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network. The classification is based on emergent natural variation in six habitat layers meaningful at the
stream-reach resolution: size, gradient, hydrology, temperature, network bifurcation, and valley
confinement. To support flexibility of use, we provide multiple alternative approaches to developing classes
and report uncertainty in classes assigned to stream reaches. The stream classification and underlying data
provide valuable resources for stream conservation and research.
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Background & Summary

Classification systems reveal the structure and relationships among groups of objects, and in doing so,
they help us understand complex systems by drawing inferences about the laws that govern those
relationships'. For instance, stream classifications are often based on commonalities in hydrologic
variation®, thermal regimes’, or geomorphic properties®”. As such, stream classifications are
fundamentally important in understanding the diversity of stream ecosystems across large regions®
and their role in structuring biological communities’. However, stream classifications are also practically
important to management, such as serving as conservation planning units®, prioritizing conservation and
restoration’, stratifying environmental monitoring programs'’, providing predictive variables for species
distribution modeling'', and identifying reference sites to inform monitoring'?.

While the approach to developing a stream classification rests upon its intended objectives for use®,
there are several design principles of classifications that we believe maximize the application breadth for
stream research and management®. These include developing classifications that are: 1) at the stream-
reach resolution, 2) based on multiple layers of habitat components, 3) spatially contiguous and
comprehensive, 4) inductive (i.e. emergent properties), 5) physically-based, and 6) representative of the
least disturbed condition®. We describe each of these principles briefly.

First, stream habitats are shaped by two predominant forces: the physio-climatic properties of the
landscapes they drain'»'* and the longitudinal and lateral advection of materials'>'®. Accordingly,
stream-reaches are an ideal spatial resolution that captures both local and upstream processes'’'* and
are best equipped to understand the regional-to-local heterogeneity of riverscapes’. Second, to help
understand and communicate the multivariate nature of lotic systems, streams have been conceptualized
as a series of building blocks representing different components of the ecosystem (e.g., hydrology,
geomorphology)*. Multi-layered approaches to classification preserve the identify of these building
blocks, each of which have different roles in structuring ecological communities or understanding stream
responses to natural or human disturbances®*’. Third, classifying all observations ensures classifications
are comprehensive of all potential types and not biased by the availability of information®'; however, this
induces a tradeoff between developing classifications based on direct measures of stream behavior versus
environmental regionalization (i.e. deductive), as direct observations often have limited spatial
coverage®>**. Hence, the fourth principle: Inductive approaches that rely on direct empirical observations
(e.g., discharge) more accurately represent emergent patterns of stream behavior than deductive
approaches that use regionalization or indirect environmental surrogates to represent variation in
streams”. Although there are a few ways to reconcile these divergent endpoints (e.g., novel deductive
regionalization-hybrid classification approaches), a straightforward approach is to use predictive
models to extrapolate direct measures of stream behavior to all stream reaches. Fifth, physically-based
classifications, as opposed to biologically informed classifications, preserves mechanistic linkages between
physical process, stream responses to disturbance, and the structure of ecological dynamics®. Rendering
class partitions based on biological discriminatory power shifts the scale-relevance of subsequent
classifications towards the availability of biological data and selected taxonomic groups, which could
minimize application breadth. Finally, classes developed based on the reference or least disturbance
condition are amenable to guiding restoration and management'?.

The above principles are a stark contrast to the many previous national-scale stream classification
efforts, which have either classified discrete observations (e.g., stream monitoring points)z, used deductive
approaches for grouping streams'®**, and/or classified singular, as opposed to multiple, habitat
components, primarily hydrology®*>. While these approaches have enriched our understanding of stream
function, they are limited in their ability to comprehensively represent the emergent properties of stream
ecosystems and their habitat components across large regions®’. Herein, we describe an inductive, multi-
layered stream classification system dataset for stream reaches within the conterminous United States
where we followed the six design principles. The Stream Classification System (SCS) is constructed from
the NHDPlus V2 stream reach network (http://www.horizon-systems.com/NHDPlus/index.php), a
spatial framework of over 2.6 million stream reaches within the conterminous US (CONUS). This effort
builds off previous efforts to construct an analogous stream classification product for the Eastern United
States®. To our knowledge, a comparable stream classification of this scope and resolution has not been
documented in the literature, but provides a valuable resource for stream management, conservation, and
research applications.

Methods

Overview of approach

Within the SCS, stream habitat building blocks are represented as a series of layers, each of which
represent different categories of physical characteristics (e.g., size, gradient). Each layer is comprised by
multiple classes (e.g., headwater, creek, low gradient, high gradient). Layers were constructed using
inductive approaches based on patterns in empirical data, as opposed to deductive approaches reliant
upon landscape regionalization. Sources of empirical data used to derive stream classes are provided in
Table 1. Through previous reviews and solicitation from a body of conservationists and stream
ecologists®*>, we selected six stream habitat layers that could be mapped at the stream reach resolution
and were hypothesized to exert strong controls on ecological function and ecological community
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Dataset Theme Description Spatial Resolution Temporal Resolution

NHDPlus V2* Multiple Hydrography of streamflow lines, waterbodies, and associated attributes summarized for local catchments at | Stream Reaches, Catchments | NA
1:100 k resolution

