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Brain functional connectivity (FC) derived from functional magnetic
resonance imaging has been serving as a potential ‘fingerprint’ for adults.
However, cross-scan variation of FC can be substantial and carries biological
information, especially during childhood. Here we performed alarge-scale
cross-sectional analysis on cross-scan FC stability and its associations with a
diverse range of health measures in children. Functional network connectivity
(FNC) was extracted viaa hybrid independent component analysis framework
on 9,071 participants and compared across four scans. We found that FNC
canidentify agiven child fromalarge group with high accuracy (maximum
>94%) and replicated the results across multiple scans. We then performed
alinear mixed-effects model to investigate how cross-scan FNC stability

was predictive of children’s behaviour. Although we could not find strong
relationships between FNC stability and children’s behaviour, we observed
significant but small associations between them (maximum r= 0.1070), with
higher stability correlated with better cognitive performance, longer sleep
duration and less psychotic expression. Viaa multivariate analysis method,
we captured larger effects between FNC stability and children’s cognitive
performance (maximum r=0.2932), which further proved the relevance of
FNC stability to neurocognitive development. Overall, our findings show
that a child’s connectivity profile is not only intrinsic but also exhibits reliable
variability across scans, regardless of brain growth and development. Cross-
scan connectivity stability may serve as a valuable neuroimaging feature to
draw inferences on early cognitive and psychiatric behavioursin children.

W Check for updates

Functional connectivity (FC) derived from functional magnetic  duringscanning’. FC heterogeneity haslongbeen appreciatedin fMRI,
resonance imaging (fMRI) data has been associated with cognition’ evenwithinthe same population®. Using a multi-condition fMRI data-
and various brain disorders®. Brain FC is assumed to be unique set from the Human Connectome Project (HCP), studies have shown
to individuals previously, regardless of how the brain is engaged that FCprofile can distinguish adult participants across scan sessions
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Fig.1| The flowchart of the FNC analysis to investigate cross-scan FNC.

a, Neuromark framework extracts robust functional components from the ABCD
data. Component templates are identified using two independent data with
different repetition time (TR). b, FNC is estimated using the TCs of components
from each scan. ¢, Cross-scan FNC similarity is measured by the correlation
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and even between distinct task conditions>®, acting as a ‘fingerprint’.
Griffa et al. proposed a structure-informed graph signal processing
filteringmethod and applied it to a subset of HCP datato capture more
unique FC to participant and cognition’. In another study, Horien and
colleagues used four longitudinal datasets to show the uniqueness of
individual FC over months to years®. However, brain FC is not constant
but continuously changes with remarkable variations at different scales,
adaptingtointernal and external demands’. Thatis, besides the intrinsic
patterns, an individual’s FC also exhibits prominent intra-participant
variability, which might underlie important biological mechanisms®.
Many existing works have only examined the FC variation within asingle
scan, and an individual’s cross-scan FC variability has received rela-
tively little attention from the neuroimaging field. A comprehensive
understanding of cross-scan FC is necessary for developing robust
FC-based biomarkers.

The human brain shows considerable growth and development
during childhood’. Existing evidence suggests that youth might exhibit

more temporal variability in brain FC'® compared with adults. Age
is negatively associated with the variability of transient brain states
identified by a clustering strategy on dynamic FC estimates'’. The
prominent variationin youths’ FC can be due to more neuroplasticity
in the adolescent’s brain®, though this is still far from understood.
On the other hand, some other studies believed that FC is unique to
anadolescent and that the FC profile can identify an adolescent from
agroup of participants' . In recent years, literature has provided
evidence supporting the existence of both uniqueness and variability
in FC', Kaufmann and colleagues found that brain FC developsintoa
morestable condition, where individuals with mental health problems
showadelay inthe age-related stabilization of FC*, However, contradic-
tiveresults were reported in another study, where the intra-participant
FCstability was not related to age, but correlated with the development
of social skills™.

Despite such progress, we argue that the exploration of cross-
scan FC has been limited, as most studies have used relatively small
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Table 1| Basic demographics of participants

Basic demographics Baseline Second year

Total participants 9,07 2,918

Age (month) 119.06+7.52 142.86+7.51

Sex (female/male) 4,365/4,706 1,333/1,585

Height (inch) 55.28+3.35 60.04+3.53

Weight (Lbs) 82.97+23.52 107.57+31.99

Race (W/B/H/A/O) 4,771/1,325/1,863/181/929 1,631/317/629/57/284
Cognition (nihtbx_totalcomp) 86.44+8.99 89.08+10.19
Psychiatric problem (cbcl_scr_syn_totprob) 4573+11.35 44.78+11.27

Sleep disturbance (sleepdisturbi_p) 1.72+0.81 1.99+0.86

W, White; B, Black or African American; H, Hispanic; A, Asian; O, others or unknown.

numbers of participants. The limited sample size might be a poten-
tial cause of the contradictive findings in previous studies. In addi-
tion, previous studies used samples with a wide age range, where age
and brain development might introduce confounding effects in the
FC similarities between scans. More importantly, most existing work
has only focused on limited behaviour measures and failed to com-
prehensively investigate the relationships between intra-participant
FC variation and a wide range of behaviour in children. The stability
of FC across scans may be linked to neural mechanisms, reflected by
its relevance to adolescents’ neurocognitive development, adverse
mental health outcomes and other healthy backgrounds. There-
fore, thereis a need for areliable large-scale study to examine the FC
fingerprint property, the cross-scan FC variability and their relevance
toindividual differences in behaviour.

Inthis Article, we investigate the cross-scan FCin children usinga
multimodal database called Adolescent Brain Cognitive Development
(ABCD). The ABCD database includes more than 11,800 participants,
with multiple scans collected from two longitudinal sessions. This
dataset collectsacomprehensive range of measures related to mental
problems, cognitions and other health backgrounds” that are useful
for theinvestigation of the relationship between adolescent behaviour
and brain functions'. The novelty of our study is two-fold. First, this
is a large-scale analysis of the FC fingerprint property in children. We
used more than 9,000 samples from the baseline session and about
3,000 samples from the second-year session that can provide more
reliable results of the fingerprint property in children. In addition,
our present study used the dataset where the individuals are around
the same age, which therefore is capable of precisely targeting the
FC fingerprint property in pre-teen years. The second novelty of our
work is that, unlike most of the FC fingerprint studies, we speculate
that the cross-scan variation in individualized FC is meaningful with
cognitive and psychological relevance. Recent studies have proposed
several approachesto characterize the dynamic brain patterns withina
single scan, which canidentifyindividuals and predict cognitive func-
tions, acting like fingerprinting'”'. While previous studies focused on
the unique patterns of individualized connectome profile (static or
dynamicwithin asingle scan), our study concentrated on the intra-par-
ticipant FC changes across scans, highlighting that children’s FC shows
substantial cross-scan variability that carries biological information
associated with children’s behaviour. We provided reliable evidence
demonstrating that, besides the fingerprint property, individualized
FC exhibits neuronally related variability across scans, whichis associ-
ated with children’s behaviour. We also hypothesized that FC variability
in childrenis associated with parental psychopathology and prenatal
exposure. The public healthimplications are that parents’ conditions
should be considered in relation to the variability of individualized
FCin childrenthatis associated with neurocognitive development.

Results

Flowchart of the cross-scan FC analysis

Figure 1 displays the flowchart of the cross-scan functional network
connectivity (FNC) analysis. We first applied aNeuromark framework
to extract robustintrinsic connectivity networks (ICNs) that are com-
parable across participants, scans and sessions. FNC was estimated
using the time-courses (TCs) of ICNs from each scan. After obtaining
the FNC matrix of each scan, cross-scan FNC similarity was measured
by the correlation between FNC from different scans. The individual
identification was performed based on the cross-scan FNC similar-
ity. Finally, we investigated the associations between FNC stability
(intra-participant FNC similarity) and individuals’ behaviour viaalinear
mixed-effects model (LMM).

Functional networks

Fifty-three ICNs were extracted by the Neuromark framework, with
activation peaks falling on the cortical and subcortical grey matter
areas across the whole brain. The ICNs were arranged into seven func-
tional domains accordingto their anatomical locations and functional
information’, including subcortical (SC), auditory (AUD), visual (VS),
sensorimotor (SM), cognitive-control (CC), default-mode (DM) and
cerebellar (CB) domains. Details of the spatial maps and coordinates of
ICNs are provided in Supplementary Table1and Supplementary Fig. 2.

