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Structural information deficits about aging bridges have led to several avoidable catastrophes in
recent years. Data-drivenmethods for bridge vibrationmonitoring enable frequent, accurate structural
assessments; however, the high costs of widespread deployments of these systems make important
condition information a luxury for bridge owners. Smartphone-based monitoring is inexpensive and
has produced structural information, i.e., modal frequencies, in crowdsensing applications. Even so,
current methods cannot extract spatial vibration characteristics with uncontrolled datasets that are
needed for damage identification. Here we present an extensive real-world study with crowdsourced
smartphone-vehicle tripswithinmotor vehicles inwhichwe estimate absolute valuemode shapes and
simulate damage detection capabilities. Our method analyzes over 800 trips across four road bridges
with main spans ranging from 30 to 1300m in length, representing about one-quarter of bridges in the
United States. We demonstrate a bridge health monitoring platform compatible with ride-sourcing
data streams that check conditions daily. The result has the potential to commodify data-driven
structural assessments globally.

Ubiquitous smartphones have normalized the distributed collection of data
in everyday life. Sensor arrays in modern smartphones enable unprece-
dented measurements of an individual’s activities. In contrast to increasing
digital capabilities, modern society faces significant infrastructure deficits.
Knowledge gaps regarding the conditions of infrastructure systems have
created vulnerabilities to sudden and unexpected losses in service and have
ultimately produced an infrastructure-funding gap. For instance, at current
investment levels, it would take about 50 years for the U.S. Department of
Transportation (DOTs) to resolve outstanding repairs. This projection is
conservative as it does not include any new bridge maintenance issues that
would arise. The 10-year infrastructure-funding gap for roadways and
transit is over one trillionUSD1. Furthermore, the exposure of infrastructure
to natural disasters amplifies uncertainties in asset management. In regions
with high risks of multiple natural hazards, e.g., earthquakes, coastal
flooding, cyclones, etc., transportation infrastructure is subject to significant
losses. For example, road bridges in China account for about 29% of the
expected annual damage caused by natural hazards2. Bridges and other road
infrastructure are vulnerable to the rising rates of natural disasters and
extreme events in response to climate change and rapid growth in the global
human footprint3–5. In particular, flooding and other hydraulic events are a

leading cause of bridge failures in the U.S.6, the U.K.7, India8, and other
countries. This emphasizes the importance of incorporating accurate
models of bridges and their exposure to extreme events in life-cycle
analyses9.

Modern structural health monitoring (SHM) techniques are highly
capable of determining critical physical characteristics of bridges based on
sensor data. SHM encompasses a wide range of services such as modal
identification, damage identification and localization, digital twinmodeling,
risk quantification, and disaster response10,11. Advances in sensing and
actuation have led to applications utilizing computer vision and robotics,
e.g., automatic crack detection, drone-based inspections, etc., which are
designed to improve the retrieval of structural condition information12–14.
However, the costs associated with implementing these techniques (even in
their simplest forms) have proven unattainable for most bridge owners.
Sensing technology is not part of routine bridge inspections: U.S. National
Bridge Inspection Standards only require that each bridge is inspected
visually in 24-month intervals. A widespread need for monitoring
approaches that are accurate, easy to implement, and cost-effective has
helped spark interest in low-cost alternatives, such as the use of mobile
sensor networks15 and smartphones16 in SHM.

1Lehigh University, Civil & Environmental Engineering Department, Bethlehem, USA. 2MIT, Senseable City Laboratory, Cambridge, USA. 3United States Military
Academy, Department of Civil & Mechanical Engineering, West Point, USA. 4These authors contributed equally: Liam Cronin, Soheil Sadeghi Eshkevari.

e-mail: lmc219@lehigh.edu

Communications Engineering |            (2024) 3:93 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s44172-024-00243-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s44172-024-00243-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s44172-024-00243-y&domain=pdf
http://orcid.org/0009-0000-4653-4663
http://orcid.org/0009-0000-4653-4663
http://orcid.org/0009-0000-4653-4663
http://orcid.org/0009-0000-4653-4663
http://orcid.org/0009-0000-4653-4663
http://orcid.org/0000-0001-8884-2592
http://orcid.org/0000-0001-8884-2592
http://orcid.org/0000-0001-8884-2592
http://orcid.org/0000-0001-8884-2592
http://orcid.org/0000-0001-8884-2592
http://orcid.org/0000-0001-9755-1367
http://orcid.org/0000-0001-9755-1367
http://orcid.org/0000-0001-9755-1367
http://orcid.org/0000-0001-9755-1367
http://orcid.org/0000-0001-9755-1367
http://orcid.org/0000-0002-8942-8702
http://orcid.org/0000-0002-8942-8702
http://orcid.org/0000-0002-8942-8702
http://orcid.org/0000-0002-8942-8702
http://orcid.org/0000-0002-8942-8702
mailto:lmc219@lehigh.edu


In the last two decades, researchers15,17–23 have established the advan-
tages thatmobile sensor networks have over traditional “stationary” ones in
measuring bridge vibrations. Two key findings for mobile sensor networks
are (i) few devices are needed to determine structural dynamical properties,
which enables widespread bridgemonitoring at a lower cost; and (ii)mobile
sensors efficiently capture dense spatial vibration information, e.g., high-
resolution structural mode shapes24–28. Simultaneously, recent research
utilizing smartphones for structural health monitoring have considered
various contexts, primarily focusing on stationary (notmobile) applications.
Stationary smartphones have accurately measured acceleration signals on
civil structures, and they have been used for the identification of modal
properties of pedestrian and highway bridges16,29–31.

