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Networks in nature are often formed within a spatial domain in a dynamical manner, gaining links and
nodes as they develop over time. Motivated by the growth and development of neuronal networks, we
propose a class of spatially-based growing network models and investigate the resulting statistical network
properties as a function of the dimension and topology of the space in which the networks are embedded. In
particular, we consider two models in which nodes are placed one by one in random locations in space, with
each such placement followed by configuration relaxation toward uniform node density, and connection of
the new node with spatially nearby nodes. We find that such growth processes naturally result in networks
with small-world features, including a short characteristic path length and nonzero clustering. We find no
qualitative differences in these properties for two different topologies, and we suggest that results for these
properties may not depend strongly on the topology of the embedding space. The results do depend strongly
on dimension, and higher-dimensional spaces result in shorter path lengths but less clustering.

ne fascinating property of many real-world networks is that they are often “small worlds” in the sense

that they are sparsely connected, but nonetheless have both short average path length and high cluster-

ing'~. The shortest path length between two nodes is the smallest number of links in the path connecting
that pair of nodes, and the average path length is the average of this value over all node pairs in the network. It is
regarded as short if it grows very slowly with network size. To quantify the clustering of an undirected network, we
use the clustering coefficient, which is defined as three times the number of triangles in the network divided by the
number of link pairs that share a common node*. In networks with high clustering, if two nodes are both
neighbors of a third node, they are also likely to be connected to one another. A variety of real-world networks
exhibit the small-world property, and this has fundamental consequences for dynamical processes such as spread
of information or disease”.

Networks with spatial constraints typically have short-range edges, and it is thus relevant that both the original
Watts-Strogatz small-world model® and many real networks with the small-world property are embedded in
physical space. (Here and throughout, we will use the terms “distance” or “spatial distance” to refer to physical
distances in such spaces, reserving the terms “length” and “path length” for the number of hops between two
nodes along network edges.) For example, the Internet, a network of routers connected via cables, is essentially
embedded on the two-dimensional surface of the Earth and tends to have mostly local links, presumably due to
the cost of wiring’. This has led many researchers to consider network models with spatial embedding®'*. Work
on this topic has shown that small-world properties are found in a variety of spatially embedded networks,
including social networks and transportation networks™'c.

Two other key aspects of many real-world networks are that they grow with time (new nodes are added), and
that nodes may move in space. For example, new people may join social networks with time, and friendships
typically form between people who live near one another, but people may also move to new locations. Although
some studies have considered dynamically growing networks, they frequently assume that nodes remain fixed in
their initial positions””'® or consider growing networks that are not embedded in space'”'®.

One case of particular interest is networks of neurons, which grow both in number of neurons and in physical
size during the development of an organism. It has been proposed that networks of cortical neurons are small
worlds, based on experimental results that identify connections between different functional areas of the brain
(i.e., macroscopic groups of physically contiguous neurons with similar behavior)>'>*. These findings have
recently been contested by improved experimental techniques that show that the network of connections between
functional areas is very dense*"*>. However, it is still an open question whether the full, microscopic network of

| 4:7047 | DOI: 10.1038/srep07047 1



connections between neurons is small-world. Here, we study models
that may have some important features in common with newly
forming networks of neurons (the addition of new nodes, local edge
formation, and approximately uniform density over time). We find
that these features lead naturally to small-world networks, although
it remains to be seen whether these features, or the small-world
property, are shared by complete microscopic neuronal networks.

In Ref. 6, Ozik et al. considered a model which incorporated both a
growing number of nodes and node movement. In this model, nodes
are placed randomly on the circumference of a circle, but undergo
small displacements to maintain a constant density over time. Each
node initially forms links only to its nearest neighbors, but, due to
growth, these links can subsequently be “stretched” in the sense that
they bypass many nodes along the circumference of the circle. Due to
the emergence of these long-range links, this model also generates
networks with the small-world property, but in this case it is a con-
sequence of the growth process, rather than the spontaneous forma-
tion of long-range edges. However, since the physical properties of
typical spatial systems typically depend on the dimension of the
embedding space, the main limitation of Ref. 6 is that only a one-
dimensional space (the circle) is treated. Thus, in this paper, we
generalize the model of Ref. 6 by introducing and analyzing a class
of growing undirected network models that have spatially con-
strained nodes able to move about in an embedding space of arbitrary
dimension. (We note that, for real applications, dimensions two and
three are commonly most relevant.)