FNC shows high intra-participant similarity across scans

There are 9,071 participants from the baseline session and 2,918 par-
ticipants from the second-year session for the within-session analysis.
Thereare 2,290 participants with good longitudinal scans for the cross-
session analysis. The basic demographics are provided in Table 1.
Figure 2 displays the FNC of participants with the maximum and mini-
mumi intra-participant FNC similarity between scans. Children showed
different levels of cross-scan FNC similarity. For participant 1, the FNC of
scanlandthe FNC of scan 2 were highly similar (r=0.9448).In contrast,
for participant2,the FNC showed less stability betweenscanlandscan2,
where theintra-participant FNC similarity wasonly r = 0.1914. Figure 3
displays the percentage of children with anintra-participant FNC simi-
larity higher than a given percentage of inter-participant FNC simi-
larities, from 60% to 99%. Intra-participant FNC similarity was higher
than mostinter-participant FNC similarities, thoughintra-participant
FNC variability exists. The FNC showed the highest intra-participant
similarity between scan1and scan 2. More than 90% of participants
had an intra-participant FNC similarity higher than 60% of inter-par-
ticipant FNC similarities, and more than 65% of participants had an
intra-participant FNC similarity higher than 99% of inter-participant
FNCsimilarities. Theintra-participant FNC showed the lowest similarity
between scanlandscan 4. Still, more than 80% of participants had an
intra-participant FNC similarity higher than 60% of inter-participant
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FNCsimilarities,and about 40% of participants had anintra-participant

FNC similarity higher than 99% of inter-participant FNC similarities.
These patterns are consistent when examining the scans from

the second-year session. Similarly, participants showed different

levels of cross-scan FNC similarity. FNC had the highest intra-par-
ticipant similarity between scan 1 and scan 2 and the lowest intra-
participant similarity between scan 1and scan 4. FNC also showed
intra-participant similarities between longitudinal scans. Although

Nature Mental Health | Volume 1| December 2023 | 956-970

959


http://www.nature.com/natmentalhealth

Article

https://doi.org/10.1038/s44220-023-00151-8

Baseline session

100

Percentage of participants

* Scan1versus scan 2 \
O Scan 1versus scan 3 ©
Scan 1versus scan 4

40 = & Scan1versus scan mean (~2-4)
| | | | | |
260 >70 >80 290 295 299
Inter-participant FNC similarity threshold (%)
Cross-session:
%0 - Baseline scan 1 versus second-year scan n

% Scan 1(base) versus scan 1 (second)
% Scan 1 (base) versus scan 2 (second) .
Scan 1 (base) versus scan 3 (second) N ¥
% Scan 1 (base) versus scan 4 (second) '
—6— Scan 1 (base) versus scan mean (1-4, second)
I I I I *
260 >70 >80 290 295 299

Percentage of participants

20 1L

Inter-participant FNC similarity threshold (%)

Second-year follow-up session

100 -

Percentage of participants

* Scan 1versus scan 2

O Scan1versus scan 3 ©
Scan 1versus scan 4
A0 Scan 1 versus scan mean (~2-4)
L L L L L L
260 >70 >80 290 295 =299
Inter-participant FNC similarity threshold (%)
Cross-session:
o Baseline scan n versus second-year scan n

Percentage of participants

40 Scan 1 (base) versus scan 1 (second) * A
* Scan 2 (base) versus scan 2 (second) \\*
Scan 3 (base) versus scan 3 (second) *
* Scan 4 (base) versus scan 4 (second)
—&—Scan mean (1-4, base) versus scan mean (1-4, second)
20 L I I I I
260 270 >80 290 295 299

Inter-participant FNC similarity threshold (%)

Fig.3 | Percentage of participants with anintra-participant FNC similarity higher than a given percentage of inter-participant FNC similarities. Higher intra-
participant FNC similarity is observed between scans from the same session. Intra-participant FNC similarity between longitudinal sessions is higher when FNCiis

averaged across scans within each session.

a2-year time interval between scans incurred a notable decrease in
the intra-participant similarity, the intra-participant similarity was
still higher than most inter-participant FNC similarities, especially
when the FNC was averaged within each session before measuring
the similarity.

Individual identification using whole-brain FNC
Figure 4 shows the children’s identification results based on the
cross-scan FNCsimilarity. At the baseline session, theidentificationaccu-
racy was 94.02 + 0.19%, 84.81 + 0.28%, 81.84 + 0.30% and 93.10 + 0.20%
based on the database target of scan 1-scan 2, the database target of
scan1-scan 3, the database target of scan 1-scan 4 and the database
targetofscanl-scanmean,respectively. Theidentificationwasreplicated
by using the second-year data. Similar to the results from the baseline,
the highest identification accuracy of 95.14 + 0.32% was achieved on
the basis of the database target of scan 1-scan 2, while the lowest
identification accuracy of 82.84 + 0.51% was achieved on the basis
of the database target of scan 1-scan 4. In the supplementary section
‘Individual identification based on the FNC similarity between other
scans’, we calculated three more pairwise similarities between scans
(scan 2 versus scan 4, scan 2 versus scan 4, and scan 3 versus scan 4)
and performed individual identification based on these cross-scan
similarities.

The individual identification was further performed using
the FNC from longitudinal scans (Fig. 4b). Scans from the baseline
session were the databases, and scans from the second-year session

were the targets. Despite more intra-participant FNC variations across
scans, the FNC from the baseline session can still identify a child’s FNC
fromthe second-year session. The highest accuracy was 91.44 + 0.46%,
achieved by averaging the FNC across all four scans within each session
before the identification. We also performed individual identifica-
tion using only females or males, respectively. The overall results
are in line with those obtained by pooling all participants (Fig. 4c).
An interesting observation is that the longitudinal identification
achieved higher accuracy in female participants, suggesting fewer
brain FC changes in females around this age. It may be possible that
female participants had reached amore matured brain functional state
before the study, therefore resulting in fewer FC changes during the
time course of the study.

The non-parametric permutation testing shows that the average
identification accuracy was 50% if the identity was shuffled for each
scan. Therealidentification accuracy was significantly higher than the
accuracy obtained by the permutation tests (P<1.0 x107%).

FNC stability correlates with cognitive performance

Besides the intrinsic patterns, individualized FNC showed notable
variability across scans. Here we focused on children’s cognitive
performance, mental health problems, sleep conditions and screen
usage. These behaviour measures have been linked to brain func-
tions and structures in previous studies*?°. We could not find strong
relationships between FNC stability and children’s behaviour, but
we observed small associations between them. The cognitive measures
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were positively correlated with the intra-participant FNC stability
(false discoveryrate (FDR) corrected, g < 0.05; Fig. 5a). Specifically, ten
out of ten cognitive summary scores were positively correlated with
FNC stability, with correlation r values ranging from 0.0376 to 0.1070
(Supplementary Table 2). The Total Composite Score was the score most
significantly positively correlated with the FNC stability (r= 0.1070,
Cohen’sd=0.2152, P=4.82 x107%*). For the neurocognitive battery in
the subdomain, the score of Toolbox Picture Vocabulary Task was the
score most significantly positively correlated with the FNC stability
(r=0.0841, Cohen’sd =0.1688, P=1.54 x 10 ™) while the score of Tool-
box Flanker Task was the score least significantly positively correlated
with intra-participant FNC stability (r= 0.0376, Cohen’s d = 0.0753,
P=3.68 x10™*). To better visualize the correlated relationships, we
divided the childreninto four groups from low cognitive performance
to high cognitive performance according to each cognitive score (group
1:~0-25%, group 2:~25-50%, group 3: ~50-75% and group 4: ~75-100%)
and the average cross-scan FNC stability withineach groupis displayed
inFig.5b. Clearincreasing trends can be observed along groups1to 4,
indicating that children with good cognitive performance tended to
have higher FNC stability.

FNC stability correlates with psychiatric problems

The psychopathological measures of children were negatively correlated
withtheintra-participant FNC stability. Twelve out of 20 psychiatric prob-
lem scores show significantly negative correlations with FNC stability,
with rvaluesranging from—0.0257 to —0.0496 (FDR corrected, g < 0.05;
Fig.5a). Thesocial problem score was the score most significantly nega-
tively correlated with the FNC stability (r=—-0.0496, Cohen’sd =-0.0992,
P=2.38 x107°). Again, we divided the childreninto four groups according
toeach psychopathological measure. The FNCstability shows decreasing
trends along groups1to4,indicating that children with high psychiatric
problem scores tended to have lower FNC stability (Fig. 5b).