StreamCat” Pred; Dist Large suite of variables summarized in for NHDPlus V2 local catchments and upstream networks Stream Reaches, Catchments | Decadal; Discrete Annual
WorldClim* Pred Bioclimatic variables summarized at seasonal periods from 30-yr normals (1970-2000) 1 km?* Decadal averages
USGS NWIs? Hyd; Temp | Measurements of discharge (daily) and water temperature (daily and field grap samples) from ~1950 to Point Daily; Grab Samples
2017
StreamNet* Temp Daily water temperature data from deployable loggers (~1995-2000) Point Daily
Hill et al.*® Temp July-August averages of daily water temperature (1999-2008) Point Seasonal
Deweber and Temp July—August averages of daily water temperature (2002 to 2010) Point Seasonal
Wagner"!
Wieferich et al.”! Bif Common identifiers of reaches belonging to the same hydrologically meaningful unit. Identifiers are used to | Stream Reaches NA
correct unmeaningful junctions, primarily resulting from intersections of reaches with quadrangle map
boundaries
NED 30-m’ ValC National Elevation Dataset (30 m) 30 m grid NA
NRSA® ValC US Environmental Protection Agency (EPA) National Rivers and Streams Assessment (NRSA). Provides Point NA
river width in habitat assessments of sites.
Downing ef al.? ValC Assemblage of river width information from published literature Point NA
NARWidth v0.1" ValC Landsat-derived dataset of river widths in North America for >2.4 x 105km of rivers wider than 30 m River Segments NA
PRISM 30y ValC Gridded spatial datasets of average historical climate conditions, in this case, precipitation 800 m grid 30-year mean
Normals'
NFHP* Dist National Fish Habitat Partnership assessment of habitat degradation within NHDPlus V1 catchments Stream Catchments NA

Table 1. Datasets used in developing the US stream classification system. Pred = Predictor; Dist =
Disturbance; Hyd = Hydrology; Temp = Temperature; Bif = Network Bifurcation; ValC = Valley

Confinement “NHDPlus V2: http://www.horizon-systems.com/nhdplus/NHDPlusV2_home.php. °Environ-
mental Protection Agency StreamCat: https://www.epa.gov/national-aquatic-resource-surveys/streamcat.
“WorldClim Global Climate Data: http://worldclim.org/. “US Geological Survey National Water Information
System: https://waterdata.usgs.gov/nwis. “StreamNet: Fish Data for the Northwest: https://www.streamnet.org/.
‘National Elevation Dataset (30-m): https://nationalmap.gov/elevation.html. National Rivers and Streams
Assessment: https://www.epa.gov/national-aquatic-resource-surveys/nrsa. "North American River Width Data
Set v0.1: http://gaia.geosci.unc.edu/NARWidth/. 'PRISM 30-yr Normals: http://www.prism.oregonstate.edu/
normals/.

composition. These included (in order of decreasing ecological importance): size, gradient, hydrology,
temperature, stream network bifurcation, and valley confinement.

A major consideration in selecting layers and determining partitions among classes was the availability
of documented methods for classification approaches and thresholds among classes. Hence, we
preferentially selected layers supported by pre-existing and published classifications or if previous
classifications were unavailable, we relied on literature to determine breaks and thresholds to partition
values (e.g., gradient) into classes when available. Because classification outcomes are influenced by the
approach taken, we used multiple alternative approaches, if available, in developing classes within layers.

Predictor Variable Compilation

Information on size, gradient, and network bifurcation were derived from the NHDPlus V2 dataset.
However, discrete in situ observations of hydrology, temperature, and river channel characteristics (valley
confinement) required that we develop models to extrapolate these classes to the stream reach level. A
total of 66 landscape, climate, topographic, and soil variables were assembled for drainage basins
contributing to each stream gaging station and for the entire drainage network upstream of every stream
reach in the US (Table 2 (available online only)). Of these, 44 were provided by Stream Cat database?®
(https://www.epa.gov/national-aquatic-resource-surveys/streamcat), 21 from the NHDPlus V2 dataset,
and one from WorldClim (http://worldclim.org/version2) (Table 2 (available online only)). In
approximately 2% of observations, values were missing for variables summarized for drainage networks
above each stream reach (primarily StreamCat data). We used the Multivariate Imputation by Chained
Equation (MICE) package in the R programming environment®’ to estimate the most probable values for
missing variables based on values present for other variables. For each variable with missing values, we
specified a binary matrix indicating which subset of predictors should be used to estimate missing values
during izmputation. Separate Predictive Mean Matching models were developed for each incomplete
variable®’.
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Size

In comparison to other classes, developing classification schemes for size and gradient did not rely on in
situ observations or predictive model development (e.g., hydrology). We used two size-relevant variables
available through the NHDPlus V2 dataset to provide alternative classifications of stream size: Strahler
stream order and mean annual discharge (representative of conditions of minimal human impact).
Stream order depicts the dendritic nature of stream environments®® and is commonly used to
characterize the frequency distribution of stream sizes over large regions or globally*. Limitations of
stream order, however, are that order can be influenced by the scale of mapped hydrography®® and
discharge may vary widely across climatic regimes for a given order. Likewise, using drainage area to
characterize size can also be problematic, as discharge per unit area will also range dramatically across
regions of widely varying climate®. Alternatively, a stream’s size can be characterized by the flow it
carries. However, this requires determining a standardized approach to partition classes based on
discharge. Because geometric laws governing stream organization (e.g., frequency, stream length,
drainage area) are based upon stream order’', order provides a universal physical template to partition
continental wide variation in discharge based on consistent thresholds. To develop a discharge-based size
classification, we calculated the median discharge for all NHDPlus V2 stream reaches according to
Strahler stream order and then used mid-points between these values to create discharge breaks as size
class thresholds. (Note: variables used in the hydrologic classification are standardized by mean annual
discharge and thus, are not influenced by river size).