There have been very few studies that have considered smartphone
data collected inmoving vehicles, and even fewer within the specific context
of crowdsourced smartphone data collected within moving automobiles.
Simulations of crowdsourced smartphone data have been generated and
analyzed to identify bridge modal frequencies22. In addition, vehicles
instrumented with multiple accelerometers, smartphones, and positioning
systemswere used to detect road abnormalities, including bridge expansion
joints, but did not estimate any bridge dynamical properties32. In one study,
researchers collected 42 smartphone datasets inmotor vehicle trips over the
Harvard Bridge and extracted indicators of three bridge modal
frequencies33. In another study, researchers developed a method to extract
spatial information, e.g., absolute valuemode shapes, fromanasynchronous
network of mobile sensors and validated this technique using a network of
moving smartphones on a beam in a lab setting and simulated the effects of
vehicle-bridge interaction34. A pilot study focusing on micromobility used
data collected by smartphones in bicycle trips over a footbridge and iden-
tified its first absolute mode shape35—the study collected about 40 datasets,
primarily biking trips with speeds below 8 kph.

The most relevant recent work presented multiple real-world applica-
tions in which about 450 crowdsourced smartphone-vehicle-trip (SVT)
datasetswere used to accurately determine themodal frequencies of two real-
world highway bridges36. Notably, this study used a variety of crowdsourced
data from several external sources, such as a ridesourcing company and a
bridge maintenance crew. These results emphasized the unique and sig-
nificant advantages of crowdsourced data collected within moving auto-
mobiles and in different controllability environments. “Pre-existing”mobile
sensor networks37 such as ridesharing data, municipal transit data, etc.,
provide an unprecedented potential for high velocity and large-scale data
streams.Modal frequency identification is an essentialfirst step inmonitoring
the dynamics and condition of a bridge.While modal frequencies have been
successfully used to identify structural damage in real-world applications,
certain modal frequencies, e.g., lower modes, can be insensitive to damage
and simultaneously sensitive to normal environmental changes38–45, which
can reduce their effectiveness as a damage-sensitive feature.

Spatial vibration information, such as mode shapes, are effective
damage-sensitive features and can be captured efficiently by mobile
sensors27,34,35. Structural mode shapes and their curvatures are sensitive to
local and global damage while less sensitive to environmental variations46.
Over time, as structural damage develops, the deviations in mode-shape-
based metrics47–50 can lead to the identification of both the presence and
location of the damage. Similarly, signal processing techniques, e.g., wavelet
transforms, have been used to identify mode shape discontinuities and
attributed them to local damage51–56. For these reasons, mode shapes and
mode shape curvatures are widely studied and used for damage detection,
and localization57–61. The development of damage detection methods is an
open research topic. A robust and accurate monitoring system must
incorporate several layers of information into a condition report, such as
available environmental data, dynamical properties, and damage-sensitive
features to counteract the detrimental effects of sensor noise, modal prop-
erty estimation inaccuracies, and environmental factors.

This paper proposes a method for identifying absolute value mode
shapes (AMS) of highway bridges using highly uncontrolledmobile sensing
data: crowdsourced SVTdata. Themethod is validated throughoutfive real-
world applications on four distinct bridges, Fig. 1: The Golden Gate Bridge
(USA), theCadore Bridge (Italy), theCiampinoBridge (Italy), and theGene
Hartzell Memorial Bridge (USA). In total, 884 SVT datasets were collected
across fourbridges, and in three types of controllability environments.These
bridges have distinctly different locations, designs, and traffic volumes.
Notably, the lengths of the largest span vary from 30 m to 1.3 km, a range
that represents 32% of US bridges.

The proposed method has three key benefits: (1) it is entirely based on
SVT data which can be sourced from common smartphones and does not
require supplementary sensoryorGIS information, (2)with ever-expanding
smartphone penetration rates, it can streamline up-to-date AMS estima-
tions regularly, which is critical for long-term, reference-based health
monitoring, and (3) the spatial resolution of theAMS is high, which enables
immediate applications to broader SHM services such as damage identifi-
cation. These features can be configured with a software-as-service (SaS)
system for automated data collection, preprocessing, and cloud-based sto-
rage that can provide tools for near-real-time evaluations. As a whole, these
capabilities demonstrate a platform that reforms the costly, labor-intensive
task of acquiring bridge condition monitoring data, such that “luxury”
information is made into an affordable, readily available good—a com-
modity—for bridge owners.

Method
The process for identifying AMS is represented graphically in Fig. 2. The
“Methods” section gives a detailed explanation of the proposed methodol-
ogy for AMS identification. After basic preprocessing steps, the syn-
chrosqueezed wavelet transform is applied to the SVT acceleration signals.

Fig. 1 | Aerial views and general information for the four case studies (source:
Google Earth), and the monitored sections are highlighted in the photos.
a Golden Gate Bridge, b Cadore Bridge, c Ciampino Bridge, and d Gene Hartzell
Memorial Bridge. These bridges are monitored with traditional fixed sensor

networks, and results are used as a baseline to compare with the mobile sensing
campaign. In summary, these bridges display a wide range of characteristics with
span-lengths varying from 56 to 1280 m and consist of four distinct structural
systems.
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To initialize the aggregation process, the bridge is segmented, defined by the
width of the segments, Δ, and the spacing between segment centers S. In
addition, narrow frequency bands, with bandwidth ϵ, are defined based on
prior knowledge of modal frequencies. It is key to emphasize that this
method uses prior estimates of natural frequencies. An approach for
determining modal frequencies from SVT data is reviewed in the SI along
with validations on the presented case studies36.

The AMS is estimated by averaging the magnitude of each bridge
segment around a natural frequency. The dimensions of the matrix
depicted having widthΔ and height ϵ, being averaged, are contingent on
the number of samples taken within the bridge segment and dis-
cretization in frequency of the wavelet transform. This would be written
as a conditional index, selecting measurements over a bridge segment
and within a bandwidth. In the middle panel of Fig. 2, the mean mag-
nitude for all trips and segments are plotted at the central frequency as a
function of segment centers. The mean value over all trips at each
location is extracted as the AMS for the modal frequency. Varying the
segment width, segment center spacing, and bandwidth, the spatial
resolution of the AMS can be adjusted.