FNC stability correlates with sleep and screen usage

We further found significant associations between FNC stability and the
sleep conditions of children (Fig. 5a). Cross-scan FNC stability was nega-
tively correlated with the sleep duration score (r=-0.0752, Cohen’s
d=-0.1508, P=7.74 x10™).In the ABCD measurement system, a high
sleep durationscoreindicates shortsleep duration (1: 9-11 h; 2: 8-9 h;
3:7-8h;4:5-7 h;5:lessthan5 h). The FNC stability was also negatively
correlated with the score that evaluates how long an adolescent falls
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correction (LMM correlation analysis, g < 0.05, FDR corrected). b, Children with
high psychiatric problem scores tend to have lower cross-scan FNC stability.
Children with good cognitive performance tend to have higher cross-scan
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FNC stability. Children with bad sleep conditions (for example, shorter sleep
duration and longer time to fall asleep) tend to have lower cross-scan FNC
stability. Children with more screen usage (for example, longer time watching
TVand video) tend to have lower cross-scan FNC stability. ¢, Most significant
associations between cross-scan FNC stability and children’s behaviour based
on only female and male participants, respectively. Results are consistent across
female and male participants. Females have larger associations between FNC
stability and behaviour scores.

asleep (sleepdisturb2_p). A higher score in sleepdisturb2_p indicates
alonger timeto fall asleep. The FNC stability was negatively correlated
with other sleep behaviour of adolescents, such as sleepdisturb24_p
(evaluates a child feels unable to move when waking up in the morning)
and sleepdisturb26_p (evaluates a child falls asleep suddenly in inap-
propriate situations). Higher scores in these measurements indicate
more frequently that the event happens (1: never; 2: occasionally (once
or twice per month or less); 3: sometimes (once or twice per week);
4: often (three or five times per week); 5: always). The overall results
indicate that children with worse sleep conditions (for example, shorter
sleep duration or longer time to fall asleep) tended to have lower FNC
stability (Fig. 5b and Supplementary Table 5).

Children’s screen usage was also negatively correlated with cross-
scan FNC stability. All 14 youth screen time utilization scores, includ-
ing the use of television, internet, cell phone and video games, show
negative correlations with individuals’ FNC stability (FDR corrected,
g <0.05;Fig.5a). Children with more screen usage tended to have lower
FNCstability. Details of the correlation statistics can be foundin Supple-
mentary Table 6. The association analysis was also performed on female
and male participants, respectively. Similar association patterns were
observed across female and male participants, where females showed
larger associations between FNC stability and behaviour scores (Fig. 5¢).

FNC stability correlates with parental psychopathology
Moreover, parental dimensional psychopathology showed significant
correlations with their children’s FNC stability (Fig. 6a,b). Specifically, the

positive questionsinthe parents’ psychopathology assessment, including
asr_ql15_p (Iam pretty honest), asr_q73_p (I meet my responsibilities to
my family), asr_q88_p (Ienjoy being with people),asr_q98_p (Iliketo help
others),asr_q106_p (Itry tobefairtoothers) andasr_q123_p (lamahappy
person), were positively correlated with the FNC stability of children,
with rvaluesranging from 0.0315t0 0.0583 (FDR corrected, g < 0.05).In
contrast, the negative questionsinthe parents’ psychopathology assess-
ment were negatively correlated with the FNC stability of children, with
rvaluesranging from-0.0287to-0.0482 (FDR corrected, g < 0.05). These
resultsindicate that parents with positive behaviour are associated with
higher FNCsstability in children while parents with negative behaviour are
associated with lower FNC stability in children. We further performed a
mediationanalysis and found that, although children’s psychopathology
mediated the effect between parental psychopathology and children’s
FNC stability, there was a strong direct effect between parental psycho-
pathology and children’s FNC stability (Supplementary Fig. 6).

Our analysis also showed that prenatal exposure before and during
pregnancy was associated with FNC stability in children. Parents with
prenatal exposure to tobacco and marijuana will result in lower FNC
stability in children (Fig. 6a). Also, a planned pregnancy will result in
higher FNC stability in children. The age of parents during the preg-
nancy showed positive correlations with FNC stability as well. While
older mothers will result in higher FNC stability in children, fathers
aged between 30 and 40 years old (when the child was born) resultin
the highest FNCstability in children (Fig. 6a,b). The overall association
results are consistent across females and males (Fig. 6¢).
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Fig. 6 | Children’s FNC stability is associated with developmental history
and parental dimensional psychopathology. a, Cross-scan FNC stability is
negatively correlated with parental negative behaviour (for example, question
ql12:1feellonely) and positively correlated with parental positive behaviour
(for example, question q15:1am pretty honest). There are also significant
associations between FNC stability and parents’ age at birth and other
developmental histories. The dashed lines indicate the significant correlation
threshold after the multiple comparison correction (LMM correlation
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analysis, g < 0.05, FDR corrected). b, Children with parents having negative
psychopathology tend to have lower cross-scan FNC stability. Children with
parents having positive behaviour tend to have higher cross-scan FNC stability.
The parents’ age is positively correlated with children’s FNC stability. ¢, Most
significant associations between cross-scan FNC stability and developmental
history and parental psychopathology based on only female and male
participants, respectively. Results are consistent across female and male
participants.

FNC stability predicts children’s cognition

To show that multivariate predictive techniques can capture larger
effects between FNC stability and children’s behaviour, we imple-
mented a partial least squares regression (PLSR) for predicting chil-
dren’s cognition. We chose the domain-based cross-scan FNC stability
astheimaging feature and selected the total composite cognitive score
asthetarget measure. Theresults of the PLSR show that combining 26
domain-based cross-scan FNC stability can predict the total composite
score (r=0.1570 + 0.0013, P< 1.0 x 107%). We found that the effect size
(r=0.1570) is larger than the effect size from the univariate analyses
(r=0.1070). We also implemented the same predictive model to the
other two composite scores (Crystallized Intelligence Composite and
Fluid Intelligence Composite), and the results are highly consistent,
where multivariate models provide larger effect sizes in the associa-
tion analysis (r = 0.1344 and r = 0.1306, compared with r = 0.0911 and
r=0.0865Dby univariate analyses).

We further introduced a method to evaluate cross-scan FNC
stability for each pair of FNC, which can provide high-dimensional
FNC stability features for building the prediction model. Detailed
methodologies are provided in the section ‘Multivariate model to
predict children’s behaviour’ in Supplementary Information. Our
results show that combining pairwise FNC stability features with PLSR
can predict the total composite score with a much larger effect size
(r=0.2855+0.0020, P<1.0 x 1073, permutation test, Supplementary
Fig.7). We alsoimplemented the same model to predict the other two
composite scores, and the results were highly similar, where multi-
variate models based on the pairwise FNC stability provided much
larger effect sizes in the association analysis (r=0.2932 + 0.0016 and

r=0.2129 +0.0030, P<1.0 x 1073, permutation test, Supplementary
Fig. 7). More interestingly, when applying the cognition-predictive
model (based on Crystallized Intelligence Composite) defined in the
baseline data to second-year data, we observed a significant correla-
tionbetween actual and predicted cognitive scores controlling for the
covariates (r=0.2689,P=1.0 x107%).

Discussion

Our work attempts to investigate the FC fingerprint and variability in
children at a large scale. We found that children’s FC shows intrinsic
patterns and variations across scans. Onthe one hand, the individual-
ized FC patterns allow the identification of individuals among a pool of
children. Onthe other hand, the variations of individualized FC across
scans are substantial and convey psychological and physiological
information underlying distinct behavioural phenotypesin children.
Although the univariate brain-behaviour associations are significant
butsmall, we proved that multivariate methods could help to capture
much larger effects between FNC stability and children’s behaviour.
Given this foundation, future neuroimaging studies should focus not
only on the FC fingerprint property but also on the intra-participant
FCvariability, which might provide a different window into neuropsy-
chological mechanisms.

Fingerprint property of children’s FNC

Brain FC and its network analogue, FNC, are believed to provide a
window into brain function and intrinsic brain organization®. Adults’
FC profile shows substantial inter-participant variability, and such
variability can distinguish individuals from another scan®. Unlike
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adults, children show more intra-participant variability in FC due to
the developments and maturation in the brain®’. Heterogeneous brain
states and confounding effects in youths (for example, head motions)*
mightalso influence individual identification. In the section ‘Individual
identification and head motions’ in Supplementary Information, we
found that the head motion parameters (rotations and translations)
can distinguish individuals between scans (slightly higher than the
accuracy obtained by the permutationtests). Therefore, we performed
additional analyses to demonstrate that our processing has successfully
removed much of the motion artefact, and the FNC fingerprint property
inchildrenis not mainly driven by the similar head motions of the data.

Although some previous studies suggested that the youths’ identi-
ficationis not different from the adults™ and the stability of paediatric
FC is not correlated with age', a contradictory finding by Kaufmann
et al. showed that inter-participant FC distinctiveness increases with
age"”. The opposite findings from these studies might be due to the
small sample size used for the investigation, which is easily biased by
the sampling variability*. Via alarge-scale analysis of more than 9,000
children, we observed robust cross-scan FNC similarity in children,
whichslightly increased in the second-year session. Interestingly, the
identificationaccuracy decreased (the intra-participant FNC variability
increased) as the time interval of scansincreased. Our result provides
evidencethat FC exhibits cross-scan variability at an early age, and the
assumption of FNC uniqueness might oversimplify the interrelation-
ships between brain regions. The different occurrences of dynamic
states could be one potential cause driving the FNC less similar as the
timeintervalincreased. The brain statein fMRIis aconceptual analogy
to electroencephalogram (EEG) microstates, which is one of the most
popular notions widely used to explore transient brain patterns dur-
ing the resting state””. Existing evidence has demonstrated that some
brainstates show continuously increasing or decreasing occurrences
during the scan”**?”, Using simultaneous EEG-fMRI, our previous work
found thata dynamic state with thalamocortical anticorrelationis asso-
ciated withreduced EEG o. power and increased & and 0 power, showing
increasing occurrence over time, possibly reflecting the decreased
vigilance”. We speculate that as participants stay in the scanner for
alonger time, the brain changes its occurrences in different dynamic
states that mightinfluence the overall FNC patterns, potentially result-
ingin less similarity to the initial ‘resting-state’ FNC.