Gradient

Gradient values (i.e., stream bed slope) were also provided as an attribute of NHDPlus V2 flowlines.
Stream slopes were measured for each flowline as the proportion of rise in elevation over streamline
distance®®. Smoothed elevation data were derived from 10-m digital elevation models (DEMs) for the
nation. Maximum and minimum elevations were used to determine rise, which was divided by the total
length of the flowline. To our knowledge, the most widely-used gradient thresholds are provided Rosgen®,
who distinguishes channel morphologies based on gradient, width-to-depth ratios, entrenchment, and
sinuosity. Multiple stream classification efforts have also relied on these gradient thresholds to partition
classes as well>”*>. We adopted these breaks to develop gradient types and mapped those to stream
reaches.

Hydrology

Over the past two decades, numerous hydrologic classifications at regional to global scales have been
developed from discrete observations of streamflow monitoring stations>'®*’. In general, developing
inductive hydrologic classifications requires assembling in situ observations of discharge, summarizing
discharge into hydrologic statistics, and then clustering observations based on similarities in hydrologic
properties®*. Recently, McManamay et al.** developed a hydrologic classification for the entire US based
on natural streamflow patterns at 2,600 US Geological Survey (USGS) stream gaging stations with
upstream watersheds representing the least disturbed condition for their respective region. Following
decomposition of 110 hydrologic statistics into 13 component scores using Principal Components
Analysis (PCA), stream gages were probabilistically assigned to 1 of 15 hydrologic classes using optimal
Gaussian mixed model clustering algorithms determined using Bayesian inference®*. These classes
represent variation in hydrologic patterns as opposed to variation in discharge volume, as all magnitude-
related hydrologic statistics were standardized by mean daily flow prior to PCA and clustering.

This fuzzy-style of classification (i.e., soft clustering) is flexible in that it characterizes streams as
theoretically sharing membership among many clusters®>*>. In contrast, “hard” clustering techniques,
such as distance-based hierarchical agglomerative methods (e.g. Ward’s method)®, are relatively
straightforward, easier to understand, and produce nested and crisp memberships®>. Thus, we used
Ward’s agglomerative method to cluster the 2600 USGS gages using the 13 PC scores and then
determined a series of optimal numbers of clusters based on visual examination of the dendrogram.

All USGS stream gages were spatially joined to NHDPlus V2 stream reaches. Using predictor variables
in Table 2 (available online only), we constructed random forest classification models® in the R
programming environment to predict hydrologic class membership and then extrapolated hydrologic
classes to all NHDPlus V2 stream reaches.

Temperature

Compared to hydrology, temperature classifications are less common , possibly due to scarcer
temperature data compared to discharge. Recently, Maheu et al.’ grouped approximately 130 gaging
stations (representative of reference conditions) across the US into different types of thermal regimes
based on a several statistics describing magnitude and variation. This multivariate approach provides a
multivariate alternative to the univariate summer temperature classes that we generated. Locations of
gages used in the Maheu ef al. classification were acquired from the authors and were spatially joined to
NHDPlus V2 stream reaches. Using 65 of the predictor variables, we developed a random forest model to
Maheu et al. classes to stream reaches across the US. Because temperature is a function of river size, we
excluded Qwsa from the model (i.e. mean annual flow divided by drainage area).

3,38,39
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As an alternative, we developed a simple temperature classification based on naturally occurring
average summer water temperature values. Multiple studies suggest that divergent thermal regimes in
streams are primarily influenced by natural variation in summer temperature (July-August averages)
values™***'. Additionally, summer-time temperature values are among the most readily available data
from pubhc and non-public sources. We compiled stream water temperature data for 5,907 sites from
multiple sources, including Deweber & Wagner*' (n = 2893), Hill et al.*® (n = 566), USGS gauges with
daily records (n = 2184), USGS seasonal field monitoring (n = 240), and other temperature data from
loggers deployed by agencies (n = 24) (Table 1). Determining adequate record length for temperature
data required striking a balance between minimizing uncertainty in July-August averages with havmg too
few samples for adequate regional representation. For instance, Jones and Schmidt*? provided
recommendations for record lengths required to adequately minimize uncertainty in estimating thermal
regime metrics; however, following this guidance would have reduced the above USGS records alone
(n = 2424) by 70 to 90%. Furthermore, Jones and Schmidt’s assessment included monthly maxima,
minima, and range metrics, whereas our analysis relied on a coarser bi-monthly average metric (July-
August), which we deem less susceptible to year-to-year variation than temperature extremes
(Supplementary File 1). Using 22 USGS gages across the US and confidence bands from Jones and
Schmidt, we estimate that 1-2 seasons of data could reliably estimate mean July—August temperatures
within 1 °C at 80% and 90% confidence, respectively (Supplementary File 1). We screened sites to ensure
the period of record fell within 1995 to 2015 and data was available for at least 60 consecutive days in July
and August.

All temperature sites were spatially joined to NHDPlus V2 stream reaches. We then determined
reference conditions for monitoring sites using indicators of land disturbance and upstream dam
regulation. Land disturbance was evaluated using the National Fish Habitat Partnership (NFHP) 2015
habitat assessment, which provides habitat degradatlon scores ranging from “very low” to “very high”
disturbances within NHDPlus stream reach segments*’. We evaluated the degree of upstream regulation
by 1mpoundments using the degree of regulation (DOR) (% of annual discharge stored by upstream
dams)*, provided by StreamCat. Temperature monitoring stations with risk assessment scores as “very
low” or “low” and DOR < 4% (indicating little influence of reservoirs****) were determined
representative of reference conditions, which resulted in 1764 sites that also met our record length
criteria. Of these, 70% of observations were obtained from Deweber & Wagner*' (n = 1211) or Hill
et al®® (n = 33). Of the remaining 520 observations, 71.7% had at least 2 seasons of data.

