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A robust poly-reference frequency-domain
identification method to extract dynamic properties
from vibration data

Sandro Diord Rescinho Amador® "™ & Rune Brincker?

When performing vibration tests on structural systems, engineers face the challenge of
extracting the dynamic properties from the measured data in an accurate and robust manner.
Though several methods exist for this purpose, in some circumstances, they fail to provide
clear estimates for these properties, particularly when applied to noise-contaminated data.
Here we propose a robust and accurate method formulated in frequency-domain modal
model for extracting dynamic properties from vibration data. The method is applied to three
application examples, namely the vibrations simulated with the aid of a finite element model
and the real-life vibration measurements of a platform specimen and of a full-scale concrete
heritage court building. Its performance is thereafter assessed by the so-called stabilization
diagrams, the relative error between estimated and exact properties, the modal assurance
criterion, and by comparing the synthesized frequency functions to their measured coun-
terparts. This assessment shows that the proposed approach tends to provide clearer and
more accurate identification results than those from the state-of-the-art identification
methods.
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tructural dynamics is a fundamental subject area that played

a very relevant role in the industrial modernization process

occurred in the last decades. This is due to the fact that both
theoretical and experimental structural dynamics cut across dif-
ferent areas such as civil, mechanical, electrical and aerospace
engineering. Thanks to the advancements in experimental struc-
tural dynamics over the last 50 years, cars, buildings, long span
bridges, airplanes, rockets, electric circuits, etc., are constructed
safer and with much better dynamic performance nowadays than
ever before. In this context, Experimental and Operational Modal
Analysis (EMA and OMA) are key analysis tools in determining
accurately the dynamic properties of structural systems by means
of vibration tests. The main goal of both EMA and OMA is to
extract the physics, i.e., the dynamic (or modal) properties of the
tested structural systems from the measurements acquired in
vibration tests. While in classic EMA, both the vibration responses
and the excitation forces are needed to extract this information, in
OMA technology, only the measured vibration responses are
required to estimate such properties.

The former is better suited to the analysis of vibration mea-
surements collected under laboratory conditions, ie., to
mechanical, electrical and aerospace structural systems, whereas
the latter is more appropriate to the analysis of large outdoor
structures such as civil engineering structures. When designing
structural systems that are inherently exposed to vibrations due to
their operating and/or surrounding environmental conditions,
engineers are challenged to accurately determine their funda-
mental dynamic properties by means of either EMA or OMA.
This information is crucial, among other purposes, to sub-
sequentely assess their structural performance, comfort and safety
under operating conditions, as well as to improve and optimize
their structural design. Over the last five decades, there have been
groundbreaking advancements in modern experimental structural
dynamics, namely in EMA and OMA.

In the late seventies, the Ibrahim Time Domain (ITD)}2 was
introduced to the modal analysis community as the first single-
reference Least Squares (LS) modal identification technique
capable of handling multiple output measurements at once. Later
on, the poly-reference LS Complex Exponential>* was invented.
Such an algorithm consists of a poly-reference LS modal identi-
fication technique, meaning that it is capable of taking into
account multiple input and multiple output measurements at
once in the identification process. Shortly after the invention of
the poly-reference LS Complex Exponential, the ITD was refor-
mulated into a poly-reference LS technique®. Though the ITD
and the poly-reference LS Complex Exponential were the first
poly-reference modal analysis algorithms ever invented, to this
very day, they are still regarded by many as some of the most
accurate and robust modal analysis algorithms available.

The invention of such time-domain poly-reference algorithms
unleashed a revolution in experimental dynamics that would
continue with the subsequent development of the so-called
subspace-based methods such as the Eigensystem Realization
Algorithm®8 and the Stochastic Subspace Identification
technique®10. Recently, around the mid-2000s, this revolution
would be consolidated with the formulation of the frequency-
domain poly-reference technique known as poly-reference Least
Squares Complex Frequency-domain (pLSCF)!1-12, The pLSCF is
nowadays deemed as a standard in EMA and OMA due to its
ability to provide very accurate estimates for the modal properties
and create clear stabilization diagrams that allow the physical
modal properties to be easily sorted out of the numerical ones.
Because the computation of the pLSCF normal matrices is time-
and resource-consuming, a fast implementation of the algorithm
can 1l)3e carried out using a strategy similar to that described in
ref. 1.