We successfully performed theindividual identification between
longitudinal scans witha2-year interval, although with reduced overall
accuracy. This finding is in line with a previous result based on a rela-
tively small sample size, which suggested thatalarger timeinterval can
incuranotable decrease inidentificationaccuracy". We further found
thataveraging FNC across scans within each session canincrease accu-
racy. Growth and developmentinside the children’s brain willintroduce
FCvariationintra-participant, associated with children’s neurodevel-
opment and behaviour?, Averaging FNC within the same session can
mitigate the heterogeneity induced by transientbrain statesbutnotthe
variability induced by brain development. Our result suggests that the
decreased identification accuracy between longitudinal scans can be
duetobothbrain development and the difference inthe temporal brain
conditions. The successful longitudinal identification further supports
that the FC profile contains fundamental properties unique to each
child, regardless of the FC developments during adolescence™. Another
interesting finding of the FNC fingerprint property is that cross-session
identification achieves higher accuracy in female participants. This
finding suggests that females at the age of 9-11 years show fewer age-
related FNC changes. Sex differences in developmental trajectories
have been widely reported in the literature, and the investigation of
sex-related developmental trajectories might help to clarify the allo-
metric issues previously discussed”. An EEG resting-state study has
also found sex differences in microstate occurrences from childhood
toadolescence™. Specifically, thereis a particular development trajec-
tory ofincreased duration of the microstate in males, but not in females.

Another work based on a subset of the data from the Child Psychiatry
Branch at the National Institute of Mental Health demonstrated that,
while females have their cerebral volume peaking at age 10.5 years,
males have their volume continuously growing until 14.5 years old™.
Our resultisinline with these previous findings and provides further
evidence of the sex differences in functional brain development from
childhood to adolescence. While females’ FNC becomes stable at the
age of 9-11 years, males’ FNC shows more variability at this age. We
speculate that such a late maturation of FNC in males might be linked
to the risk for abnormal neurodevelopmental processes that could
facilitate the onset of schizophrenia®.

FNC stability and children’s behaviour

Although the brain-behaviour associations are small, the balance
between cross-scan FNC similarity and variability does not appear
to be driven by random noise. Cross-scan FNC stability was positively
correlated with cognitive performance, including reading recognition,
pattern comparison, memory and so on. Previously, neuroimaging
studies focused on FC strength and suggested thatitisrelevant toindi-
vidual differences inbehaviour. However, brain FC shows considerable
variation between tasks and rest, across scans, and even within asingle
scan®?’*, Spontaneous FC variations can predict the performance
of different cognitive tasks*. Literature also showed that individu-
als with temporally stable FC show advanced cognitive performance,
reflected by increased accuracy and more stable response time*,
Our finding has extended the investigation of FC variability within a
single scanto theinvestigation of FC stability across scans and showed
robust relationships between cross-scan FC stability and cognitions.
A possible explanation of this finding is that the resting stateisin a
‘relaxed’ brain condition that ameliorates the adaptive reconfigura-
tion of brain networks in the context of cognitive tasks. A stable FC
during the execution of cognitive tasks is associated with successful
cognition and difficult task conditions require increased stability of
FC*?°. The stable FC during the resting state might facilitate the brain
switching from a relaxed condition to a task-demand condition that
purportedly requires sustained cognition, consequently resulting in
better cognitive performance®.

In addition to the associations with cognitions, we found nega-
tive correlations between FNC stability and children’s mental health.
Children with less cross-scan FNC stability have more dimensional
psychopathological problems and more frequent symptoms of mania.
Thisresultisinline with a previous finding showing that the stability of
FCisrelated to psychiatric disorders®. Although they did not identify
different FC distinctiveness between groups in children (<14 years),
they found thatadolescents withincreased psychiatricsymptomscores
show less FC distinctiveness compared with controls®. Our result
extends their finding by showing that the associations between FC
stability and dimensional psychopathology exist during avery early age
(-9-11years). Oneinterpretation of these associationsis that decreased
FCstability underlies the dysregulated brain rhythms that characterize
psychiatric problems. Of note, increased rumination is associated with
higher medial prefrontal cortex to insula FC variability, suggesting
that the intra-participant FC heterogeneity might trigger rumination
by enhancing sensitivity to self-referential information’. It is also sug-
gested that the unstable FC may be associated with deficits in executive
functioning and reflect weaknesses in brain circuits responsible for
cognitive control®. The strongest correlation between FC stability and
children’s mental health was found with the social problemscorein our
study, whichis an essential replication of the finding by Vanderwal et al.™.
Using children and adolescent samples with ages ranging from ~6 to
21 years, they found that lower FC stability is associated with a higher
social responsiveness scale, a popular measure of social skill prob-
lems. These cross-study results indicate a surprisingly tight coupling
between FC stability and social skills. Agrowing body of literature has
linked dynamic FC patterns to psychiatric problems. Individuals with
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autismspectrumdisorder have larger FC variability in time, associated
with the increase depending on autism symptom severity*’. Using
magnetoencephalography, researchers have shown that patients with
schizophrenia exhibit more trial-to-trial network topology variability
during atwo-back working memory task*. Increased FC variability has
also been observed in both patients with depressed bipolar disorder
and major depressive disorder, who shared overlapping symptoms that
typically confound the diagnosis**. Our results complement the prior
work by showing that an individual’s FNC exhibits reliable variability
across scans, which might signify underlying biological mechanisms
inmental health. The stability of cross-scan FNC can add information
to the connectivity strength and will be a potential brain feature that
predicts early psychiatric problems in children.

Our analysis further showed that the FNC stability of children is
also associated with parental conditions. The development history of
children can be an important indicator of later mental and psychical
behaviourinyouths®. Prenatal cannabis exposure is associated with a
greater risk for psychopathology in adolescents*. Our present study
found that prenatal tobacco and marijuana exposureis associated with
lower cross-scan FNC stability during middle childhood. Considering
the associations between FNC stability and cognition and dimensional
psychopathology, this result underscores the potential to use FNC
stability to advance our understanding of the relationships between
prenatal drug usage, cognitive developments and mental healthamong
offspring. Another interesting finding of our present study is that
parental psychopathology was correlated with the FNC stability of
children, where higher FNC stability in children was associated with
more positive behaviour and less negative behaviour in their parents.
We speculate that the family environment mightinfluence the stability
of FC in children. This speculation is supported by a further analysis
showing a positive correlation between children’s FNC stability and
neighbourhood safety, animportantliving environmental factor. The
inherited characteristic can be another cause of these relationships.
Analysisincluding genetic datais needed in future studies for validat-
ing this hypothesis.

The smaller-than-expected associations between FNC stability
and behaviour drive us to perform additional multivariate analyses
toshow the neurocognitive relevance of FNC stability. We implement
a PLSR method combined with FNC stability to successfully predict
the children’s cognition with much larger effect sizes. We also dem-
onstrated that the behaviour-predict model constructed on the basis
ofthebaseline data could predict children’s cognitive performancein
the second-year session, which further suggests the robust linkages
between FNCstability and children’s cognition. Overall, the multivari-
ate results prove that FNC stability is a reliable neuroimaging feature
that can be combined with multivariate analyses to detect reliable
effects on children’s behaviour.

Limitations and future directions
We noted that, across all univariate association analyses between FNC
stability and children’s phenotype variables, the highest correlation was
r=0.1070 (d = 0.2152). Cohen suggested d = 0.2 as alower threshold for
‘small’ effect size. However, this threshold is based on the beta error
that Cohen estimated as four times the alpha error, which is somehow
arbitrary and should not beiinterpreted rigidly*‘. Effects in psychologi-
calresearch are much smaller thanthey appear from past publications,
implying that Cohen’s magnitude might not be appropriate because
itis guided by the typical effects that have been found in the pastin a
specific area of research®. Arecent publication in psychological science
has highlighted the dangers of a publication culture that continues to
demand large effects that can be probably inflated and ignored small
effects that are most likely to be true*.