Using the same predictor ensemble above, we developed random forests to predict summer temperatures
for reference sites and then extrapolated those values to all NHD stream reaches. We used breaks in the
frequency distribution of US water temperatures to partition summer temperatures into classes. Usrn%
estimated summer-time temperature values for all stream reaches, we used a Jenks Natural Breaks®
procedure to partition temperatures into 2 to 20 classes and then relied upon optimal goodness-of-fit and
tabular accuracy to determine the most parsimonious number of classes explaining the majority of
information. In the absence of a justified approach for physically-based partitioning of classes, the Jenks
method is optimal for univariate clustering of spatial information as it seeks to minimize variation within
classes while maximizing variance among classes*®

Network Bifurcation
Whereas stream size captures the longitudinal variation of ecological functions along a stream’s
continuum'”, tributary )unctrons and stream divergences are also important as they create discontinuities
in longrtudlnal processes’. Stream junctions, specifically the d1fferent1al sizes of streams that comprise
junctions, have large 1nﬂuences on habitat and biological diversity*® Addltronally, ecological community
composition can dramatically change with proximity to stream ]unctlons To capture differences in
network configurations and situations of divergence, we created two brfurcatron classes. First, we created
classes that accounted for different size combinations of tributaries forming a confluence at the upstream
end of each stream reach. Second, we developed classes indicating stream reaches as main or secondary
channels below divergences and where streams received flow from upstream divergences.

Most individual stream reaches within the NHDplus V2 dataset represent distinct hydrologic features
of river networks defined by stream origins, tributary confluences, and intersections with lakes and
reservoirs®’. Topological relationships among NHDplus V2 stream reaches are provided in a “from-to”
table deﬁnrng the upstream reaches contributing to a given reach (i.e., from) and the downstream reach
receiving flow (i.e., to). Using the “from-to” table, the combinations of different Strahler stream orders at
the upstream end of each reach were combrned to create a tributary-mainstem combrnatlon For instance,
the confluence of a 1" order and 2" order tributaries at the upstream end of a 2™ order system would
yield the following class: 2.12 (Fig. 1a). In the majority of cases, only 2 tributaries occurred upstream.
However, in rare cases or situations of divergence, 3 or more tributaries merge upstream above a reach
and we included up to four upstream orders (e.g., Fig. 1b, 5.511). In some cases, stream reaches receive
flow from multiple upstream channel divergences, i.e. splits of one reach into two or more channels in the
downstream direction (Fig. 1c). Because these channels are assigned a stream order and create junctions
that mimic tributary confluences, classifying network bifurcation requires including channel divergences
as a type of confluence. In cases of channel divergence, NHDplus V2 designates reaches as main (D1) or
secondary (D2) channels (Fig. 1c). We used the from-to table to identify stream reaches that were
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Figure 1. Conceptual diagram of various scenarios of stream network bifurcation and divergence. For each

scenario, reaches are labeled according to their Strahler stream order. Bifurcation (Bif.) classes, divergence
(Div.) classes, and the number of upstream and downstream reaches are noted. Naturally-occurring (i.e.
meaningful) stream junctions are distinguished from non-meaningful stream reach junctions arising from
quadrangle map boundaries. Scenarios include (a) a common, simplified stream junction, (b) a more complex
junction with more than 2 upstream contributing reaches, (c) a situation of stream divergence, and (d) non-
meaningful stream junctions arising from map boundaries. In the case of (d), reaches immediately occurring

downstream of non-meaningful junctions are assigned to the same class as their upstream neighboring reach.

immediately below confluences of channel divergences (DU), as to distinguish these from tributary
confluences. After accounting for these divergences, we observed situations of non-sensical tributary
junctions (e.g., 5_5.5) that arose because NHDplus V2 did not appropriately designate all situations of
channel divergence. Because it was difficult to determine whether each of these reaches were divergent
channels or reaches receiving flow from divergent channels, we assigned these reaches to a generic
divergence class (D).

Although most tributary junctions in NHDPlus V2 are hydrologically relevant, a subset of reach
junctions were split at unmeaningful points, such as quadrangle map boundaries, during digitization™®
(Fig. 1d). In the case of bifurcation classes and divergences, these splits would lead to non-sensical
junctions. To correct these instances, Wieferich et al.>' produced an Ecological Reach Identification Table
that assigned split reaches to common ecological identifiers. In these cases, we assigned all reaches
belonging to the same ecological unit with the bifurcation and divergence class of the upstream-most
reach (Fig. 1d).

Valley Confinement

The degree to which valleys control the lateral migration of river channels is indicative of the strength of
interaction between rivers and their floodplain. We delineated unconstrained valley bottoms (i.e.,
polygons) for all NHDPlus V2 stream reaches using the Valley Confinement Algorithm (VCA) tool’* in
ArcMap 10.3. VCA estimates bankfull depth of the stream channel using an empirical function based on
regional precipitation data (http://www.prism.oregonstate.edu/normals) and drainage area for each
stream reach™. Nagle et al.”* suggested 5X bankfull depth to determine flood height, which we also
deemed appropriate given the spatial resolution of NHDplus and 30-m DEM data (https://nationalmap.
gov/elevation.html) for surrounding topography. Based on the surrounding terrain characterized via
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Figure 2. Thresholds for determining partitions between size classes. Box plots (upper and lower quantiles)
of discharge according to stream order. Class breaks represent average values between corresponding medians
for each stream order.

Dataset

Classification Variables

Continuous/Nominal Variables

Size and Gradient

Size class; Gradient class

Strahler Stream Order, Mean Annual Discharge; Stream-reach slope

Hydrology

Hydrologic classes (Bayesian Gaussian Mixed Model and Ward’s Agglomerative Hydrologic classes)

Probabilities of class assignment from random forests

Temperature

Temperature Classes (Maheu et al. classes and average July-August temperature classes)

Probabilities of class assignment from random forests; Predicted July-
August water temperature

Bifurcation network

Bifurcation Classes, Divergence Classes

Upstream Reach Count; Downstream reach count; Upstream orders;
ecological unit identifier; flagged reaches (for unmeaningful junctions)

Valley Confinement

Valley confinement classes

Stream reach length (RL); catchment area; river width area (RWA);
valley bottom area (VBA); valley bottom length (VBL); VBL:RL ratio;
VBA:RWA ratio

Table 3. Datasets provided by the US Stream Classification System.