Methods

The Circle Network Model. In Ref. 6, the authors presented a model, henceforth
referred to as the Circle Network Model, which considers an undirected network
which initially has m + 1 uniformly separated, all-to-all connected nodes on the
circumference of a circle. It has been shown that this growth model leads to a small-
world network with an exponentially decaying degree distribution®. At each discrete
growth step the network is grown according to the following rules:

1. A new node is placed at a randomly selected point on the circumference of the
circle.

2. The new node is linked to its m nearest neighbors (m is even in Ref. 6).

3. Preserving node positional ordering, the nodes are repositioned to make the

nearest-neighbor distances uniform.
4. Steps (1-3) are repeated until the network has N nodes.

This procedure may be imagined as a toy model for the formation of a neuronal
tissue in the following way. Step 1 corresponds to the division of an existing cell (since
the existing cells are distributed approximately uniformly). Step 2 is the simplest
possible model of the formation of local edges by the new neuron®. As the tissue
grows, neurons will be gradually pushed apart, but remain at an approximately
uniform density, corresponding to Step 3. Note that, as mentioned above, the main
limitation of this model is that the space (a circle) is one-dimensional.

We define a network growth procedure to yield the small-world property if, as N —
o, (i) the average degree (k) of a node approaches a finite value; (ii) the characteristic
graph path length €, the average value of the smallest number of links in a path joining
a pair of randomly chosen nodes, does not grow with N faster than logN, as in an
Erdds-Rényi random network®*; and (iii) the clustering coefficient C, the fraction of
connected network triples which are also triangles, approaches a nonzero constant
with increasing N. (In® an alternate definition of the clustering coefficient was used.
Specifically, the local clustering C; of each node i is C; =2q; / [k;(k; — 1)], where g; is the
number of links between the k; neighbors of node i, and the global network clustering is
the average of C; over i.) The circle network model exhibits all three properties.

Degree distribution. The degree distribution H(k) is the probability that a randomly
selected node has k network connections. For large N, the degree distribution of the
circle network model approaches

H(k) = mLH (mlﬂyw (1)

for k = m, and H(k) = 0 for k < m®. Since the number of new links added each time a
new node is added is m, Eq. (1) yields the result that the average node degree (k) is 2m,
satisfying the criterion (i) for the small-world property.

Characteristic path length. In the circle network model, simulation results show that €
~ logN, satisfying criterion (ii). This may be explained intuitively by noting that as
new nodes are added, they push apart the older connected nodes, increasing the
spatial distance traversed by older edges. These older links dramatically decrease the
shortest path length between any given pair of nodes.

Clustering coefficient. For the circle network model, it was shown that the clustering
coefficient approaches a constant, positive, m-dependent value as N — o, satisfying
criterion (iii).

Generalizing the Circle Network Model. Like the Watts-Strogatz model, the circle
network model may be described as a one-dimensional ring model in which
connections are initially formed with m nearest neighbors. However, in the circle
network model, long-distance edges do not form spontaneously, but are a natural
result of the dynamics of network growth. Moreover, the circle network model
naturally raises the question of whether networks grown in higher-dimensional
spaces exhibit similar properties. A primary goal of this article is to address this
question.

In what follows, we introduce two models that generalize the model of Ref. 6 to
higher dimensionality, and then present our results from analysis of these models.
Our main results are as follows.

(i) The coupling of network growth with local spatial attachment leads to small-
world networks independent of the dimension of the underlying space.

(i) The nodal degree distribution (Fig. 1) and age-degree relationship (Fig. 2)
are independent of dimension as in (7).

(i) The path length € scales as logN with a coefficient that decreases with
dimension (Fig. 3) for fixed average degree.

(iv) The clustering coefficient C approaches a finite asymptotic value with
increasing N (Fig. 4) and this asymptotic value decreases with increasing
dimension d of the embedding space.

) All of our results are very similar for both models, which have different
topologies (a unit sphere and a unit ball).

The Sphere Network Model. One natural generalization of embedding nodes on the
one-dimensional circumference of a circle is to embed them on the two-dimensional
surface of a sphere, or more generally on the d-dimensional surface of a hypersphere
(in a space of dimension d + 1). The case d = 1 corresponds to the circle network
model. However, although it is trivial to arrange N points along the circumference of a
circle with uniform spacing, the analogous procedure is less well-defined on higher
dimensional surfaces. One way to generalize the arrangement procedure is to
consider nodes to act like point charges and to move them to a minimum electrostatic
energy equilibrium configuration. The problem of finding the equilibrium
configuration of point charges on the surface of a sphere dates back to 1904, when J. J.
Thomson introduced his model of the atom, and the problem of obtaining such an
equilibrium is sometimes referred to as the “Thomson problem”*. A related
“generalized Thomson problem” assumes that the force between “charges” is
proportional to ™% where r is the spatial distance between charges, with a not
necessarily equal to the Coulomb value, & = d@*. In order to facilitate comparisons
with our second model below, we use the value & = d — 1 in simulations.