The accuracy of the AMS is evaluated using modal assurance criteria
(MAC), which produces a value between 0 and 1 that measures the quality
(high quality generally being above 0.90) of an estimated mode shape by
comparing it with the reference mode shape62. The analysis to find the
reference mode shape for all cases is presented in Supplementary Note 2.
This includes data collection campaigns completed by the authors and
references to prior works.

Results
This study examines the efficacy of the proposedmethod on four real-world
bridges with distinct locations, designs, and traffic volumes. The applica-
tions considered a broad set of SVT conditions; data were collected using
different vehicles, e.g., sedans,minivans, etc., in three types of environments,
controlled, partially controlled, and uncontrolled, by a variety of smart-
phone models, and with sample sizes ranging from 50 to 200. Details of the
SVT data in each application are provided in the following sections; how-
ever, detailed information on data collection, processing, and complete
dataset descriptions are found in the “Methods” and SupplementaryNote 1.
Consistent with prior work using mobile sensor networks, the resulting
AMS has a very high spatial resolution; the applications below produce
mode shapes with 50 points. In traditional SHM applications with fixed
sensors, the spatial resolution is limited by the number of simultaneous
sensors.Amode shapewith 50points requires anetworkof 50 synchronized
sensors. All applications produced highly accurate AMS as measured by
MAC values of 0.94 and above. These results provide strong evidence that
supports the collection and analyses of crowdsourced SVT data for deter-
mining spatial vibration characteristics of existing bridges.

Golden Gate Bridge
The landmarkGoldenGate Bridge (GGB) connects San Francisco toMarin
County with an annual average daily traffic (AADT) of 109,000. The sus-
pensionbridge has amain spanof 1280mover SanFranciscoBay.Due to its
structural flexibility, the modal frequencies are much lower than the other
bridges in this study. The first three vertical modal frequencies are 0.106,

Fig. 2 | Overview of the methodology: the syn-
chrosqueezed wavelet transform converts each
acceleration time series to the time-frequency
domain, and the instantaneous magnitudes are
calculated. The bridge is divided into overlapping
segments; the width (Δ) and spatial stride (S) are two
parameters of the method. Averaging the magni-
tudes in each segment for each trip at the modal
frequencies yields a distribution of magnitudes at
each location, the mean of which is the AMS esti-
mate. Including a small bandwidth (ϵ) around the
modal frequency in the averaging process leads to
robust results on noisy datasets. Detailed informa-
tion is given in “Methods”.
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0.132, and 0.169 Hz63, and the fundamental transverse mode has been
estimated within 0.05, and 0.09564,65 Hz. For SVT data, two distinct datasets
are evaluated. The first dataset, GGB-C, consists of 102 trips collected in a
controlled environment36, i.e., key variables such as vehicle velocity and
smartphone orientation were controlled. Uber provided the second, limited
SVT dataset GGB-UC from its ride-hailing fleet (with no possibility for a
higher volume of data sharing), which consists of 50 tripsmade by a diverse
set of drivers and vehicles for an experimental verification with
uncontrolled data.

In summary, four modes were identified from the controlled data
(GGB-C): three vertical and one transverse. In addition, the first vertical
mode was identified from the uncontrolled data (GGB-UC). MAC values
were calculated by comparing mode shapes at the locations of the fixed
sensors from prior work63 (42 locations for vertical modes and 19 for the
transverse mode). The MAC values for all AMS estimates for both SVT
datasets are 0.95 or above, as noted in Fig. 3a–e. Furthermore, a transverse
modewas identifiedusingSVTdata, and the correspondingAMSwas found
with aMAC value of 0.98. Lastly, it is worth noting that the AMS of the first
vertical mode was identified reasonably well from the uncontrolled data, as
indicated with a MAC value of 0.96 and shown in Fig. 3b.

Gene Hartzell Memorial Bridge
The Gene Hartzell Memorial Bridge (GHMB) spans the Lehigh river along
route 33 in Easton, PA, United States with an AADT of 59,000. The bridge
structure is a steel truss with four spans and a total length of 540 m with a
main span of 180m.Thefirst three verticalmodes are found to be 0.87, 1.34,
and 1.78 Hz (see Supplementary Note 2). The SVT data called GHMB is a

controlled dataset of 332 trips collected by the research team’s vehicles and
the Good Vibrations App (more information in “Methods” section). For
data collection, the team drove at a set of prescribed speeds detailed in
Supplementary Note 1. The mean speed across all trips was 82.25 km/h,
which is slightly below the speed limit of 104.6 km/h.

For analysis, the dataset was subdivided to consider the slowest 102
trips. The idea of dividing large datasets into potentially “more informative”
subsets is considered further in the following section. With this subset, the
AMS for the third vertical was identified (Fig. 3f). The correspondingMAC
value was 0.94, which was calculated using 14 reference locations. The first
two vertical modes were not reliably identified, emphasizing that some
vibration modes may not be observable in specific SVT subsets.

Cadore Bridge
The Cadore Bridge is a 272 m long, steel-rigid-arch structure in northern
Italywith anAADTof 20,000. The bridgewas inspected and rehabilitated in
2011, and the fundamental natural frequencies are reported as 0.68, 1.24,
and 1.80 Hz for the first three vertical modes. In addition, the bridge was
inspected again with a fixed sensor network in 2021, and vertical and
transverse model properties were extracted (see Supplementary Note 2).

The SVT data called CAD-PC consists of 884 partially-controlled
samples recordedusing theGoodVibrations appbyANASS.p.A. operators.
The vehicle speeds are, on average, 62.7 km/h. Of the full dataset, the
200 slowest trips were selected for further analysis. With this subset of data,
Fig. 3g displays the second transverse mode with a frequency of 1.122 Hz.
The MAC value between the estimated AMS and the reference shape (17
locations) was 0.94.