Size Range (m’s™") Gradient Range (Rise/Run) Avg Summer Temperature Range (°C)
Headwater (HW) 0-0.057 Very Low (VL) < 0.001 Very Cold (VC) <10
Small Creek (SC) 0.057-0.283 Low (L) 0.001-0.005 Cold (CD) 10-15
Large Creek (LC) 0.283-1.133 Moderate (M) 0.005-0.02 Cold-Cool (CC) 15-18
Small River (SR) 1.133-5.663 Moderate High (MH) 0.02-0.04 Cool (CL) 18-21
Medium River (MR) 5.663-22.65 High (H) 0.04-0.1 Cool-Warm (CW) 21-24
Mainstem (MS) 22.65-70.79 Steep (S) >0.1 Warm (W) >24

Large River (LR) 70.79-283.2

Great River (GR) >283.2

Table 4. Thresholds used to partition classes based on univariate continuous data.

DEMs, the VCA program used an algorithm to intersect flood height with the surrounding hillslope.
Waterbodies were used to avoid delineation of valley bottoms in inundated areas.

Once valley bottoms were delineated, thresholds are required to classify stream reaches as unconfined,
confined, or an intermediate level. For example, a valley bottom may not encompass an entire stream
reach or may not extend laterally a sufficient distance beyond stream banks to be classified as unconfined.
This requires an estimate of river width for each stream reach. We compiled both in situ field and remote
sensing observations from >52,000 sites to develop an empirical model to predict river width for all
stream reaches in the CONUS. Field observations of river width were derived from Environmental
Protection Agency’s National Rivers and Streams Assessment (n = 852) (https://www.epa.gov/national-
aquatic-resource-surveys/nrsa), a literature review of stream widths (n = 243)%°) and the North
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Figure 3. Size and gradient stream classes of the conterminous US. (a) Eight size classes based on discharge
values mapped to stream reaches. (b) Size gradient values mapped to stream reaches.

American River Width Data Set (n = 50,230) (http://gaia.geosci.unc.edu/NARWidth/). However, these
datasets largely missed small headwater streams and intermittent systems. To ensure we properly
estimated width for these stream types, stream reaches were stratified by size (see Size classification) and a
random subset (n = 407) were selected from the entire US stream reach population. Aerial imagery was
used to estimate river width at the midpoint, upstream, and downstream ends of each reach, and then
calculate an average width. Random forest models were used to predict river width and extrapolate
estimates to all stream reaches. River width estimates were then used to generate polygon buffers around
all streamlines.

We overlaid river widths and valley bottoms to determine valley constraint status. Hall et a
considered stream reaches unconfined if the width of the floodplain valley is at least four times the width,
whereas stream channels with moderate floodplain interaction have floodplain-to-bankfull width ratios
>2*. Beyond the lateral extent of floodplains, our assessment of confinement also required examining the
length of each stream reach covered by valley bottoms. Stream reaches were classified as “unconfined” if a
valley bottom covered at least 50% of the stream reach length and had a width at least four times that of
the river width. “Moderately confined” stream reaches had valley bottoms with widths >4X river width
but only covered 25-50% of the stream reach length, or if greater than 50% coverage of stream length,
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Mixture Model Classes Abbr. Code Num. Code
Intermittent Flashy 1 IF1 1
Late Timing Runoff LTR 2
Perennial Runoff 1 PRI 3
Perennial Runoff 2 PR2 4
Super Stable Groundwater SSGW 5
Stable High Baseflow SHBF 6
Intermittent Flashy SW IFSW 7
Snowmelt 2 SNM2 8
Perennial Flashy PF 9
Intermittent Flashy 2 1F2 10
Western Coastal Runoff WCR 11
Stable High Runoff SHR 12
Harsh Intermittent HI 13
Snowmelt 1 SNM1 14
Glacial High Runoff GHR 15

Table 5. Gaussian mixed model hydrologic class names and their codes. Names and their geographic
and hydrologic descriptions are provided by McManamay et al.>*.

valley bottoms had floodplain:river width ratios between 2 and 4. All other stream reaches were defined as
“confined.”

Data Records

The US SCS is available to the public by a downloadable link on the Oak Ridge National Laboratory
National Hydropower Asset Assessment Program (https://nhaap.ornl.gov/us-sct) and through figshare
(Data Citation 1). A list of datasets and their variables are provided in Table 3. Variables include the
categorical values resulting from the classification, continuous or nominal variables used in developing
the classes, or measures of probability of class membership (Table 3). Data for each dataset category (e.g.,
Size and Gradient) are provided as a series of .csv files, each pertaining to one of four regions of the US
split by major basins (East, Upper Mississippi, Lower Mississippi, and West). All datasets include the
Common Identifier (COMID) to uniquely identify stream reaches and to cross-reference the NHDPlus
V2 dataset.

