atmospheric carbon
(0.8–1.2 Pg C yr21). There is still no model that explicitly simulates
the impacts of soil lateral movement on the terrestrial carbon budget
due to difficulties in accounting for many complicated processes.

More soil erosion experiments and measurements over large areas
would be helpful in investigating the impact mechanisms of soil
erosion on the carbon budget. However, this was not the focus of
this study. Instead, we used four experience coefficients to quantify
the impacts of lateral movement of soil carbon on carbon fluxes.
Although it is still difficult to determine whether erosion-induced
carbon fluxes between soil and the atmosphere (Ec) is a carbon source
or sink, the Ec in China is estimated to be considerable that could
significantly change the carbon budget estimate in China (Fig. 3).
Although, it is still difficult to determine the nature of erosion-
induced carbon budget, there is very high confidence that lateral soil
carbon movement substantially alters the carbon budget of terrestrial
ecosystems.

Moreover, it should be noticed that the decreased trend of soil
erosion from 1981 to 2010 might substantially decrease lateral move-
ment of soil carbon (Fig. 2b). The ecological projects in China, such
as ‘‘Three-North Shelterbelt Project’’ and ‘‘Grain for Green Project’’,
play an important role in decreasing the soil erosion by increasing
fraction of vegetation cover since the end of 1970s30,31. A recent forest

Figure 1 | Comparison of estimated soil erosion rate in this study and
collected observations or simulations over 68 samples (see Table S1). The

dotted line is 151 line, and the solid line is regression line. All of 68 samples

distributed in 28 sites. Twelve samples (solid circles) were field

observations, and the remaining 56 samples (open circles) were previous

model simulations.
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survey showed Asia was the only region to show net gains in forest
area, chiefly due to extensive reforestation and afforestation in China
(FAO, 2010). When comparing two time periods, 2003–2007 and
1998–2002, runoff and soil erosion reduced by 18% and 45.4% over
11 river systems in China due to conversion from cropland to forest-
land, respectively30.

Future studies need integrate soil erosion processes into ecosystem
carbon cycle model to reduce the uncertainties in estimating erosion-
induced ecosystem carbon fluxes. As suggested in previous studies,
SOC content of the topsoil at eroding sites are determined by the
erosion rate and replacement rate with new photosynthate14,15,26,33.
Generally, severe erosion results in soil degradation and depletes
SOC content12. Climate change and anthropogenic factors can also
alter SOC content22,34. For example, ecological projects and soil con-
servation measures have maintained or even promoted SOC con-
tents in many regions of China35. An estimation considering the
dynamic replacement of SOC and plant production will further

reduce the uncertainties. Furthermore, previous studies usually con-
sider merely the fate of eroded SOC and ignore the changes in
decomposition rate of residual SOC and vegetation production16,33,36.
This may result in a one-sided estimation of the erosion-induced
ecosystem carbon fluxes. Ecosystem carbon cycle models are proper
means to simulate dynamics of vegetation production and SOC
decomposition37,38; therefore, incorporating of soil erosion processes
into ecosystem models is urgently needed to improve estimation of
erosion-induced ecosystem carbon fluxes.

Moreover, processes-based models also need integrate several
major soil carbon transport and decomposition processes39–42.
Runoff can disintegrate soil aggregates and transport SOC of topsoil
away from eroded areas43,44. Then, some SOC will be transferred to
aquatic ecosystems (i.e. rivers, lakes and oceans) and the remaining
part deposits in adjacent land surfaces15,25. During these processes,
detachment and transport of soil lead to breakdown of structural
aggregates and exposure of the hitherto encapsulated SOC within

Figure 2 | Simulated spatial patterns of the soil erosion rates (a) and lateral redistribution rates of soil organic carbon (SOC, b) in China, presented as
the mean values from 1982 to 2011. The scatter plots show the annually total amounts of eroded soil and SOC in China. The lateral redistribution rates of

SOC presented here were calculated with an enrichment ratio of 1.8. The maps were created by the ArcMap 9.3.
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the aggregates to microbial processes. This will induce an attendant
increase in mineralization and emission of CO2

25,45. Nevertheless, the
decomposition of SOC in depositional areas may be substantially
constrained by anaerobic conditions46. Moreover, the delivery and
fate of eroded SOC depend strongly on topography, soil properties,
vegetation cover, and magnitude and regime of precipitation, and
generally show dramatic spatiotemporal variations12,33. SOC deliv-
ered to aquatic systems may be rapidly mineralized12,47,48 or preserved
in riverine, lacustrine and oceanic sediments for a long time17,49,50.It is
still difficult to quantify the mineralization of transported carbon and
the fate of carbon deposited in low land and aquatic systems.