Fig. 3 | AMS estimates for all case studies. a–eGolden Gate Bridge, fGene Hartzell
Memorial Bridge, g Cadore Bridge, and h Ciampino Bridge. The estimate from the
mobile sensing data is shown with green markers and a solid black line. While the

reference is displayed with a dotted line and black X markers. Each X represents the
location of the fixed sensor on the bridge during the original study. Last, black
triangles show structural supports in the direction of the mode.
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Ciampino Bridge
This bridge is one segment of an elevated intersection located in the
Ciampino district of Rome, Italy. The AADT for this bridge is ~82,000. The
segment consists of two adjacent continuous spans of reinforced concrete
with a total length of 56.7 m. Since September 2020, the bridge has been
monitored using a fixed sensor network with the first two natural fre-
quencies identified as 4.5 and 6.8 Hz (See Supplementary Note 2). The SVT
data called CMP-PC consists of 992 partially-controlled datasets collected
by ANAS S.p.A. using the Good Vibrations App. The results shown in
Fig. 3h are from the aggregation of the 200 samples with the lowest speeds.
The identifiedAMS inCiampinoBridge has aMACof 0.97when compared
to the reference at six locations.

Study of data quantity and quality
Many factors influence how the bridge vibrations are transmitted from the
road surface to the vehicle cabin and thereby affect the ability to extract
accurate dynamics information from the recorded signal. Vehicle speed and
road surface roughness are known to be highly impactful66. While the
available data is insufficient in size and variety for a broad assessment of
trends and sensitivitieswith respect to individual trips or groups of trips, e.g.,
subsets based on metadata, there are useful observations to note on the
apparent effects of dataset size and vehicle speed.

In Fig. 4, the relationship between sample size and MAC value is
presented for the identified AMSs. The sample size is presented in terms of
the percentage of the entire sample set. For each percentage level, subsets
were randomly selected with replacement from the full dataset (i.e., sample
bootstrapping), and for each subset, the MAC value was calculated. This
process was repeated a sufficiently large number of times so the average
MAC across all subsets converged (100,000 sample sets). From Fig. 4, in all
cases, without exception, the accuracy of identified AMSs monotonically
increased with sample size. Furthermore, since these curves are still
increasing,wewould likely still see improvement in accuracywithadditional
data, potentially improving results with lower MAC values. The extent of
this improvement varied with each mode and with respect to the con-
trollability of the SVT data. In one case, increasing sample sizes rose the
MACvalue of thefirstmode fromUber data (N = 50) by 31%.There are two
further observations: (1) the rate at which accuracy increases decreases with
sample size, and (2) accuracy increases at a slower rate for the uncontrolled
data. This suggests that when compared to uncontrolled trips, fewer con-
trolled trips would be needed to achieve a certain AMS accuracy level for a
given mode. For instance, consider the first vertical mode of the GGB: the

MACvalue from50%of the controlled data (50 samples used) is about 0.90,
which is considerably higher than 0.75, the value from the Uber data
(50 samples used).

In a crowdsourced data collection campaignwhere results from a large
number of samples are averaged, it is possible to achieve accurate results
even if a few individual trips have excessive noise. In other words, while all
datasetsmay beweighted equally during aggregation, it is expected thatmay
not equally contribute to structural dynamics information. Figure 5 high-
lights theband-passed frequency-spaceplot (modeV3 inGHMB-C) for two
speed subsets,where bluepoints represent faster trips and green slower trips,
respectively. Overall, a stark difference is visible in Fig. 5 where trips with
higher vehicle speeds consistently possess largermagnitudes. Based onprior
work, we hypothesize that the increased magnitudes predominantly
increase signal noise and a lower signal-to-noise (SNR) ratio, as there is a
reduced data duration and the vehicle dynamical response to the road
irregularities is intensified15,66.

Considerations on apparent dataset “quality” becomes especially
importantwhen data volumes evolve to larger orders ofmagnitude, i.e., tens
of thousands of datasets. For instance, crowdsensing platforms with
monthly data streams on the order of millions would greatly benefit from
preprocessing tools that canfilter out datasets thatmay benoisy or less likely
to positively impact SHM features of interest. This process could operate by
flagging datasets based on metadata analyses, e.g., speed, smartphone,
vehicle type, etc., that strongly correlated with less accurate AMS.

Scalable bridge network monitoring system
Data-driven bridge health monitoring using sensors sensor networks is a
well-established field of scientific researchwith successful damage detection
case studies dating back to the late 1990s. Yet, bridge owners rarely leverage
this technology, such that the vastmajority of bridgemanagement decisions
are made without bridge dynamics information. An appealing vibration
monitoring systemmust be cost-effective and provide a clear advancement
in condition information retrieval.

This study presents not only a technical means for AMS identification
using asynchronous data but also designs and executes a scalable data col-
lection infrastructure that canmeet the requirements of an extensive bridge
health monitoring platform. In the framework depicted in Fig. 6, our
designed smartphone application contains a registry of bridges with user-
defined geo-fences. Smartphones automatically collect vibration data when
entering the geo-fences, package it, and save it on cloud storage. A backend
server is triggered at a user-defined time cadence to consume stored data,
split and preprocess them for each bridge, and run the proposed algorithm
to identify current estimations of AMSs. This automatic and recurring
process provides a time series of identified real-time dynamic properties of
each bridge separately, which is key to real-time bridge monitoring and a
foundation for a data-driven alarm system. The time series are closely
tracked for any anomalies attributed to structural damage or condition
changes. Once an abnormal change is observed, bridge owners can be
alerted automatically to orchestrate an onsite inspection.

This framework is readily applicable to bridge networks in urban and
suburban areas with high smartphone penetration rates, in which there are
large, pre-existingmobile sensor datasets that can be re-purposed for bridge
monitoring. The AADT over DelawareWater Gap Bridge in DE,USA, was
nearly 50,000 in 2022. If only a mere 1% of vehicles participated in smart-
phone data collection, about 500 datasets would be generated daily. The
same cars that collect data on this bridge may continue on I-80 interstate
highway and contribute data to other bridges. This example illustrated how
existinghumanmobilitymechanisms candrive regular data generation for a
large population of bridges. Commercial and municipal vehicle fleet ser-
vices, e.g., ridesourcing companies, or public works, have the unique
potential to support and distributed data collection.