Technical Validation

Validation of the stream classification layers was assessed using at least two or more of the following
approaches depending on the layer: 1) class partitioning results and associated diagnostics (all layers), 2)
error and variation explained in models used to derive values underlying classes (temperature,
confinement, i.e. river width), 3) misclassification rates of models used to predict class membership in
stream reaches (hydrology, temperature), 4) relative importance of variables used in models (hydrology,
temperature, river width), and 5) sample size distribution of stream reaches among classes (all layers).
Sample sizes (number of reaches) and cumulative stream length according to different classes are
provided in Supplementary File 2. The NHDPlus V2 dataset consists of 2.69 million stream reaches,
which constitute 5.195 million km of stream length. Assigning class to all stream reaches was not possible
because geospatial variables are missing for some reaches, despite our attempt to impute missing values.
This arises because streams are braided or consist of artificial channels, which prevents network routing
to accumulate geospatial information. The number of reaches lacking class assignment varied according
to layer and depended on which variables were required for deterministically partitioning classes or
which variables were incorporated into final random forest models. Sample sizes lacking class assignment
varied from 12,800 reaches (confinement) to 98,000 reaches (hydrologic classes) were unavailable for
classification due to missing predictor variables. Unclassified reaches constituted < 1.2% of total stream
length in the US.

Values of stream order, discharge, and stream reach slope used to characterize size and gradient layers
were obtained from NHDPlus V2 datasets, and thereby incorporate any error and uncertainty arising
from remote sensing data used to derive those values®*. Median and interquartile ranges of discharge
values ranged widely among stream orders, which substantiated the limitations of using stream order as a
universal measure of river size (Fig. 2). Midpoints between median values of discharge minimized overlap
in discharge values among classes (Fig. 2). Class partition thresholds are provided in Table 4. As
documented previously®, the frequency of stream reaches among size classes and stream orders displayed
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2 clusters 4 clusters 8 clusters 14 clusters 30 clusters
1. Low Baseflow 1. Perennial (P) 1. Perennial Runoff (PR) 1. Perennial Runoff 1 (PR1) 1. Perennial Runoff 1 N (PRIN)
(LBF)

4. Perennial Runoff 1S (PR1S)

3. Perennial Runoff 2 (PR2) 3. Perennial Runoff 2 W (PR2W)

5. Perennial Runoff 2 E (PR2E)

4. Perennial Flashy (PF) 5. Perennial Flashy (PF) 7. Perennial Flashy 1 (PF1)

11. Perennial Flashy 2 (PF2)

30. Perennial Flashy 3 (PF3)

8. Western Runoff (WR) 14. Western Runoff (WR) 29. Western Runoff 1 (WRI1)

28. Western Runoff 2 (WR2)

4. Intermittent (I) 5. Intermittent (I) 7. Unpredictable Intermittent (UI) 19. Unpredictable Intermittent 1 (UT1)

9. Unpredictable Intermittent 2 (UI2)

8. Late Timing Intermittent (LTI) 10. Late Timing Intermittent 1 (LTI1)

22. Late Timing Intermittent 2 (LT12)

10. Intermittent Flashy 1 (IF1) 14. Intermittent Flashy 1 (IF1)
12. Intermittent Flashy 2 (TF2) 17. Intermittent Flashy 2 A (IF2A)
21. Intermittent Flashy 2B (IF2B)

7. Intermittent SW (ISW) 13. Intermittent SW (ISW) 24. Intermittent SW A (IFSWA)

26. Intermittent SW B (IFSWB)

18. Intermittent SW C (IFSWC)

23. Intermittent SW D (IFSWD)

2. High Baseflow 2. Snowmelt 2. Snowmelt 1 (SNM1) 2. Snowmelt 1 (SNM1) 2. Snowmelt 1 A (SNM1A)
(HBF) (SNM)

25. Snowmelt 1B (SNM1B)

6. Snowmelt 2 (SNM2) 11. Snowmelt 2 (SNM2) 16. Snowmelt 2 A (SNM2A)

20. Snowmelt 2B (SNM2B)

15. Glacial Snowmelt (GSNM)

3. Stable Baseflow 3. Stable Baseflow (SBF) 4. Stable High Baseflow (SHBF) 6. Stable High Baseflow (SHBF)
(SBE)

27. Western Stable High Baseflow (WSHBF)

6. Super Stable GW 1 (SSGW1) 8. Super Stable GW 1 (SSGW1)

9. Super Stable GW 2 (SSGW2) 12. Super Stable GW 2A (SSGW2A)

13. Super Stable GW 2B (SSGW2B)

Table 6. Nested hierarchy of hydrologic classes developed using Ward’s agglomerative method.
Clustering was based on Principal Components reducing the dimensionality of hydrologic statistics
summarized for discharge among 2512 US Geological Survey stream gages.

Cluster approach Theme Classes (clusters) N obs OOB error rate (%) Classification accuracy (%) Median Prob.
Gaussian Mixture Model Bayesian HYDR 15 2512 232 76.8 0.43 (0.07)
Ward’s agglomerative HYDR 2 2512 4.94 95.1 0.91 (0.50)
Ward’s agglomerative HYDR 4 2512 9.12 90.9 0.73 (0.25)
Ward’s agglomerative HYDR 8 2512 17.0 83.0 0.58 (0.13)
Ward’s agglomerative HYDR 14 2512 24.6 75.4 0.46 (0.07)
Ward’s agglomerative HYDR 30 2512 33.8 66.2 0.34 (0.03)
Mabheu et al. 2016 TEMP 6 135 282 71.9 0.45 (0.17)

Table 7. Accuracies, cross-validation error rates, and propabilities for random forest models

predicting hydrologic and temperature classes. OOB = out-of-bag error rate, i.e. cross validation error
rate. Median Prob. = Median probability of predominant class assignment to all reaches compared to expected
probabilities (in parentheses).
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Figure 4. Importance of different predictors used in random forest models. Random forests were used to
predict (a) hydrologic classes, (b) temperature classes or average July—August temperature, or (c) river width.
Normalized importance refers to node impurity values for the Gini index (classification) or mean-squared error
(regression) that are scaled from 0 to 1 using (max - x;)/(max (x) - min(x)). Normalized importance was
averaged across all random forest models for hydrologic classes and temperature. Error bars represent 1 SE.
Note: only 1 random forest model was developed for river width.

an exponential decay distribution where the majority of reaches were classified as headwater (1** order
systems) and the largest systems were the most infrequent (Fig. 3a, Supplementary File 2). The majority
streams had moderate-high gradients (34% of stream length), followed by low gradient (23%), and very
low gradient (15%) types (Fig. 3b, Supplementary File 2).