In addition to water erosion, wind erosion, tillage erosion and the
soil vertical movement should also be considered when estimating
the ecosystem carbon budget in China51–53. The annually redistrib-
uted SOC in China due to wind erosion was estimated to be 0.075 Pg
C yr2151, which is about 10% of the displaced SOC due to water
erosion from this study (0.88 Pg C yr21). Nevertheless, wind erosion
may impact carbon budget in China significantly, especially in north-
western China51. In south China, especially the Karst regions, soil
vertical movement is believed to play an important role in soil-atmo-
sphere carbon flux53. With the vertical movements of soil and water,
considerable CO2 can be dissolved in water and the dissolution of
calcium carbonate can result in significant carbon uptake from atmo-
sphere. Due to the deposition of dissolved carbonate minerals caused
by soil vertical movement, the Karst regions are often a net carbon
sink53,54. Overall, both the lateral soil movement induced by water,
wind and tillage, and the vertical soil movement should be integrated
to carbon cycle modeling for quantifying regional or global ecosys-
tem carbon budgets.

Methods
Revised Universal Soil Loss Equation. The water erosion rate in China was
calculated using the Revised Universal Soil Loss Equation (RUSLE)24. The RUSLE is
the most popular empirically based model that is used for erosion prediction and
control55, and it has been tested in many watersheds worldwide. Although it is an
empirical model for accessing long-term averages of sheet and rill erosion, the
calculation of its factors can be improved and adapted to enable application to various
spatial scales in different environments56,57. Generally, the formulation of RUSLE is
expressed as

A~R|K|L|S|C|P ð1Þ

where A is the annual potential soil erosion rate (t ha21 yr21); R is the rainfall-runoff
erosivity factor (MJ mm ha21 h21 yr21); K is the soil erodibility factor (t ha h ha21 MJ21

mm21); L is the slope length factor; S is the slope steepness factor; C is the cover-
management factor; P is the support practice factor.

R, the rainfall-runoff erosivity factor, is computed originally from rainfall
amount and intensity. Here we used a regression relationship to calculate R
factor14,58:

R~0:0483 Pa
1:610 ð2Þ

where Pa is the total annual precipitation (mm).
K, the erodibility factor was calculated according to the method in EPIC model59:

K~
1

7:59
0:2z0:3 exp {0:0256 SAN 1{

SIL
100

� �� �� �
SIL

CLAzSIL

� �0:3

1:0{
0:25 OM

OMz exp 3:72{2:95 OMð Þ

� �
1:0{

0:25 SN
SNz exp {5:51z22:9 SNð Þ

� �ð3Þ

SN~1:0{
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100

ð4Þ

where SAN, SIL and CLA are the percentage content (%) of sand, silt and clay,
respectively. OM is the content of SOC (%).

The slope length factor (L) and slope steepness factor (S) reflect the effect of
topography on soil erosion in RUSLE. We extracted the original slope length (l) and
steepness (b) from the digital topography map of China (59 resolution) using the
algorithm proposed by Van Remortel et al. (2004)60. Then, the slope length factor was
calculated by

L~
l

22:13

� �m

ð5Þ

m~
F

1zF
ð6Þ

F~
sin b

0:0896 3 sin bð Þ0:8z0:56
� 	 ð7Þ

The slope steepness factor (S) was calculated from

S~
10:8 sin bz0:03, bv50

10:8 sin b� 0:50, b§50

�
ð8Þ

To reduce the bias and random errors, the slope factors derived on a 5-minute
resolution were then aggregated to a resolution of 0.01u.

C, the cover-management factor, is used to reflect the effect of cropping and
management practices on soil-erosion rates24. Here, the method proposed by Yang
and Shi (1994)61, often been used widely in China for estimating regional soil
losses57,62,63, was adopted to calculate the C factor:

Figure 3 | Erosion-induced carbon fluxes between soil and atmosphere
(Ec) in China. The open bars (S1, S2) denote the carbon sources of

atmospheric carbon, and the gray bars (S3, S4) denote the carbon sinks of

atmospheric carbon. The error bars denote the standard deviations of

annual Ec. The dotted shade denotes the range of the total terrestrial carbon

sink in China (0.19–0.26 Pg C yr21) estimated by Piao et al. (2009)6

without considering the influences of soil erosion.