Using the generalized Thomson problem as a guide, we develop a generalization of
the circle network model, which we call the Sphere Network Model, as follows. We
model the nodes as point charges confined to a unit spherical surface of dimension d.
We successively add a new node onto the surface at random with uniform probability
density per unit area and then add links to connect it to its m nearest neighbors in

sphere model

plum pudding model
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Figure 1| The logarithm of the degree distribution, log(H (k)), versus
degree k, for the sphere network model (blue markers) and the plum
pudding model (red markers), using N = 10* and m = 4. Data are shown
for d = 1 (circles), d = 2 (triangles), d = 3 (squares), and d = 4 (inverted
triangles). Since all four cases have nearly identical results, an arbitrary
linear offset has been used to separate data for visualization. Error bars are
shown when they exceed the point size. Solid black lines correspond to the
theoretical prediction of Eq. (1).
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Figure 2 | The mean degree k(y,N) of a node of age yin a network with N
nodes on semilogarithmic axes. Data are shown for the sphere network
model (blue) and plum pudding model (red), both with d = 2, m = 4, and
N = 10*. Errors are smaller than the point size. The solid black line is the
theoretical prediction given by Eq. (6).

terms of spatial distance. Next we relax the node positions to minimize the potential
energy of the configuration using a gradient descent procedure,
dx;

S =PIFl, @

F=Y 20 (3)
% )

where x; is the (d + 1)-dimensional position vector of node i, |x;| = 1 foralli,and P[]
denotes projection onto the d-dimensional surface of the sphere. We note that, as new
nodes are added, this procedure tends to yield a local energy minimum, as opposed to
the global minimum (but for some applications, such as modeling biological network
growth, the identification of local rather global minima might be viewed as more
appropriate). Note that, for large N, the repulsive interaction ensures that the points
are distributed approximately uniformly on the surface of the sphere.

The Plum Pudding Network Model. The sphere network model described above has
the topological feature that the spatial embedding region does not have any boundary,
which allows us to find a nearly-uniform distribution of nodes by imagining them to
be identical charges with repulsive interactions. We have also tested another model
with a different topology having a boundary and using a different mechanism to
encourage uniform distribution of nodes. We call this second model the Plum
Pudding Network Model after Thomson’s famous model of the atom*".

We again model our nodes as a collection of negative point charges in d dimen-
sions. The growth procedure is similar to the previous models; we place new nodes
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Figure 3 | The characteristic graph path length (¢) versus network size N
on semilogarithmic axes for the sphere model (blue markers) and the
plum pudding model (red markers). The path length shows the desired
scaling, € ~ logN. Results are shown for d = 1 (circles), 2 (triangles), 3
(squares), and 4 (inverted triangles), all using m = 4. Errors are smaller
than the point size. In general, the average shortest path is shorter for
higher dimensions d in both models.
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Figure 4 | Clustering coefficient C versus network size N for the sphere
network model (blue markers) and plum pudding model (red markers),
both with m = 4. Results are shown for d = 1 (circles), 2 (triangles), 3
(squares), and 4 (inverted triangles). Errors are smaller than the point size.
Horizontal lines are drawn through the last data point in each series.

randomly in our volume and connect them to their m nearest neighbors, where here
we define nearest to be the spatial distance between the nodes. Now, however, we
regard the nodes as free to move in a unit radius, d-dimensional ball. (For d = 1, the
unit ball is the interval —1 = x =< 1; for d = 2, it is the region enclosed by the unit
circle.) We assume that the ball contains a uniform background positive charge
density such that the total background charge in the sphere is equal and opposite to
that of the N network nodes. As in the sphere model, after adding a node with uniform
probability density within the unit d-dimensional ball, we relax the charge config-
uration to a local energy minimum. Here, the relaxation is described by

— =Fi—Nx; 4
i Nx (4)

where x; is a d-dimensional position vector with respect to the center of the ball, F;is as
in Eq. (3), and the term NXx; is due to the positive charge density.

Note that, in order to apply Gauss’s law for the background charge, we have
assumed a force law proportional to r~“~". When N is large, the nodes will be
approximately uniformly distributed in the ball in order to cancel the uniform pos-
itive background charge. Although any repulsive force law can, in principle, be used
for the sphere model, we chose to use the same force law for the sphere model in order
to facilitate comparisons of the results between the two models. In what follows, we
will compare cases of the sphere model and plum pudding model for which the
dimension d of the space occupied by the nodes is the same, and we keep & = d — 1 the
same for both cases.