SCIENTIFIC DATA | 6:190017 | https://doi.org/10.1038/sdata.2019.17



www.nature.com/sdata/

1.1F1 ® 6 SHBF o 11. WCR

o
e 2.LTR e 7.IFSW ® 12.SHR
® 3.PR1 ° 8 SNM2 ® 13.HI — m
s 4 PR2 s 9 PF s 14 SNM1
e 5 8SGW @ 10.1F2 © 15.GHR

s 1. PR

e 2. SNM1 © 6. SNM2
© 3. 8BF 7. ISW
° 4 PF ° 8 WR

2
3
6.SSGW1 o 11.SNM2 4 12. SSGW2A
7.ul e 12.IF2 5 13. SSGW2B
® 3.PR2 ° B.LTI ° 13.1SW 6 14 1F1
® 4. SHBF o 9, SSGW2 o 14, WR % 7.FE1 © 15. GENM e 19.Un e 23.IFSWD e 27. WSHBF
© 5 PF ° 10.1F1 © 8.SSGW1 e 16. SNM2A © 20. SNM2B ® 24, IFSWA o 28 WR2
° g U2 ® 17.IF2A ® 21.IF2B e 25 SNM1B © 29, WR1
o 10.LTH ® 18.IFSWC ° 22 LTI2 © 26 IFSWB

Figure 5. Maps of hydrologic classes assigned to stream reaches in the conterminous US. Different
clustering approaches used developed hydrologic classes at stream gauges (points) were mapped to stream
reaches including: (a) Fifteen gaussian mixture model classes, and several Ward’s agglomerative clustering
solutions for (b) two, (c) four, (d) eight, (e) fourteen, and (f) thirty classes. Acronyms for classes are described
in Tables 5 and 6.

Hydrologic classes produced via Gaussian mixture modeling were previously available from
McManamay et al.>* (Table 5), whereas the Ward’s agglomerative procedure required determining
numbers of hydrologic classes. Based on visual inspection of dendrograms and reductions in sum-of-
squared variation within clusters, we selected cluster solutions representing 2, 4, 8, 14, and 29 different
hydrologic classes (Supplementary File 3). The nested hierarchy of these resultant classes are provided in
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Figure 6. Temperature classes within stream reaches of the conterminous US. Temperature classes were
mapped to stream reaches using (a) Maheu ef al.® thermal regime classes developed for stream gages (points),
and (b) average July-August temperature values taken from multiple datasets (points). Inset in panel b shows
the level of detail within continuous values of July—August temperature (°C) underlying the classification.

Table 6 and dendrograms are provided in Supplementary File 3. Random forest models predicting class
membership resulted in out-of-bag (OOB, i.e. cross validation sample) misclassification rates ranging
from 5 to 34% (or 66%-95% accuracies), depending on the classification (Table 7). In general, variables
with the highest normalized importance in random forests used to predict hydrologic classes were
hydrologic variables and climate variables (Fig. 4); however, selected basin characteristics (e.g., elevation),
land cover (deciduous forest), and soil/geology variables (permeability) were also important (Fig. 4).
Median probabilities (i.e., proportion of majority votes) of the predominant class membership assigned to
individual reaches ranged from 0.34 to 0.91, depending on the cluster approach (Table 7). While
seemingly low, these probabilities were considerably higher than expected probabilities for each solution
(Table 7). In general, 80% of streams were classified as “low” baseflow systems compared to high baseflow
systems (Fig. 5a—f, Supplementary File 2). Additionally, almost 50% of streams had some degree of
intermittency (Fig. 5a—f, Supplementary File 2). The most predominant hydrologic types were streams
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Figure 7. Thresholds for determining partitions between temperature classes. Goodness-of-fit and tabular
accuracy for different numbers of temperature clusters using Jenks method.

with flashy or intermittent hydrology and lower baseflows, followed by perennial runoff types and then
stable baseflow types (Fig. 5a-f, Supplementary File 2).

The random forest model predicting Maheu et al. temperature classes had a 28% OOB misclassification
rate (72% accuracy rate). For individual stream reaches, the median probability of predominant class
membership was 0.45, compared to the expected probability of 0.17 (Table 7). Predominant Maheu et al.
classes consisted of stable cool (27%), variable cool (25%), and variable-warm types (18%) (Fig. 6a,
Supplementary File 2). Based on combinations of all sources, we identified 1764 reference sites across the
CONUS, which were summarized into composite July—August temperatures for 1217 stream reaches (more
than 1 station occurred in individual reaches). July-August water temperatures averaged 19.6 °C and ranged
from 7.08 °C within a tributary of Salmon River near Snibnite, Idaho to 49.8 °C within the Boiling River at
Mammoth Yellowstone National Park, Wyoming. Random forest models predicting average July-August
water temperatures explained 72% of variation with mean-squared error (MSE) of 4.60. Variables most
important to predicting temperature classes and July—August temperature were associated with climate, but
also a few basin characteristics (elevation, slope), vegetation land cover, and hydrology or hydrologic
properties of soils (Fig. 4). Based on Jenks Natural Breaks method, goodness-of-fit and tabular accuracy
reached a plateau at five classes indicating that 5 groups would be a parsimonious solution that also
explained most of the variation in July-August temperatures (Fig. 7). Based on these class thresholds
(Table 4), most reaches were classified as Cold (27%), Cool (24%), and Warm (24%) with rarest types being
variable cold (8%) (Fig. 6b, Supplementary File 2).