At around the same time as the invention of the pLSCF
technique, other achievements in non-parametric modal para-
meter estimation led to the consolidation of OMA as a reliable
modal analysis tool to estimate the dynamic properties of struc-
tural systems from output-only vibration measurements. The
most relevant of these achievements were the inventions of the
Complex Modal Indication Function'®!> and the Frequency
Domain Decomposition Technique!®-18, and the realization that
all the parametric poly-reference LS techniques initially for-
mulated for EMA can be perfectly extended to output-only modal
parameter estimation, i.e., to OMA!?, This realization allowed
engineers to perform vibration tests in very large structural sys-
tems in a much easier, cheaper, faster and more convenient
manner?). Moreover, the invention of OMA led to another
breakthrough in structural dynamics, which is the possibility of
automatically tracking the damage evolution in such structural
systems over their service lifetime.

The so-called vibration-based structural health monitoring,
among other benefits, allows minimizing the risks of struc-
tural and serviceability failures, as well as reducing the main-
tenance costs?1:22 by averting, for instance, unnecessary structural
inspections. The underlying idea of vibration-based structural
health monitoring is that, since the dynamic properties are
intrinsically related to the strength or stiffness of the monitored
structural systems, any change due to material degradation fati-
gue, etc., entails a change in the monitored dynamic properties. In
this context, accurate and robust modal parameter estimation
techniques play a crucial role in extracting the dynamic properties
from the vibration data continuously collected in a structural
health monitoring campaign. More recently, important achieve-
ments in non-linear modal identification algorithms, namely
with the invention of the non-linear LS identification techniques
such as the poly-reference Maximum Likelihood Based
algorithms23-2>, have occurred. These techniques have been
increasingly used in classic EMA to improve the precision of
estimates provided by the LS-based techniques when they are not
accurate enough. The idea is to use the estimates from, for
instance, a poly-reference LS-based algorithm as starting guess to
iteratively improve their accuracy?!-2°,

In this paper, a poly-reference parametric modal identification
technique is proposed. The approach consists of a poly-reference
Complex Frequency-domain method formulated in the Modal
Model, hence the acronym pCF, and is formulated in the fre-
quency domain based on the ITD principles. The basic idea
behind the ITD technique is to extract the dynamics properties by
comparing the time-domain free decay function evaluated at two
adjacent discrete time steps. The proposed pCF, on the other
hand, is derived by following a similar strategy, but using
frequency-domain functions as primary data. It is worth high-
lighting that, despite the similarity in terms of basic principle, the
invented pCF is completely original in that (1) it is formulated in
the frequency domain, and (2) it is derived based on the
Z-Transform of the time-domain free decay function with a
discrete-time shift. The advantages of the pCF with regard to
other existing frequency-domain techniques are surprisingly
outstanding. These advantages include, for instance, increased
robustness in sorting the physical modal properties from the
numerical ones and easy practical implementation.

In addition to the aforementioned benefits, the derivation of the
system matrices of the pCF technique opens the doors for the
development of other subspace-driven modal identification techni-
ques formulated in frequency-domain state-space model, as briefly
described in ref. 27. In order to illustrate its benefits from a practical
perspective, the performance of the pCF technique is herein assessed
by means of three application examples, e.g., a simulated input-
output and two real-life output-only vibration tests.
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Methods

In experimental modal analysis, the main goal is to extract the
modal properties from the vibration measurements collected in
vibration tests of structural systems. The modal properties
extraction (or modal identification) can be carried out either in
the time domain or frequency domain. In the former, a free decay
function is normally used as primary data. In this case, the modal
properties are computed basically by fitting an analytical model to
the free decay measurements. The impulse response function of a
structural system with general viscous damping in continuous
time containing the information of N; inputs and N,, outputs can
be modeled by the so-called time-domain modal model?® given
by

Y(t)_z¢yTe’“+¢* Hehit (1)

where («)T and (s)H denote the transpose and the complex con-
jugate transpose (Hermitian), respectively, and (s)" the complex
conjugate; t € R is the continuous time; n, is the number of
physical vibration modes, which corresponds to a model order
(i.e,, the number of physical modes plus their complex con-
jugates) of n = 2n; ¢, € CNo* ' and y, € CN*" are, respectively,
the mode shape and the modal participation factor vectors, and
A, € C the continuous-time poles, which are related to the nat-
ural frequencies in rads/s, w;, and damping ratios, &, as