Results

Degree Distribution. The distribution of node degrees can be derived
analytically, does not depend on dimension, and is the same for the
sphere and plum pudding models. This can be derived from the fact
that, for large N, the probability that a newly added node will form an
edge to any particular existing node is m/N for all nodes. This is
because existing nodes are distributed approximately uniformly, and
new nodes are placed randomly according to a uniform probability
distribution. Here we show that for each considered model, we pro-
duce the same master equation governing the evolution of the degree
distribution as that found for the circle model®. This master equation is
not specific to the spatial structure of the network and appears, in
various forms, in other network models, such as the Deterministic
Uniform Random Tree of Ref. 26.

We define G(k,N) to be the number of nodes with degree k at
growth step N (i.e., when the system has N nodes). When a node is
added to the network it is initially connected to its m nearest neigh-
bors, so upon creation, k = m for each node, meaning that
G(k,N)=0 for k < m. Since each existing node is equally likely to
be chosen to be connected to the new node, there is an m/N prob-
ability that any given node will have its degree incremented by 1.
Averaging G(k,N) over all possible random node placements, we
obtain a master equation for the evolution of G(k, N), the average
of G(k,N) over all possible randomly grown networks,
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G(k,N+1)=G(k,N)— %G(k,N)

N 6
+4 NG(k—l,N)-i—ékm,

where dy,, is the Kronecker delta function. The first term on the right
is the expected number of nodes with degree k at growth step N. The
second term is the expected number of nodes with degree k at growth
step N that are promoted to degree k + 1. The third term is the
expected number of nodes with degree k — 1 at growth step N that
are promoted to degree k. The last term on the right is the new node
with degree m.

It was shown by Ozik et al. that this master equation leads to an
exponentially decaying degree distribution with an asymptotically N
invariant form H(k) = limy ... G(k, N)/N given by Eq. (1) for k =m
and H(k) = 0 for k < m. Interestingly, this degree distribution comes
only from the growth process and the uniform probability of attach-
ing new links to existing nodes. As seen in Fig. 1, for m = 4, N = 10%,
withd = 1,2, 3, or 4, Eq. (1) is well satisfied by numerical simulations
of both models.

Intuitively, we expect that older nodes in each model will accu-
mulate more edges and become network hubs. The relationship
between degree and age is also straightforward to investigate in this
model. Here, we reproduce an expression for the expected degree
k(y,N) of a node that has existed for y growth steps, given that the
network size is N (y < N)*. Each node connects to its m nearest
neighbors upon creation, and the probability of incrementing the
degree of the node is m/N when the size of the network is N. Thus
we obtain

k(y,N)=m+m XN: 1

n=N—y+1 n

N 1
%m—l—mlogN_y +O<ﬁ)'

Once again, since this derivation uses only the assumption that each
node has an equal chance each growth step to have its degree incre-
mented, the result holds for both of the models discussed here. This
represents a specific example of the fact that in dynamically growing
networks, older nodes are preferentially connected to subsequent
nodes, as discussed in Ref. 18. Numerical simulations in Fig. 2 dem-
onstrate that Eq. (6) is satisfied for both models. For simplicity,
results are only presented for d = 2, but Eq. (6) has no dependence
on the embedding space, and thus holds for other dimensions as well.

Path Length and Clustering Coefficient. For the sphere and plum
pudding network models, we find numerically that the average
shortest path length € scales logarithmically with the network size
N, that is, £ ~ logN. See Fig. 3. The scaling € ~ logN is expected
because as the network grows in size, the older nodes are pushed
apart by the repulsive force, thus leaving bridges across the network
that span a significant distance. These long range links serve to
connect spatially separated regions of highly interconnected nodes,
dramatically reducing the shortest path length between any two
nodes in the network®. At each growth step only local connections
are made, but due to the dynamic nature of the nodes’ spatial
positions, each growth step can make existing links longer in
physical space, thus building bridges across the network.

We see from Fig. 3 that, for given values of N and m, the char-
acteristic path length decreases with d and is shorter than that of the
corresponding one-dimensional case (the original circle network
model). One possible explanation for this is that in a higher dimen-
sional space, it is easier to separate existing nodes by placing a new
node, because nodes can move around one another, making it easier
for short-range links to be stretched into shortcuts as the network
grows. This is in contrast to the circle network model, in which each

node is forever locked between its two original spatial neighbors until
a new node is placed directly between them.