Imaging features have been widely linked to the variation in
cognitive ability and psychopathology using univariate methods,
typically with relatively larger associations (r=~0.2-0.8) reported

in small-sample neuroimaging studies. However, brain-phenotype
association findings usually suffer high levels of replication failures.
Among many factors that might contribute to the poor reproduc-
ibility of the previous results, the small sample used in the studies is
the most challenging. Based on the analyses of the largest databases
inthe neuroscience field (ABCD, UK Biobank and HCP), arecent study
demonstrated that the real brain-phenotype associations are much
smaller (linear correlation r < 0.1) than previously assumed, and the
precise characterization of brain-phenotype associations requires
large samples*. Moreimportantly, the statistical errors were pervasive
across sample sizes. The false negative rates were very high (-75-100%)
even for samples as large as 1,000, where half of the significant rela-
tionships were inflated by at least 100% (ref. 24). That is to say, most
previous MRI studies focusing on the brain-phenotype associations
might not be sufficiently powered to find reasonable effect sizes, and
thereported large associations might be solely due to effects inflated
by chance?.

Such small brain-phenotype associations might be due to the
heterogeneity of the general population or the imprecision of phe-
notyping in big data. A recent study has shown that the reliability
of neuropsychological scores has significant effects on character-
izing the associations between biology and psychopathology®. For
example, sampling biases, inconsistent phenotyping and phenotypic
complexity can have great impacts on the reliability of phenotypic
scores, which further influences the precise characterization of rela-
tionships between brain imaging features and human behaviour. In
future studies, we can apply strategies for enhancing the precision of
phenotyping, such as increasing phenotypic resolution by using the
measures that have already been optimized within an item response
theory framework, which is a sophisticated approach to phenotypic
scale construction and refinement*.

We also performed the association analyses between FNC unique-
ness and children’s cognitive performance and mental health, where
theresultsare putin the section ‘Associations between FNC and cogni-
tion/mental health’ in Supplementary Information. Our results (Sup-
plementary Figs. 8 and 9) show that the associations between FNC
and behaviour have small effect sizes similar to those between intra-
participant FNC variability and behaviour. Although the correlations
between FNC uniqueness and behaviour might be less reproducible
between sessions and the existence of intra-participant FC variability
might raise the question about thereliability of resting-state FC, we do
notintendtoarguethatresting-state FNCisanunreliableindicator of
phenotypic cognitive and mental health variables. The human brain
isahighly dynamic system that constantly integrates and coordinates
different neural populations, where FCis not constant but shows sub-
stantial variability in the temporal scale’”*’, But it should be noted that
our present work also found that different FC exhibit different levels
of variations across scans. This suggests that some resting-state FC
might show strong reliability across trials while others exhibit more
variations. FC fingerprint property and FC variability might provide
complementary information to each other, and the investigation of
both features might advance the association and prediction analy-
sis in biomarker research. It could be possible that, for predicting
some phenotypes, using either feature alone might be better, while
for predicting other behaviour scores, combining both can improve
the performance®. Future neuroimaging studies might also provide
more moment-by-moment monitoring during the scan, which will help
toguarantee the participants arein similar conditions during the scan-
ning, probably beneficial for more precise characterization of brain
signatures associated with complex human behaviour.

Methods

Participants and image acquisition

The present study used a longitudinal dataset shared by the ABCD,
the largest long-term study of brain development and child healthin
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the United States (https://abcdstudy.org/). We used release 3.0 of the
ABCD dataset, containing over 11,800 children aged 9-10 years (at
baseline), with two imaging sessions (baseline and the second-year
follow-up) and multiple resting-state scans within each session. Our
study is under Application ID 13591, and we downloaded the ABCD
FastTrackimages with recommended active series from NDA. The ABCD
study incorporated a comprehensive range of measures, including
neurocognitive battery, physical and mental health assessments, and
other health backgrounds, to assess predictors and outcomes related
to different domains'®. The parent’s full written informed consent
and the child’s assent were obtained under protocols approved by
the institutional review board (IRB). The University of California, San
Diego provided centralized IRB approval, and each participating site
received local IRB approval.

We pre-processed the raw resting-state fMRI data using acombina-
tion of the FMRIB Software Library (FSL) v6.0 toolbox and Statistical
Parametric Mapping (SPM) 12 toolbox, under the MATLAB 2020b
environment. The pre-processing stepsincluded: (1) rigid body motion
correction; (2) distortion correction; (3) removal of dummy scans; (4)
normalization to standard Montreal Neurological Institute space; and
(5) smoothing with 6 mma Gaussian kernel. We performed data quality
controlonthe pre-processed fMRI data viathe Neuromark framework®.
For the within-session analysis, there are 9,071 participants with four
good scans from the baseline session and 2,918 participants with four
goodscansfromthe second-year session. For the cross-session analysis,
there are 2,290 participants with four good scans from the baseline
session and also four good scans from the second-year session. The
basic demographics can be found in Table 1. Details of the fMRI pre-
processing and quality control can be found in the section ‘Quality
control’in Supplementary Information.

Neuromark framework

To capture reliable ICNs and their corresponding TCs for each par-
ticipant and each scan, a robust independent component analysis
(ICA)-based framework called Neuromark® was applied to the ABCD
data. Unlike atlas-based methods that typically assume fixed brain
regions across participants, Neuromark can identify brain networks
comparable across participants and scans, adapting to single-scan
variability with the networks. It can retain more single-scan variability in
the estimation of network-related features, which better fits our current
study aim. The effectiveness of Neuromark has been demonstratedin
previous work, with a wide range of brain markers and abnormalities
identified in different populations®*>~,

Two healthy controls datasets, the HCP (823 participants after
the participant selection) and the Genomics Superstruct Project
(GSP; 1,005 participants after the participant selection), were used
for the construction of the network templates. These two datasets
have different temporal resolutions and were pre-processed via dif-
ferent pipelines. We chose them because we want to capture robust
network templates that are reproducible across different scenarios.
High model order (order 100) group ICA was performed on each
dataset, and then the independent components (ICs) from the two
datasets were matched by examining the similarity of their spatial
maps®’. Those pairs were considered consistent and reproducible
across the GSP and HCP datasets if their spatial correlation was >0.4.
A correlation value >0.25 has been shown to represent a significant
correspondence (P < 0.005, corrected) between components, and
here we used a higher threshold because we would like to identify
morereliable and consistent ICs. The matched IC pairs were labelled
as ICN templates or noise components by inspecting the locations
of the peak activations of their spatial maps and the low-frequency
fluctuations of their TCs. The reproducible templates were used as
the spatial network priors to back-reconstruct spatial maps and TCs
for the ABCD data. Specifically, we used the multivariate-objective
optimization ICA with reference*® to estimate single-scan spatial maps

and TCs. This method used amultiple-objective function optimization
algorithm, taking only the network templates and the scan-specific
fMRI data as the inputs. There are two objective functions, one is to
optimize theindependence of networks in the single-scan fMRI data,
and the other one is to optimize the similarity between the scan-
specific networks and the network templates. To combine these two
objective functions, a linear weighted sum method was applied®".
After the optimization, single-scan networks were obtained, which
not only show scan-specific network patterns but also are compara-
ble across scans and participants. Note that principal component
analysis (PCA) was performed before single-participant ICA back-
reconstruction. In PCA, the global mean signal per timepoint was
removed as the standard PCA processing step during participant-level
PCA reduction. This technical point is detailed and explained in
ref. 27. Therefore, the global signal has been removed in the PCA
step inthe Neuromark framework, which will notinfluence the estima-
tion of FNC between TCs. More details of the Neuromark framework
are provided inref. 51.

FNC

We performed four additional post-processing steps to carefully
regress out the remaining noise in the TCs of ICNs: (1) detrending
linear, quadratic and cubic trends, (2) removal of detected outliers,
(3) multiple regression of the head motions parameters (three rota-
tions and three translations) and their derivatives, and (4) band-pass
filtering witha cut-off frequency of 0.01-0.15 Hz. Pearson correlation
coefficients between post-processed TCs were calculated to measure
the FNC for each scan.

FNCsimilarity and participant identification

We calculated the correlation between whole-brain FNC from different
scans to measure the FNC similarity. The correlation was calculated
between the FNC of scan 1 and the FNC of the other scans, resulting
in four comparisons (scan 1 versus scan 2, scan 1 versus scan 3, scan
1versus scan 4, and scan 1 versus mean (FNC) across -2-4). For each
comparison, the correlation between the FNC of scans from the same
participant was the intra-participant FNC similarity (stability) and the
correlation between the FNC of scans from different participants was
the inter-participant FNC similarity. Therefore, for each participant
(in each comparison), there were one intra-participant similarity and
9,070 inter-participant similarities. Then we calculated the percent-
age of children having anintra-participant FNC similarity higher than
a given percentage of inter-participant FNC similarities (60%, 70%,
80%, 90%, 95% and 99%).