Table 1 | Simulated lateral redistributed soil organic carbon (SOC) and erosion-induced carbon flux between soil and atmosphere in China
from 1982 to 2011. ER is the enrichment ratio of SOC; Tc is the mean annual redistributed SOC; Ec is the mean annual erosion-induced C flux
between soil and atmosphere; Tac is the accumulated redistributed SOC through 1982 to 2011; Eac is the accumulated erosion-induced C
flux between soil and atmosphere. The positive Ec and Eac denote sinks of atmospheric carbon and the negative values denote sources of
atmospheric carbon. S1, S2, S3 and S4 indicate the 4 different scenarios (see Methods)

ER Tc (Pg C yr21)

Ec (Pg C yr21)

Tac (Pg C)

Eac (Pg C)

S1 S2 S3 S4 S1 S2 S3 S4

1.3 0.64 20.13 20.08 – 20.01 0.10 0.17 19.26 23.85 22.31 – 20.39 3.08 5.02
1.8 0.88 20.17 20.10 – 20.02 0.14 0.22 25.70 25.14 23.08 – 20.51 4.11 6.95
2.6 1.19 20.24 20.14 – 20.02 0.19 0.31 35.70 27.14 24.28 – 20.71 5.71 10.04
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f VC~
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ð9Þ

C~
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where NDVIi is the actual annual average normalized difference vegetation index
(NDVI); NDVIsoil the NDVI of uncovered, bare ground; NDVIveg is the NDVI of
ground completely covered by vegetation; and fvc is the annual average fraction
vegetation cover (%).

P, the support practice factor, is the ratio of soil loss with a support practice such as
contouring, or terracing to soil loss without support practice. Because there is no
support practice on most land in China, except for some farmlands on steep slopes, a
constant value of 1.0 was applied for P.

This study used the digital elevation model (ASTER GDEM) with 90 m resolution
to drive RUSLE model (downloaded from ASTER GDEM, http://www.gdem.aster.
ersdac.or.jp). We collected meteorology data of 750 stations from the National
Climate Center of China Meteorological Administration. The thin plate smoothing
splines method was used to generate the daily precipitation for all of China at a spatial
resolution of 25 km of latitude and longitude for the period of 1982–201164. Soil
texture (e.g., sand and clay content) and soil carbon content data with spatial reso-
lution of 0.0083u latitude 3 0.0083u longitude were obtained from Shang-Guan et al
(2012)65. We uses the biweekly NDVI data with an 8-km spatial resolution covering
the period from 1982 to 2011 from Global Inventory Monitoring and Modeling
Studies (GIMMS-3g) (20). All of the RUSLE factors derived from these databases
were resampled to a resolution of 0.01u.

Erosion-induced carbon budget. The erosion rate of SOC (TC) was calculated as:

Tc~A|CSOC|ER ð11Þ

where Csoc is the SOC content in the 0–30 cm soil layer (%). We assumed that the
spatially distributed SOC content remained fairly stable during the period from 1982
to 2011. The enrichment ratio (ER) is defined as the ratio of the SOC content in the
eroded soils to that of the parent soils42,66. Currently, there are disagreements
regarding ER14,67. Many studies have suggested a value higher than unity for ER
because SOC is of relatively low density and concentrated in the vicinity of the soil
surface12,68. However, several studies have reported ER values equal to or less than the
unit because part of SOC had been decomposed during the transport process or rill
erosion had occurred in deep subsoil, resulting in very low SOC content9,69. The
measurements obtained globally from previous studies showed that ER varied
drastically among different environments33,70. In this study, we collected 55 ER
observations globally (Table S2), and determined the median, 25th percentile and 75th

percentile values of ER were 1.8, 1.3 and 2.6, respectively.
There is still no ideal method that can be used to identify the net impacts of soil

erosion on soil-atmosphere carbon flux28,71. We used four scenarios, derived from
field and control experiments, to calculate carbon exchange between ecosystem and
atmosphere induced by soil carbon lateral movement. (1) Lal (1995, 2003, 2004)12,19,25

made an empirical assumption that 20% of the eroded SOC would be decomposed
and subsequently emitted to the atmosphere, based on literature surveys. (2) Based on
the laboratory experiments, Van Hemeleyck et al. (2009)29 suggested that soil erosion
would contribute additional carbon emissions of 2 to 12% of the total eroded carbon.
(3) According to the study at two watersheds of western America, soil erosion would
increase ecosystem carbon sink about 16% of the total eroded C26. (4) The erosion-
induced carbon budget would be a sink of 26% of the total eroded carbon according to
carbon inventory measurements by large-scale survey in America and Europe14.
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