This study elaborates on one specific application: tracking AMSs over
time to identify structural condition abnormalities as a feasible solution for
cost-effectivewidespreadmonitoring.However, themassive amount of data
in the long run of the data collection framework is by no means limited to
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this specific downstream use case. By accumulating more data with more
diversified environmental/road type/bridge structure catalogs, we provide a
rich source of data for more specific downstream tasks such as damage
localization and/or more holistic final outputs such as remaining-life ana-
lysis of structures.

Continuous monitoring simulation
Once the bridge dynamic properties have been estimatedwith the proposed
method, the monitoring data become compatible with a data-driven con-
dition assessment. For descriptive purposes, we simulated a monitoring
campaign of a 59m truss bridge that undergoes two common damage cases:
element stiffness change, which implies the occurrence of common damage
types such as corrosion or fatigue in the element, and differential support
settlement39,67. In addition, the effects of environmental factors, such as
temperature, were ignored for simplicity, and integrating mobile sensing
into more comprehensive damage identification frameworks is of interest
for future works. The goal was to detect the changes in structural condition
by only using signals collected by passing vehicles based on AMS estimates
(Details of the simulation and damage detection method are in the
“Methods” section).Damagedetection algorithmsgenerally follow the same
process of collecting data, estimating dynamic properties, and converting
estimates to a damage-sensitive index. Here, the index for tracking the
structural health is the totalmodal assurance criteria (TMAC)68, essentially a

similarity metric comparing AMS values estimated at different points in
time. The first three modes (comparable to the GGB case study) were
included in the TMAC calculation for this analysis, but this is generally a
parameter that depends on the number of identifiedmodes. Figure 7 shows
when a batch incorporates the SVTs generated before and after the event
(defect), the TMAC values drop with statistical significance. This drop
means the changes in the mode shape are detectable and non-transitory,
which differ from variations in the underlying state of the structure. The
output of readily available damage detectionmethods, such as change point
analysis69, can be configured to function as an early alarm system that
immediately notifies bridge stakeholders. This simulation demonstrates
how the estimatedAMS can be incorporated into existing damage detection
methods. The damage cases considered here are only illustrative and are far
from exhaustive. As with all damage detection methods, the sensitivities of
the damage-sensitive features and setup of statistical models will vary with
damage case and damage severity, and can ultimately limit detectability.
Additionalworkneeds to be done to create a robust platform formonitoring
that incorporates not only AMS but a wide range of information.

Discussion
Four studies in this paper demonstrated awide rangeof real-world examples
in which important spatial vibration characteristics of bridges, i.e., absolute
value mode shapes (AMSs), can be extracted successfully from

Fig. 5 | The GHMB dataset is filtered by speed; the
231 fastest speeds are shown in blue, and the 102
slowest speeds are in green. The solid lines are the
means for each speed subset.
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crowdsourced smartphone-vehicle trip (SVT) data. Bridges from three
general classes were considered: short-span, medium-to-long-span, and
long-span, and three types of crowdsourced SVT datasets were used: con-
trolled, partially controlled, and uncontrolled.

The successful applications on the Golden Gate Bridge (GGB) show
capabilities for identifying AMSs of long-span bridges in both vertical and
horizontal directions (see Fig. 3a–e). Bridgeswith longmain spans (>500m)
belong to a small yet special category. While there are fewer than 100 such
bridges in the world, they have high structural flexibility tied to low modal
frequencies (i.e., severalmodes below1Hz63,70). This is notable for the case of
SVT data as this frequency range is distinctly below the typical frequency
range of vehicle suspension systems (1−3 Hz). Thus, the adverse effects of
vehicle-bridge-road interaction are mitigated. In addition, SVT datasets
collected on long-span bridges will have a larger sample size for a given
speed and sampling rate. Finally, long-span bridges are among the most
traveled, asmeasured by large AADT values, facilitating high-rate SVT data
streams. In summary, with the potential for large volumes of high-quality
datasets, SVT data may present their highest value to long-span bridges.

The studies on the Cadore Bridge (CAD) andGeneHartzellMemorial
Bridge (GHMB) confirmed the method’s applicability to a larger group of
existing bridges withmaximum spans between 50 and 500m, i.e., medium-

to long-span bridges. According to the national bridge inventory (NBI)
curated by the Federal Highways Administration (FHWA), about 12,000
bridges (2%) in theUS belong to this class. Similarly, the successful study on
the short-span Ciampino Bridge (CMP) represents the applicability of the
method toUS bridges havingmaximum spans between 15 and 50m, which
includes nearly 163,000 bridges (26%). Even though our cases were diverse,
by span length, they only represent about a quarter of all bridges, and
additional work needs to be done to discover the limitations of the applic-
ability of the method.

From a structural dynamics perspective, bridgeswith shorter spans are
stiffer than long-span bridges and are more likely to possess some modal
frequencies between the typical vehicle band 1−3 Hz. Note that the modal
frequencies for both the secondhorizontalmode forCAD(seeCAD-PC-H2
in Fig. 3g) and the third vertical mode for GHMB (see GHMB-C-V3 in
Fig. 3f) fall within this range and are therefore subject to high noise from
vehicle-bridge-road interaction. This methodology does not include mod-
eling of the vehicle system nor any processes for decoupling vehicle
dynamics, e.g., empirical mode decomposition, deconvolution, etc.71;
nonetheless, accurate AMSs were extracted, which may suggest that large
and diverse SVT datasets, acquired using many different vehicles, help
mitigate negative interaction effects. Notably, only one AMS was success-
fully extracted from each of these bridges. This result is partially dictated by
the randomnature of the traffic excitation: there is no guarantee that a given
mode is sufficiently active in the measured structural response at the space-
time coordinates of the SVT data. Large data volumes (on the order of
thousands or hundreds of thousands) would dramatically improve the odds
that individual structural modes have a strong presence in aggregate space-
frequency maps. Generally, for robust damage detection, several bridge
modes should be consistently tracked over time.