The assessment of network bifurcation yielded 348 classes representing unique combinations of
stream order-tributary junctions. Of these, only 18 classes represented over 95% of the total stream length
in the CONUS (Supplementary File 2). Almost 50% of total stream length was 1** order streams without
any upstream tributary confluence (i.e, 1_0), whereas less than 0.2% of stream length (< 10,000 km)
consisted of complex junctions, i.e. stream reaches formed by the confluence of three or more reaches
(Fig. 8a, Supplementary File 2). Only 4 classes represented different types of divergence junctions. Stream
reaches characterized as main or side-channel divergences by NHDplus V2 constituted 2% of total stream
length (130,389 reaches, Fig. 8a) whereas stream reaches immediately downstream of divergences also
comprised 2% of stream length (89,251 reaches) (Supplementary File 2). Additional stream reaches
identified as divergence-type junctions (i.e., those having non-sensical junctions) totaled 5,376 reaches.
Our estimates of bifurcation classes and associated sample sizes include correcting for non-meaningful
stream junctions arising from quadrangle boundaries. A total of 133,111 stream reaches were flagged as
being discretized into hydrologically unmeaningful segments®’. We ensured all reaches belonging to a
common ecological identifier unit were assigned the most upstream bifurcation class and
divergence class.

Using the VCA tool, we identified over 1.2 million valley bottom floodplains constituting over
930,138 km” in the CONUS. Characterizing valley confinement required comparing valley bottoms to
estimates of river width. Based on >50,000 observations across the CONUS, river widths in the US ranged
from <1 to 10,330 m and averaged 330 m. The random forest model explained 87.7% of variation in
river width and had an MSE of 0.131. Hydrologic variables (estimated annual and monthly discharge)
were the most important variables for predicting river widths (Fig. 4). Most stream reaches were classified
as unconfined (64% of length), followed by confined (22%) and moderately confined (10%) reaches (Fig.
8b, Supplementary File 2). Stream reaches completely inundated by waterbodies constituted 3.4% of
stream length (226,961 reaches) and could not be classified according to valley confinement. In cases
where stream reaches were partially inundated, we used non-inundated sections to determine valley
confinement status for the entire reach.
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Figure 8. Network Bifurcation and valley confinement of stream reaches of the conterminous US. (a)
Information used to develop network bifurcation classes in streams included the number of upstream reaches
contributing to each reach and divergences in channels. Mapping bifurcation classes was impractical as there
are 348 different types. (b) Valley confinement classes mapped to stream reaches. Inset provides example of
valley bottoms underlaying streams of varying widths.

Usage Notes

The SCS, in its entirety or specific layers therein, provides a geospatial data product useful to
biogeographic applications (e.g., species distribution modeling), planning or prioritizing stream
conservation and restoration activities, fluvial geomorphology research, or understanding the diversity
of stream ecosystems for eventual representation in Earth System Models. Researchers and managers
have varied reasons in using stream classifications; thus, we attempted to use alternative approaches in
developing each layer, with preference for adopting previous published approaches at the scale of the
entire US. Through several years of conversations with environmental stakeholders, we devised six
principles that guided our classification and are aimed to maximize the use and application of the SCS
product. Because the spatial framework of the SCS was devised using the NHDPlus V2 framework, the
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classes and associated attributes harness the utility imbedded within NHD products, such as the ability to
traverse the stream network and conduct network accumulation and summarization of SCS attributes.
Our data products include the NHDPlus V2 COMID, which is a common identifier that uniquely
identifies each reach and provides an ability to join SCS data to the NHDPlus V2 dataset or datasets
derived from that product.

As noted in the technical validation, using models to extrapolate classes or values from discrete in situ
observations to stream reaches was prone to error; however, our reported error rates were well within the
range of expected values based on similar analyses®**. As much as possible, we provide information on
uncertainty, such as probability of class membership, to support flexibility of use and allow users to
account for uncertainty in subsequent analyses®. For instance, a reach may probabilistically share
membership among multiple classes. These probabilities are useful for modeling, clustering streams, or
identifying very rare or transitional stream types. Additionally, while we attempted to justify our
approach to class partitioning, we acknowledge there are a multitude of approaches for partitioning
stream classes. For example, users may desire to use alternative threshold values, such as those
determined via biological discrimination, to modify the classification; hence, we also provide the variables
behind the classification, where relevant, to support various uses.

For some layers, the number of classes may be overwhelming for a given application; however, our
provision of class thresholds and class frequencies can help render simplified solutions. As stated
previously, the size, gradient, and summer temperature classes can be coarsened based on values in
Table 1. Likewise, the nested hierarchy of hydrologic classifications (i.e. Ward’s approach) provides
flexibility in using coarser classes or sub-selecting nested groups. As another example, the network
bifurcation effort yielded 348 combinations of stream-tributary orders; however, only 18 of the classes
represented the vast majority (95%) of stream length in the US. Alternatively, stream divergences or the
number of upstream or downstream tributaries could serve as simpler classifications.

Because layers within the SCS were developed using least-disturbance conditions, our classes and
associated variables (e.g., average July—Aug temperature) inherently provide an indication of reference
conditions or targets for mitigation. By comparing present-day conditions to values in the SCS, one can
quickly determine the degree of habitat alteration for a given stream reach. Furthermore, combining
multiple layers can provide a multi-dimensional characterization of stream ecosystems that can serve as a
template for identifying reference sites to guide restoration'?.
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