For both models, we also find that the clustering coefficient C is
nonzero for large N, but depends on the dimension of the embedding
space. Results for the clustering coefficient C versus the number of
nodes N with d = 1, 2, 3, and 4, using m = 4, are displayed in Fig. 4.
Horizontal lines are drawn through the last point in each series. For
the values of d shown, we see that as N increases, there is an initial
decrease of Cfor N < 1, 000, but the N variation appears to effectively
cease with increasing N. These results are consistent with an N — o
asymptotic value close to the value at N = 10; 000. Assuming this to
be the case, values for the large-N clustering in the sphere model are
given as follows: for d = 1, C =~ 0.44; ford = 2, C =~ 0.28; for d = 3,
C = 0.14; and for d = 4, C = 0.07. Values for the plum pudding
model are similar. Higher dimensional cases that we have examined
(d = 5-9) follow the same pattern. More specifically, we find that for
a given value of m, the clustering coefficient decays algebraically with
dimension, C ~d~P». In Fig. 5, we show that /3, = 1.88 for the sphere
model, while for larger values of m we find f3,,, decreases, but remains
positive.

Thus we find that both the sphere and plum pudding network
models lead to networks exhibiting the small-world property, and
their behaviors are similar. Based on these examples, we suggest that
spatial topology may not to be of great importance to the small-world
properties of the resulting network. We conjecture that node addi-
tion, local edge formation, and relaxation towards uniform density
are typically sufficient for the occurrence of the small-world property
(although we acknowledge that there may be counterexamples in
unusual cases). On the other hand, although the degree distribution
does not depend on dimension, an important result is that other
network properties such as the clustering coefficient show a relatively
strong dependence on dimensionality (Figs. 3-5).

It is worth noting that the d = 1 case of the plum pudding model
does not reduce to the circle network model, but the two nonetheless
show similar behavior, because they differ only at the boundary x =
*+1. In both models, the relative spatial ordering of nodes is pre-
served, and the equilibrium case has perfectly uniform inter-nodal
spacing, as opposed to models with d = 2, in which the concept of
linear ordering is absent. In addition, when d = 2 in both the sphere
and plum pudding models, exact, global regular-lattice positioning is
not possible. For example, for N>>1 charges on a sphere with d = 2, it
is known that the equilibrium positioning on much of the area of the
sphere is locally similar to a triangular lattice, but the sphere’s curv-
ature leads to point and line defects in the lattice’. Thus a natural
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Figure 5 | Asymptotic clustering coefficient C versus dimension of
embedding space d for the sphere network model (blue) and plum
pudding model (red) on logarithmic axes with m = 4. Solid black lines are
given by C o< d~*, where f§ was obtained from a least-squares fit to the data
for d = 2. The resulting value of  was 1.88 for the sphere model and 1.81
for the plum pudding model.
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question is whether the d = 1 cases might have special properties in
common that deviate from those for d = 2. It can be seen in Fig. 5 that
one such property is that both d = 1 cases do not follow the same
scaling trend in clustering that we find for higher dimensions.

Discussion

We have explored two models which generate networks with small-
world features through local spatial attachment and growth, without
direct formation of long-distance links. By allowing nodes to move in
space, the initially formed local links can become long-range, thus
providing a mechanism for how small-world networks can emerge
from a growing collection of dynamically interacting and locally
constrained vertices. Both models show similar behavior for the
degree distribution, characteristic path length, and clustering coef-
ficient. The qualitative similarity between the networks generated by
the two models indicates that the small-world features are deter-
mined by spatial attachment and growth, and, in these cases, is not
affected by the topological features of the embedding space. However,
the quantitative values of measures characterizing these features can
depend on dimension; higher-dimensional spaces yield shorter path
lengths but less clustering.

These findings may offer insight into the origin of small-world
features in growing networks, possibly including networks of neu-
rons. In some systems, network growth may be an appropriate mech-
anism for the emergence of small-world features. We also speculate
that similar ideas may explain the small-world property in other
types of networks. For example, in some transportation networks
such as the Indian railroad network'®, nodes are not distributed
uniformly, but there is an incentive for spacing nodes apart, and
some of the same results may follow. It is also possible that these
ideas could be applied to some non-spatial networks, such as the
world wide web®®, by replacing the physical space used in our model
with a more abstract space of content (i.e., the location of a node
represents the topic or purpose of a website, and websites link to
other websites which have similar content).

We hope these findings will generate renewed interest in spatial
networks with dynamically located nodes and in the role that growth
plays in the development of important network features.
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