We performed individual identification using the FNC similarity
fromeach comparison. For each participant, we compared theirintra-
participant FNC similarity with a randomly picked inter-participant
FNC similarity. The predicted identity was that with the larger corre-
lation value. We performed this step for every participant to obtain
an identification vector, which can be used to calculate the overall
identification accuracy. The whole procedure was repeated 1,000
times to estimate the distribution of the identification accuracy.
We implemented non-parametric permutation testing to assess the
statistical significance of identification accuracy. We permuted par-
ticipant identity for the FNC of scans to shuffle the intra-participant
and inter-participant FNC similarity. The same identification was
performed 1,000 times on the permuted data to have the identifica-
tion accuracy for the permuted data. The individual identification
was further performed using only females or males to examine the
sex-related difference.

We also calculated the correlations between other scans (scan 2
versus scan 4, scan 2 versus scan 4, and scan 3 versus scan 4) and per-
formedindividualidentification based on these cross-scan similarities.
Theidentification was further performed using domain-based FNC to
investigate more domain-specific fingerprint properties.
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Second-year data and longitudinal identification

To show that the within-session FNC similarity is robust to age, we
calculated the FNC similarity between scans fromthe second-year ses-
sion. The same identification was performed using the FNC similarity
between scans. To investigate whether the FNC profile can identify
anindividual from alongitudinal scan while there are developmental
changesinthebrain, we further measured the FNC similarity between
scans fromthe baseline session and scans from the second-year session
and then performed the identification based on the FNC similarity
between longitudinal scans.

Cognitive measures

The cross-scan FNC stability was measured by the intra-participant
similarity between the FNC of scan1and mean FNC across scans ~2-4
using the baseline data. Toshow the test-retestreliability of the associa-
tions, we alsoreplicated the results)1) using FNC stability evaluated by
differentintra-participant similarity measures, (2) controlling for head
motion in the LMM, (3) using participants with small head motions,
(4) using participants collected by the same scanner and (5) using the
second-year data.

Wefirstinvestigate the associations between FNC stability and cog-
nitive assessments. Note that, although there are multiple resting-state
scansatthe baseline and the second-year sessions, for each assessment
of each participant, there is only one value for the baseline session and
one value for the second-year session. The cognitive performance of
each adolescent was measured via the NIH Cognition Battery Toolbox
(abcd_tbss01)'. Higher scores indicate better cognitive performance.
The NIH neurocognitive battery contains sevendistributional character-
istics, including the Toolbox Picture Vocabulary Task, the Toolbox Oral
Reading Recognition Task (TORRT), the Toolbox Pattern Comparison
Processing Speed Test (TPCPST), the Toolbox List Sorting Working
Memory Test (TLSWMT), the Toolbox Picture Sequence Memory Test
(TPSMT), the Toolbox Flanker Task and the Toolbox Dimensional Change
CardSort Task (TDCCS). There are also three composite scores, including
aCrystallized Intelligence Composite and a Fluid Intelligence Composite,
and a Total Score Composite. In total, ten cognitive scores were used in
the analysis. Detailed information on each score canbe foundinref. 16.

Mental health measures

The associations between cross-scan FNC stability and children’s
mental health conditions were also investigated. The mental health
conditions of children were measured by the Parent-Child Behavior
Checklist Scores (CBCL, abcd_cbcls01). These checklist scores con-
tain 11 syndrome scales related to psychiatric problems and 1 total
Syndrome Scale, 6 DSM-Oriented scales and 3 CBCL Scale2007 Scales.
Intotal, 20 scores fromthe CBCL Scores were used for the investigation.
The ABCD Parent General Behavior Inventory-Mania (abcd_pgbiO1) was
also used to assess the subsyndromal mania. It contains tenscores that
evaluate the children’s behaviour of mania. Higher scores on mental
health measures indicate dimensional psychopathology.

Sleep conditions and screen usage

The assessments of sleep conditions and sleep disorders of children
were measured by ABCD Parent Sleep Disturbance Scale for Children
(abcd_sds01). It includes 26 questionnaires to evaluate the sleep dis-
turbance of each child. For example, question1is ‘How many hours of
sleep does your child get on most nights?’ and question 2 is ‘How long
after going to bed does your child usually fall asleep?’. The scores will
bebetweenland5, withahigherscoreindicatingaworsesleep condi-
tion (for example, fewer hours of sleep and longer time to fall asleep).
The screen time utilization of youth, which is measured by the ABCD
Youth Screen Time Survey (abcd_stq01), was also used to investigate
itsrelationships with cross-scan FNC stability. It contains 14 scores that
evaluate the screen usage of a child during the weekdays and weekends,
with higher scores indicating longer screen usage.

Parental behaviour and prenatal exposure
Wewerealsointerested in the potential relationships between parental
factors and children’s FNC stability. The prenatal exposure before and
during pregnancy, measured by ABCD Developmental History Ques-
tionnaire (dhx01), was used for the investigation. We focused on pre-
natal exposure to tobacco, alcohol and marijuana, and the parents’ age
when the child was born. The parental dimensional psychopathology,
measured by ABCD Parent Adult SelfReport Raw Scores Aseba (pasr01),
wasalso usedinthe analysis. These scores evaluate parental psychopa-
thology from either a positive question (for example, question q15: |
am pretty honest) or anegative question (for example, question q12:1
feellonely). The higher scoresin the positive questionindicate abetter
condition of parents while the higher scores in the negative question
indicate a worse dimensional psychopathological condition.

Association between cross-scan FNC stability and behaviour
Assuming moderate observational errors (-5% of the mean) in resting-
state fMRIdata and only aweak effect on the brain-behaviour associa-
tions?* (-<10% of the variability in X explained by ¥), the requested sample
size to achieve power equal to 0.80 and a type I error equal to 0.05 in
the correlation analysis is 783. Our sample size is much larger than
thisnumber, which proves that we have sufficient samples to conduct
brain-behaviour association analyses. An LMM was implemented to
investigate the associations between cross-scan FNC stability and
behavioural assessments. The LMM was also used to examine the asso-
ciations between children’s FNC stability and their parents’ conditions
and neighbourhood safety. The ABCD data containrelated dataat sites
and within families due to twins and siblings. The LMM can model
families nested within the site to take account of this effect. It has been
successfully applied in previous ABCD studies and identified mean-
ingful brain-behaviour associations with a wide range of individual
behaviour®®. In this work, cross-scan FNC stability was modelled as
the dependent variable, while each score/behaviour was modelled as
afixed effect. Age, sex, race, height and weight were modelled as other
fixed effects. We used the sex of the participant at birth, which is the
assignment as male or female based on the biological attribute. Birth
sex is measured by the PhenX toolkit. The family structures and sites
were modelled as random effects”. The correlation rvalue, ¢-statistic
and effect size Cohen’s d were obtained for each association analysis
to reflect the relationship between FNC stability and a behavioural
score. The results were corrected by FDR correction® across children’s
behaviour measures.

The LMM analysis was also performed using only female partici-
pants and male participants, where age, race, height and weight were
modelled as fixed effects, and the family structures and sites were
modelled as random effects.

Multivariate model to predict children’s behaviour

Here we implemented a multivariate predictive technique, namely
PLSR, to predict children’s behaviour. We aimed to show that FNC
stability is a reliable feature that can be combined with the multivari-
atemethod to detect larger effect sizes of associations with behaviour
variables. We used the domain-based cross-scan FNC stability and
the pairwise FNC stability as the imaging feature and selected the
composite cognitive score as the target measure. We utilized 10-fold
nested cross-validation with 1,000 random replications to avoid cir-
cularity bias. The predictive model was then applied to the testing
data, generating a predictive score for each participant in the testing
data. By iteratively designating each fold of data as a testing set once,
we can obtain the predictive scores for all participants. Model perfor-
mance was quantified asthe correlation rbetween actual and predicted
scores averaged across 1,000 repetitions. The same covariates were
controlled in cross-validation to show that our predictive models are
robust to these confounds. To examine the significance of the corre-
lation, we performed a non-parametric permutation test by shuffling
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the correspondence betweenimaging features and the target measure
1,000 times and then repeating the nested cross-validated predictive
analysis, generating a null distribution of 1,000 correlations. Then,
the significance of the correlation was estimated by calculating the
frequency with which the permutation-derived correlations exceeded
the actual correlation.

We further investigated whether the behaviour-predict model
constructed using the FNC stability from the baseline data can predict
children’sbehaviourinthe longitudinal sessions. PLSR was first utilized
to define a cognition-predictive model using the pairwise FNC stabil-
ity from the baseline data. Next, the weight map from the constructed
model was obtained by extracting the regression coefficient for each
feature. Then, the dot product of vectorized pairwise FNC stability from
the second-year data was calculated with the weight map®-“*, Finally,
the correlation between actual and predicted cognitive scores was
calculated by controlling for the covariates.