The AMSs are directly linked to reliable indicators of structural
damage, such as mode shape curvature, total modal assurance criteria
(TMAC), etc.68, and thereby establish a fundamental functionality for a
damage detection system. The robust simulation analyses in exemplify two
crowdsensing scenarios in which these features are used to detect the pre-
sence of bridge damage. A 60-m-long bridge was considered with a mobile
sensor network that produced 100 SVT datasets per day over the course of
six months. The identified AMSs for three modes were used to track the
TMAC value over time (days) which led to accurate damage detection
within a few days of the damage event.While this analysis was successful in
establishing fundamental damage detection capabilities based on crowd-
sourced mobile smartphone data, further research is needed to quantify
sensitivities of AMS-based features to structural damage and evaluate
robustness using data from real-world bridge damage cases.

The approach proposed in this paper is based on statistical signal
processing techniques and does not utilizemachine learning (ML).Over the
past decade, applications of data-driven ML methods have initiated enor-
mous advances in the sciences, broadly shaping fields such as physics,
computer vision, robotics, natural language processing, neuroscience,
etc.72–75, with growing applications in civil engineering48,76–78. That is, the
results here establish the initial, known capabilities for extracting spatial
vibration characteristics featuresbutmayunderreport the extent of dynamic
features and accuracies that are possible for the considered datasets. For
instance, in the studies presented, the accuracy of the results from SVT data
was evaluated through a direct comparisonwith results based on traditional
fixed sensor networks, while trained AI models may enable techniques for
automated cross-validation of modal properties.

Bridge condition monitoring based on SVT data leverages existing
vehicle mobility networks and high smartphone penetration rates. These
approaches offer very lowupfrontmonitoring costs compared to traditional
sensing systems and enable a scalable information retrieval process: all
bridges that are coveredby the smartphone-vehicle network canbe analyzed
using these tools. Urban bridges generally have highAADT levels, such that
low participation rates can still yield ample data streaming volumes, e.g., 1%
of the AADT of the Golden Gate Bridge amounts to over 1000 daily trips.
Conversely, data streamingvolumes for bridges in rural areasmaybe limited
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Fig. 7 | Simulation of a mobile sensing monitoring campaign on a bridge that
experiences damage. a The first three AMS estimates, with the ‘reference’ being an
estimate from mobile sensors prior to damage compared to a ‘sample’ after the
damage. b Graph of TMAC overtime where the reference AMS is taken before day
zero compared to samples taken on a daily basis.
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by comparatively lower AADT values; yet, widespread and long-term
datasets combinedwith advances in transfer learning couldhelp utilizeprior
analyses of similar bridges to enable dynamic property estimation using
sparse SVT data.

A key ambition for crowdsourcing infrastructure condition informa-
tion is the creation of an open database of bridge vibration records, curated
with historic dynamic property estimates, bridge model files, and design
details such as material or span, etc. The overarching goal is to provide
bridge owners and inspectors an opportunity to focus on key, pre-identified
bridge locations or components of interest, to enable more frequent, more
quantitative inspections, and to support preventative maintenance proto-
cols. Such a databasewould complement existing archives, e.g., theNational
Bridge Inventory, which is managed by the FHWA, with the addition of
maintaining historical data and records. Regular observations of structural
behavior over a long term (over 1 year) are essential to establishing baselines
and performance benchmarks needed for condition evaluations79. Cen-
tralization and standardization of archival vibration data and structural
health reports would be critical to the success and impact of this program.
First, widespread coverage of bridges would promote the participation of
bridge owners. Second, standardized and curated datasets assist with the
rapid development and application of new techniques, such as developing
trained AI models for condition monitoring80 or alternative damage index
metrics81.

The establishment of a mobile sensing platform of this scale creates
new interdisciplinary challenges. Everyday use and reliability have sub-
stantial computing, network, and cloud infrastructure needs for which
existing cellular networks and smartphone ownership levels provide an
important foundation. There are a very large number of eligible SVT
datasets that extensively cover US infrastructure and have already been
collected by ridesharing companies and apps such as Uber, Lyft, Waze, etc.
Figure 3b shows a successful implementation based on a small number of
uncontrolled SVT trips collected by Uber. There is high potential value
within these enormous, pre-existing datasets, which present opportunities
for ridesharing businesses to collaborate with municipalities and state
Departments of Transportation. Advances in smart vehicle technologies,
e.g., vehicle-to-infrastructure communication, could make a large positive
impact by accelerating data transmission, storage, and analysis. Develop-
ments in material science can help connect sparse structural response
measurements to local and global behavior82, e.g., loaddistributions83,multi-
scale analysis and design84. The concept of an open database of bridge
records posespotential legal constraints andquestionswhichwill dependon
jurisdiction. Is there a need to restrict database access to a limited number of
users, organizations, or institutions for national security? Would there be a
there a legal obligation for a bridge owner to act on data-driven reports
describing significant indicators of severe structural damage?

The findings of this paper could have a substantial impact on the
monitoring and management of bridges globally, through transforming
costly sensory (thus seemingly luxury) information on a small subset of the
bridge population into a distributed, accessible, and affordable commodity.
The tools developed are broadly applicable to all bridges; yet, there remains a
need to continue to study the accuracy and efficacy of using SVT data in
additional scenarios to better identify the strengths and potential limitations
of the approach for existing bridges. The results presented in Fig. 7
emphasize the power of regularly collecting and analyzing SVT data over
time for damage detection and support the integration of low-cost mon-
itoring as a standard into bridge management practices.