Confounding effect of the head motionin children

In this study, we did not exclude those participants with larger head
motions because we want to retain more participants to have larger
statistical power inthe analysis. Head motion during fMRI collections
caninfluence the data quality, which may furtherimpact the estimation
of FNC and its stability.

Therefore, we have performed three steps to carefully minimize
the impacts of head motion before the estimation of FNC. First, we
performed head motion correction in the pre-processing using the
FSL toolbox. Rigid body motion correction was performed using the
mcflirt toolin FSL. Second, the Neuromark is an ICA-based framework
thatis capable of extracting networks that areindependent of the noise
components, such asthe head motion. The ICA-based strategy hasbeen
widely used for removing motion artefacts in previous studies®***.
Third, after extracting the TCs of ICNs, additional post-processing was
performedonthe TCsto further minimize theinfluence of head motion.
Thatis, foreach TC, we (1) detrended linear, quadratic and cubic trends,
(2) removed detected outliers, (3) ran multiple regression of the head
motions parameters (three rotations and three translations) and their
derivatives, and (4) ran band-pass filtering with a cut-off frequency of
0.01-0.15 Hz. These post-processing procedures have been widely used
in previous ICA studies for the removal of head motion effects”®.

To show the robustness of the association results, we calculated
the mean framewise displacement (FD)®>*’ for each scan. The average
mean FD for baseline scan 1is 0.2981 (mean 0.2981, s.d. 0.3697, range
~0.0507-8.7207) and for scan 2 is 0.3526 (mean 0.3526, s.d. 0.4759,
range ~0.4759-13.7952). For each participant, we averaged mean FD
across scans and repeated our analysis by adding this averaged mean FD
asone of the fixed effects inthe LMM. The overall findings are consist-
ent.Additionally, we also replicated our findings after excluding those
participants with large head motions (participants were excluded if one
of the scans with head motion >0.3 mean FD). We selected the 0.3 mm
threshold because it is mid-range within commonly used thresholds in
developmental FC studies'*®, Details of these analyses and results are
providedinthe section ‘Replication of the associations by controlling
for head motion’in Supplementary Information.

Statistical analysis

The fMRI data were pre-processed using a combination of the FSL
v6.0 toolbox and SPM 12 toolbox, under the MATLAB 2020b environ-
ment. The multivariate-objective optimization ICA with reference
(MOO-ICAR) was used for the estimation of single-scan components
in MATLAB 2020b. The significance of identification accuracy was
determined by permutation test (1,000 iterations). The significance
of associations between FNC stability and health backgrounds was
assessed using the LMM in MATLAB 2020b (fitime function). The
multivariate analysis was performed using the PLSRin MATLAB 2020b
(plsregress function).

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

The ABCD data used in the present study can be accessed upon appli-
cation from NDA (https://nda.nih.gov/) with the approval of the ABCD
consortium. The digital object identifier (DOI) of the ABCD data is
https://doi.org/10.15154/1520591.

Code availability

MATLAB 2020b can be downloaded at https://www.mathworks.com.
TheFSL 6.0.2toolbox can be downloaded at https://fsl.fmrib.ox.ac.uk/
fsl/fslwiki,and the SPM 12 toolbox canbe downloaded at https://www.
fil.ion.ucl.ac.uk/spm/. The codes of the Neuromark framework and the
Neuromark template have beenreleased and integrated into the group
ICAToolbox (GIFT 4.0c, https://trendscenter.org/software/gift/), which
canbe downloaded and used directly by users worldwide. Other MAT-
LAB codes of this study can be obtained fromthe corresponding author.
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A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

< The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

|X’ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
N Gjve P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

OXX O OO0 000F%

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  No software was used in data collection.

Data analysis MATLAB 2020b can be download at https://www.mathworks.com.
The FSL 6.0.2 toolbox can be download at https://fsl.fmrib.ox.ac.uk/fsl/fslwiki.
The SPM 12 toolbox can be downloaded at https://www.fil.ion.ucl.ac.uk/spm/.
The codes of the Neuromark framework and the Neuromark template have been released and integrated into the group ICA Toolbox (GIFT
4.0c, https://trendscenter.org/software/gift/). which can be downloaded and used directly by users worldwide.
Other MATLAB codes of this study can be obtained from the corresponding author.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The ABCD data used in the present study can be accessed upon application from NDA (https://nda.nih.gov/) with the approval of the ABCD consortium. The digital
object identifier (DOI) of the ABCD data is 10.15154/1520591.

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender Our findings apply to both sexes. In this study, we used the sex of the subject at birth, which is the assignment as male or
female based on the biological attribute. Birth sex is measured by the PhenX toolkit. We focused on the general patterns in
children aged 9-11 years and also separated our analysis for each sex respectively. When using all samples, we controlled for
sex in the linear mixed-effect model as one of the fixed effects to remove the influence of sex on the statistical analysis. Our
discovery sample includes 4365 females and 4706 males (in total 9071 subjects). Content has been obtained for sharing of
sex information by the ABCD study.

Population characteristics Baseline:
Age (month): 119.06 + 7.52
Gender (F/M): 4365/4706
Height (inch): 55.28 + 3.35
Weight (lbs): 82.97 + 23.52
Race (W/B/H/A/Q): 4771/1325/1863/181/929

Second-year:

Age (month): 142.86 + 7.51

Gender (F/M): 1333/1585

Height (inch): 60.04 + 3.53

Weight (Ibs): 107.57 + 31.99

Race (W/B/H/A/Q): 1631/317/629/57/284

Recruitment Participants were recruited from the ABCD, which is a recently-initiated national consortium that includes 21 data collection
sites throughout the United States. The goal of ABCD is to follow a large number of children, recruited at ages 9-10, for a ten-
year span through adolescence and into young adulthood in order to relate neurodevelopment to environmental exposures
such as substance use as it emerges within the sample. Our study used the neuroimaging data from the amendment ABCD
Fix Release 2.0.1, made publicly available in July 2019. Data Release 2.01 from the ABCD consortium contains over 11,000
children aged 9-11 years with a diverse range of geographic, socioeconomic, ethnic, and health backgrounds.

Ethics oversight The parent’s full written informed consent and the child’s assent were obtained under protocols approved by the
Institutional Review Board (IRB). The University of California, San Diego provided centralized IRB approval and each
participating site received local IRB approval.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size We performed QC on the preprocessed fMRI data via the Neuromark framework. Participants who did not show good normalization of their
fMRI images to the MNI standard space were excluded from further analysis. Specifically, we compared individual masks with the group mask
and retained those subjects with a high similarity between the individual masks and the group mask. This method can ensure we have a high-
quality mask and fMRI data for all individuals and has been shown to work well in our previous studies.

In this study, we only included subjects with enough good resting-state scans for further analysis. For the within-session analysis, there are
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9071 subjects with four good scans from the baseline session and 2918 subjects with four good scans from the second-year session. For the
cross-session analyses, there are 2290 subjects with four good scans from the baseline session and also four good scans from the second-year
session.

We also provided a flowchart in the supplementary information to describe how to include subjects and scans in our study.

Data exclusions  We performed data quality control on the preprocessed fMRI data via the Neuromark framework. Participants who did not show good
normalization of their fMRI images to the MNI standard space were excluded from further analysis. Specifically, we compared individual
masks with the group mask and retained those subjects with a high similarity between the individual masks and the group mask. First, based
on the first fMRI time volume, we calculated the individual mask for each subject by setting voxels to 1 if they are greater than 90% of the
whole brain mean. Next, we computed a group mask by setting voxels to 1 if they have more than 90% of the subjects with 1 for individual
masks. For each subject, we then calculated the spatial correlations between the group mask and the individual mask. The spatial correlations
were calculated using voxels within the top 10 slices of the mask, within the bottom 10 slices of the mask, and of the whole mask, resulting in
three correlations for each subject. If a subject has a top-10-slices correlation larger than 0.75, a bottom-10-slices correlation larger than 0.55,
and a whole-brain correlation larger than 0.8, we include this subject for further analysis. This method can ensure we have a high-quality mask
and fMRI data for all individuals and has been shown to work well in our previous studies. As we would like to examine the test-retest
reliability of our analysis, we selected subjects with at least four good scans within either the baseline session or the second-year session.

Replication The individual identification was replicated using four resting-state scans within the baseline session (N = 9071) and further replicated using
four resting-state scans from the second-year session (N = 2918). The individual identification was also replicated between longitudinal scans
with a two-year interval (N = 2290).
The brain-behavior association results were replicated by controlling for the head motions and by using subjects with small head motions (N =
5549). The brain-behavior association results were also replicated across data from different scanners. The brain-behavior association results
were further replicated using the second-year data.

Randomization  There is only one group in our analysis. Age, gender, race, height, and weight were considered confounding effects and were modeled as fixed
effects. The family structures and sites were modeled as random effects.