Methods
Automated smartphone data collection and processing
An Android smartphone application named Good Vibrations was devel-
oped to record vibrations, locations, and orientations data generatedwhen a
smartphone ismoving over amonitored infrastructure. Themain objectives
of this smartphone application can be summarized as follows:
1. Detect when a smartphone is entering or leaving a monitored area

using geofences.

2. Record and store the data coming from the sensors of the smartphone
at the highest available frequency.

3. Minimize the energy consumption of the application.

However, the first and last items of this list are generally in contrast. On one
hand, to detect the position of a smartphone with a good level of accuracy
while tracking itsmovements, it is necessary to keep theGPS receiver always
ON; on the other hand, an active GPS receiver can consume most of the
battery of a smartphone. To solve this issue, we decided to implement a
multi-barrier activation approach.

The first activation barrier consisted of detecting if the user was cur-
rently driving.When the application is active, a service listens for an activity
change event generated by the Android OS. Activity detection is a service
provided by the Android OS which uses an integrated machine learning
model to detectwhether the smartphone is standing still or carried by a user
who is walking, biking, or driving by just analyzing the signal generated by
the IMUsensors of the smartphones. This approach ismore energy efficient
than other localization methods at the cost of a small activation delay. The
second activation barrier occurs when the user is driving close to a mon-
itored infrastructure. In this case, the application relies on the GPS receiver
of the smartphone, and it implements the following logic to detect if the user
is close: If a monitored infrastructure is reachable in less than 60 s, the GPS
receiver is left ON, and the current location of the device is collected every
5 s. Otherwise, the application will turn off the GPS module and will
schedule a new activation of theGPS receiver in t s. This t value is computed
based on the distance from the closest infrastructure.

The t value is a very conservative estimate, yet preliminary
experiments indicated a good trade-off between accuracy, energy con-
sumption, and computation capabilities. Finally, if the user is driving,
the location and speed reported by the GPS receiver indicate that a
monitored infrastructure is reachable in less than 30 s, and the accuracy
provided by the GPS receiver is less than 10 m the recording process can
start. The data generated by the GPS receiver, (timestamp, latitude,
longitude, speed, accuracy) the rotation vector (timestamp and rotation
quaternion) and the accelerometer (timestamp and x, y, z components of
the acceleration vector) are recorded independently at the maximum
sample rate allowed by the device. The accuracy of the GPS data was
measured by “GPS error” in the cases of the Uber and GoodVibrations
apps (uncontrolled ridesourcing and partially controlled datasets). The
SensorPlay app did not provide any metrics for GPS accuracy; Golden
Gate Bridge GPS errors averaging around 7.7 m and Ciampino the
average GPS error was about 4.3 m. Generally, GPS data is recorded
every second, while Accelerations and Rotation data rate can vary
depending on the specific device between 50 and 500 Hz.

To allow for the fastest possible recording, these data are initially
stored in memory and then moved to the storage of the device when the
data collection is over (or periodically to avoid filling up the memory).
To avoid losing measurements during the memory off load, the entire
collection process is multithreaded and based on synchronization
queues in a producer-consumer fashion. The new data is inserted into
dedicated queues (one for each sensor) and a writer thread is responsible
for moving the data from the queues to the physical storage of the device
when required. This minimizes the amount of code executed as a
response to a new data sample, while leaving the data in terms of
timestamps and values exactly as provided by the OS. Once the user
leaves the monitored area, a first check on the GPS trace is performed.
However, a driver could get really close to an infrastructure without
crossing it. To filter out these cases the application checks that the
recorded GPS trajectory intersects a set of checkpoints located on the
bridge. If this happens, the scan is ready for uploading, otherwise the
scan is discarded. Before uploading the collected scans to the Cloud, the
data is compressed and divided into smaller chunks to ease the upload
process. Finally, when the smartphone is connected to the Internet the
scans are uploaded to the Cloud and if the process is successful the
uploaded data is removed from the smartphone.
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Absolute mode shape identification methodology
The algorithmdetects the change inmagnitudeof knownmodal frequencies
with the position on the bridge, which is proportional to the AMS. For data
collection, vehicles carry smartphones that take acceleration and location
measurements. Since the signals are collected within moving vehicles, the
bridge vibrations are highly contaminated by the road profile and vehicle
dynamics. Furthermore, the low-quality smartphone sensors introduce
additional sampling errors and measurement noise. For these reasons, the
bridge vibrations are almost imperceptible in a single signal, however, by
averagingmany trips the spatial characteristics of the vibrations appear. The
averaging scheme is presented in Table 1 and summarized below.

By inspecting downsampled signals, we notice that some samples
contain exorbitant baseline drift or offsets. Such erroneous samples can be
treated in two ways: high-pass filtering or discarding. Due to the low reso-
lution of the smartphone accelerometers, the latter approach seems more
reasonable. In other words, a large baseline drift masks all higher frequency
contents in a low-resolution signal and therefore, filtering is ineffective. In
this study, an optional preprocessing step is introduced to automatically
detect and skip extremely nonstationary signals. The augmented Dickey-
Fuller test is performed on the signal and the test statistic value is checked
with a user-defined threshold and surpassing values point to a rejection
decision.

Consistent spatial features that cause impulses in the collected accel-
eration time series will affect the entire frequency spectrum and skew the
spatial average in the AMS identification process. Since the road profile is
unknown, this is a difficult obstacle to overcome and additional work in
signal processing or trip filtering needs to be done. However, through tests
on multiple bridges, we noticed there are consistent impulses in the accel-
eration time series upon entry and exit of the bridges due to the expansion
joints. For this reason, we recommend trimming the beginning of signals to
allow the vehicle vibrations from the impulse to dampen.