Blinding Blinding is not possible because there is only one group in our analysis. We controlled the covariates in the statistical analysis and replicated
the results across multiple scans from longitudinal sessions.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies XI|[] chip-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging

Animals and other organisms
Clinical data

Dual use research of concern

XXX XXX s
oo

Magnetic resonance imaging

Experimental design

Design type Resting state fMRI
Design specifications NO task fMRI were included in our current study.

Behavioral performance measures  NO task fMRI were included in our current study.
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Acquisition
Imaging type(s)
Field strength

Sequence & imaging parameters

Area of acquisition

Diffusion MRI [ ] used
Preprocessing

Preprocessing software

Normalization

Normalization template

Noise and artifact removal

Volume censoring

functional
3T

High spatial and temporal resolution multiband echo-planar imaging (EPI) resting-state fMRI data with fast integrated
distortion correction are acquired using three 3T scanner platforms: Siemens Prisma, General Electric (GE) 750, and
Phillips. Resting-state fMRI parameters are similar across platforms: a standard multiband EPI sequence, repetition time
(TR)/echo time (TE) = 800/30 ms, voxel spacing size = 2.4 x 2.4 x 2.4 mm, slice number = 60, flip angle (FA) = 52°, field of
view (FOV) = 216 x 216 mm, multiband acceleration = 6, and a total acquisition time is around 5 min.

53 intrinsic connectivity networks (ICNs) were extracted by the Neuromark framework, with activation peaks falling on
the majority of cortical and subcortical gray matter areas across the whole brain. The ICNs were assigned to seven
different functional domains according to their anatomical locations and functional information, including subcortical
(SC), auditory (AUD), visual (VS), sensorimotor (SM), cognitive-control (CC), default-mode (DM), and cerebellar (CB)
domains. The Neuromark framework leverages an adaptive ICA technique that automates the estimation of
reproducible functional brain markers across subjects, datasets, and studies. A set of template components were used
to extract comparable components across subjects, scans, and sessions from the ABCD data. The network templates
were constructed using two independent resting-state fMRI datasets with large samples of healthy subjects (1828
healthy subjects in total): the human connectome project (HCP) and the genomics superstruct project (GSP).

Not used

FSL6.0.2 and SPM12
Non-linear
EPI template

We preprocessed the raw fMRI data using a combination of the FMRIB Software Library (FSL) v6.0 toolbox and Statistical
Parametric Mapping (SPM) 12 toolbox, under the MATLAB 2019b environment. Rigid body motion correction was performed
using the mcflirt tool in FSL before the distortion correction. The ABCD fMRI field map data were collected with the phase-
reversed blips, producing pairs of images with distortion occurring in opposite directions. Volumes acquired with phase
encoding in the anterior-posterior (AP) direction and volumes with phase encoding in the posterior-anterior (PA) direction
were used with the FSL tool topup to estimate the susceptibility-induced off-resonance field. The output field map
coefficients were used to correct the distortion in the fMRI volume using the FSL tool applytopup. After distortion correction,
we discarded 10 initial scans with large signal changes to allow the tissue to reach a steady-state of radiofrequency
excitation. Next, the fMRI data were warped into the standard Montreal Neurological Institute (MNI) space based on the
echo-planar imaging (EPI) template, resampling to 3 x 3 x3 mm3 isotropic voxels using the normalization tool in SPM. The
resliced fMRI images were subsequently smoothed using a Gaussian kernel with a full width at half maximum (FWHM) = 6
mm.

After the preprocessing, we adopted the Neuromark framework, which extracted meaningful components independent of
the noise components, such as the head motion. The 53 components selected for the FNC analysis are important gray matter
networks, which are orthogonal to the noise components.

Finally, we performed postprocessing on the time courses of the components, including detrending linear, quadratic, and
cubic trends, removing outliers, regressing out head motions and their derivatives, and filtering, which further minimized the
head motion impacts on the FNC estimation.

We performed quality control on the preprocessed fMRI data via the Neuromark framework. Participants who did not show
good normalization of their fMRI images to the MNI standard space were excluded from further analysis. Specifically, we
compared individual masks with the group mask and retained those subjects with a high similarity between the individual
masks and the group mask. First, based on the first fMRI time volume, we calculated the individual mask for each subject by
setting voxels to 1 if they are greater than 90% of the whole brain mean. Next, we computed a group mask by setting voxels
to 1if they have more than 90% of the subjects with 1 for individual masks. For each subject, we then calculated the spatial
correlations between the group mask and the individual mask. The spatial correlations were calculated using voxels within
the top 10 slices of the mask, within the bottom 10 slices of the mask, and of the whole mask, resulting in three correlations
for each subject. If a subject has a top-10-slices correlation larger than 0.75, a bottom-10-slices correlation larger than 0.55,
and a whole-brain correlation larger than 0.8, we include this subject for further analysis. This method can ensure we have a
high-quality mask and fMRI data for all individuals and has been shown to work well in our previous studies.

Statistical modeling & inference

Model type and settings

Effect(s) tested

Classification, univariate, multivariate and predictive

No task fMRI were included in this study.

Specify type of analysis: [ | Whole brain [ | ROI-based Both
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Anatomical location(s)

To capture reliable intrinsic connectivity networks (ICNs) and their corresponding time-courses (TCs) for
each subject and each scan, a robust ICA-based framework called Neuromark was applied to the ABCD
data. Unlike atlas-based methods that typically assume fixed brain regions across subjects, the
Neuromark can identify brain networks comparable across subjects while adapting single-subject
variability with the networks. The effectiveness of Neuromark has been demonstrated in previous work,
with a wide range of brain markers and abnormalities identified in different populations.

Statistic type for inference cluster-wise, we focused on the functional connectivity between brain regions across the whole brain.

(See Eklund et al. 2016)

Correction FDR

Models & analysis

n/a | Involved in the study
|:| g Functional and/or effective connectivity

I:, Graph analysis

|:| Multivariate modeling or predictive analysis

Functional and/or effective connectivity

Multivariate modeling and predictive analysis

Pearson correlation

The cross-scan FNC stability was measured by the intra-subject similarity between the FNC of scan 1 and the
mean FNC across scans 2~4. To show the test-retest reliability of the associations, we also replicated the
results using different FNC stability measures and using the second-year data.

A linear mixed-effect model (LMM) was adopted to investigate the associations between intra-subject cross-
scan FNC stability and behavioral assessments. The LMM was also used to examine the associations between
the children’s FNC stability and their parents’ conditions and neighborhood safety. The ABCD data contain
related data at sites and within families due to twins and siblings. The LMM can model families nested within
the site to take account of this effect. It has been successfully applied in previous ABCD studies and identified
meaningful brain-wide associations with a wide range of individual behaviors. In this work, cross-scan FNC
stability was modeled as the dependent variable, while each score/behavior was modeled as a fixed effect.
Age, gender, race, height, and weight were considered confounding effects and were modeled as other fixed
effects. The family structures and sites were modeled as random effects. The correlation r-value, t-statistic,
and effect size Cohen’s d were obtained for each association analysis to reflect the relationship between FNC
stability and a behavioral score. The results are corrected by false discovery rate (FDR) correction.

In addition, we performed analyses using a multivariate predictive technique, namely partial least squares
regression (PLSR). PLSR is one of the most popular prediction models in neuroimaging that can establish
reliable brain-behavior relationships. It works by projecting high-dimensional features into a small set of
components without using prior feature selection. Here, we chose the domain-based FNC stability as the
imaging feature because it has relatively larger dimensions.

Considering that multivariate methods will significantly benefit from high-dimensional features, we also
developed a method to evaluate cross-scan FNC stability for each pair of FNC, which can provide high-
dimensional FNC stability features for building the prediction model. Via this method, we extracted 1378 FNC
stability features for each subject, which were used as the input of the PLSR model. PLSR projected these
high-dimensional features into a small set of components without prior feature selection.

We selected the composite cognitive scores as the target measures, which show the largest associations with
cross-scan FNC stability in the univariate analyses. We utilized 10-fold nested cross-validation with 1000
random replications to avoid circularity bias. In each cross-validation, an optimal predictive model was
established using the training data to capture the relationships between cross-scan FNC stability and the
target measure to be predicted. The predictive model was then applied to the testing data, generating a
predictive score for each subject in the testing data. By iteratively designating each fold of data as a testing
set once, we can obtain the predictive scores for all subjects. Model performance was quantified as the
correlation r between actual and predicted scores, averaged across 1000 repetitions. The same covariates as
in the main text were controlled in cross-validation to show that our predictive models are robust to these
confounds. To examine the significance of the association, we performed a non-parametric permutation test
by shuffling the correspondence between imaging features and the target measure 1000 times and then
repeating the nested cross-validated predictive analysis, generating a null distribution of 1000 correlations.
The significance of the correlation was estimated by calculating the frequency with which the permutation-
derived correlations exceeded the actual correlation.
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