The aggregation process spatially averages frequency contents to
determine the relative magnitude differences at each location on the bridge.
To achieve this, the bridge is divided into overlapping segments; the width,
Δ, and segment centers distance, S, are two parameters of the method. The
synchrosqueezed wavelet transform converts each acceleration time series
to the time-frequency domain, and the instantaneous magnitudes are cal-
culated. Lastly, averaging the magnitudes in each segment, Bij, at the modal
frequencies of the bridge for all trips yields the AMS. Including a small
bandwidth, ϵ, around themodal frequency in the averaging process leads to
robust results on noisy datasets.

The method relies on the prior knowledge of the modal frequencies,
and for this study, the natural frequencies are determined in two different
ways. First, the frequencies are found using a traditional fixed sensor net-
work, the state of practice in SHM, which were used as a reference for

analysis. Second, the natural frequencies are found with the recently pro-
posed algorithmMPMF 36.Thegoal of determining the frequencies in such a
way is to demonstrate that all of the results in the work can be found only
using measurements obtained from passing vehicles. System identification
analyses for all bridges are discussed in Supplementary Note 3.

Bridge condition monitoring simulation
The goal of the simulation is tomimic the long-termmonitoring of a bridge
with mobile sensors, and detect system changes. The case study is a steel
truss bridge in Japan with a main span of 59.2 m. A 3D finite element (FE)
model is generated in SAP2000 and the accuracy of themodel is validated by
matching the operational modal characteristics with those found from real-
world instrumentation85, see Table S1.

In the FE model, two common and general damage scenarios are
considered: (a) a cross-sectional reduction in a critical element, and (b)
differential settlement on a terminal support. During testing, the simulation
was repeated for varying degrees of severity of settlements and element
stiffness reductions. Figure S1a denotes the truss element and supportwhere
the damages were imparted. In the analysis presented, the element stiffness
change was created by a cross-sectional area reduction of 50%, and for the
differential support settlement, the support was moved down by 10 cm.

Artificial SVTs were generated following a simplified vehicle bridge
interaction procedure86. In summary, this simulation method assumes the
masses of the vehicles are negligible compared to themass of the bridge, and
instead ofmodeling the physical interactions, the excitation is assumed to be
random and gaussian. The excitation was modeled with random impulses
applied at nodes along the span. SVT trips are created by taking the bridge
response of the bridge at the location of the vehicle and adding it to the road
profile at that location. This signal is used as an input to a quarter-carmodel.
The accelerations of the sprung mass are used as the artificial SVTs in the
analysis. Vehicles traversed the bridge at varying speeds from2 to 9m/s and
with Gaussian measurement noise with SNR of five. The low value for SNR
aims to replicate the noisy measurement of the mobile sensors.

The rate of SVT collected over a fixed time horizon is an important
factor as it influences the time needed by the algorithm to detect potential
changes in the estimated parameters and generally; i.e., a large number of
trips in a single day results in a fast identification of the changes compared to
a bridge with only a few passages per day. For this analysis, we have con-
sidered that it is possible to record 100 trips per day for the simulated bridge.
The annual average daily traffic of bridges in the United States, depending
on the rural or urban location of the bridge, is usually more than 10,000
vehicles per day. For instance, for Golden Gate bridge and Gene Hartzell
Memorial bridge, which are among the case studies of the present research,
the annual daily average is approximately 88,000 and 59,000 vehicles
per day, respectively. So, even if a small fraction of these vehicles are capable

Table 1 | Summary of the core methodology used for identifying absolute natural mode shapes

1. Depending on the axis of interest, corresponding raw acceleration signals ari ðtÞ are collected with smartphones: i = 1, 2,…,N.

2. Preprocessing: ari ðtÞ is downsampled to a desired frequency range, yielding ai(t). The downsampled signals are checked for stationarity using augmented Dickey-Fuller
test88 to filter out corrupted signals with baseline shifts or unreasonable variations.

3. (Optional) Depending on the direction of the vehicle motion (right-left or left-right) and in case that the inspected span is surrounded by expansion joints, a fractual value
α∈ [0, 0.2] is selected and the initial portions of the signals are trimmed: ai(t)≔ ai(tn): n > α × ∣ai(t)∣.

4. Synchrosqueezed wavelet transform is calculated using ai(t), resulting Tai
ðf ; tÞ, in which 0 ≤ f ≤ fNyq and fNyq is the Nyquist frequency defined by the sampling rate.

5. Tai
ðf ; tÞ is mapped into spatial coordinates using available time-stampedGPS coordinates (provided by the app), resulting Tai

ðf ; xÞ in which x ∈ [0, Lbr] is the longitudinal
position on the bridge with total length of Lbr.

6. Select values for bandwidth ϵ, spatial segment width Δ, and a spatial stride S.

7. Given a desired natural frequency fk, a series of frequency-space grids are defined as follows:

Bij ¼ Tai
ð½fk � ϵ=2; fk þ ϵ=2�; ½j ×S;maxfLbr ;Δþ j ×Sg�Þ for j = 1,…, ⌊(Lbr− Δ)/S⌋+ 1.

Bij contains wavelet amplitudes for signal ai(t) in a jth frequency-space grid. If ∣Bij∣ = 0, it is skipped.

8. The mean of amplitudes over all signals for each frequency-space grid is calculated: μj ¼ 1
N

PN
1 p : p 2 Bij .

9. Finally, an ordered set of μj for j = 1,…, ⌊(Lbr− Δ)/S⌋+ 1 presents the aggregated absolute spatial pattern of the bridge on frequency fk. For a fair choice of fk, this spatial
signature should converge to the absolute natural mode shape.
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of collecting data, it would not be significantly different from our
assumption.

Data availability
All data used to create Fig. 3 is available for download onDryad (https://doi.
org/10.5061/dryad.15dv41p49) as “Commodifying infrastructure spatial
dynamics with crowdsourced smartphone data,” and if used, must be cited
as seen here87.

Code availability
Code for this experiment will be available on Dryad (https://doi.org/10.
5061/dryad.15dv41p49) as a Jupyter Notebook, and is formatted to be used
in Google Colab for ease of implementation. The code reproduces the
Golden Gate Bridge Results for the controlled case.
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