A Al = ¢, £

i 7Y

1 -, @)

with j = /=1 designating the imaginary unit, and w; = 27f; the
circular natural frequency in rad/s which can be expressed as
function of the natural frequency in Hertz (cycles/s) f. The
impulse response matrix in continuous time, as in Eq. (1), can be
reformulated into a more general form to model either a time
delay or advance. If the latter is considered, Eq. (1) can be re-
written as

nc *

Y(t+7) =2 g9, + gyl 3)

i=
where 7 is a forward time shift in continuous time introduced in
the classic impulse response matrix to model a time advance with
respect to t. In practice, vibration tests are conducted in discrete
time, meaning that the vibration data is recorded with a sampling
interval, At. Therefore, if the modal properties are to be extracted
from the sampled vibration data, Eq. (3) needs to be re-written in
discrete time, yielding

nc
Y, = 121 (piyiTe/\,-(k+r)At + ¢ yH i kAt (4)

where the index k denotes a discrete time instant t = kAt at which
a continuous time signal is sampled and 7= rAt a discrete for-
ward time shift. Eq. (4) can be written in a compact matrix
equation, as

Y., = AT (5)

where @ € CNo*" is the mode shape matrix, A € C"*" is a
diagonal matrix containing the discreet-time poles, y, = ' and
I € CN™*" is the modal participation matrix. From Eq. (4), it is
straightforward to prove that such matrices are given by

=[¢ ¢ . 95 ] TN
= [)’1 o Y, yzc] e Gl ©)
A= diag([ﬂl y’f ey, ‘uzc]) e Cnrxn

where diag(e) denotes the diagonal matrix operator. The impulse
response model with a forward time shift, as in Eq. (5), can be
converted from the time to the frequency domain by making use

of the Laplace Transform, also known as S-Transform. Taking the

Laplace Transform of Eq. (5), yields
ZH(s) = @A [Is — A ] 'T" @)

which is so-called transfer function matrix with s = jw designat-
ing the Laplace domain variable, z= e%Af = ¢/¥At the Z-domain
variable, I € R"*" the identity matrix and

A =diag([h X - A, A eC™r (g

a dlagonal matrix containing the continuous time poles, A;, 1. E
(7) is better known in its partial fraction form

. </> i ¢ M)’

Z'H(s) = Z -, o ©)
which is the Laplace Transform of the 1mpulse response function
in partial form with a forward time shift as in Eq. (4). If one
considers the particular case of a zero forward time shift (e.g.,
r=0), Eq. (9) reduces to the so-called transfer function in Laplace
domain given by

A
H(s) =
O=Z it s-n

1

(10)

The impulse response function with a forward time shift, as in Eq.
(5), can also be converted to frequency domain by means of the
Z-Transform. By following an approach similar to the
S-Transform previously described, the following time-shifted
transfer function can be derived

Z’H(z) = ®A'[Iz — A]'TT (11)

which corresponds to the following function in partial fraction form

ZrH(Z) — % ¢iYiTlut ¢> *YzH(#t)
i=1 2 — Aul z—= A"lz
Egs. (11) and (12) are central in the formulation of the proposed
pCF detailed described in the next section. These equations follow
from the property of the Z-transform in which a forward time shift
of r in the time domain corresponds to a multiplication by 2" in the
frequency domain, i.e.,

(12)

—Transf

Z
Y, = OAFTTTT &7 2'H(z) = ®A[Iz — A]7'TT

The poly-reference Complex Frequency (pCF) technique (a
proposed approach). Despite the fact that derivation of the pCF
can be carried out both with the S- and Z-Transform, the deri-
vation with the latter is more obvious and straightforward, and
leads to a unique solution. The derivation of the pCF technique
with Z-Transform starts from the Z-domain transfer function
with a general time shift as in Eq. (11). Writing down such

equation for a set of n forward time shifts, i.e., for r =0, ..., n, the
following set of equations is obtained
H(z) = ®(Iz — A)'IT
zH(z) = ®A(Iz — A)~'TT
(13)
Z'H(z) = ®A"(1z — A)~'TT

Now, combining the obtained equations into a single matrix
expression, yields

H(z) ()]
zH(z) DA
=| . |[z- AT (14)
Z"H(z) A"
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or simply
H(z)
zH(z)

= Y[Iz — A]"'TT (15)

with

€ RNa(n+1)>< N,(n+1)

(16)
A"

At this point, it is worth highlighting that due to the merger of

Egs. (13) into (14), the dimensions of ® and A become, respec-

tively, N, x N,(n + 1) and N,(n + 1) x Ny(n + 1), which allows to
estimate (n + 1)N, vibration modes. Eq. (15) can be re-written as

zH(z) H(z)
Z2H(z) zH(z)
p! _ — AP =17 (17)
Z""H(z) Z"H(z)

Following a strategy similar to that used in the formulation of the
ITD techniquel:2, one can evaluate Eq. (17) for any neighboring

and
z,H(z;) H(z,)
z,H(z;) z,H(z,)
y! , —AYP! =17 (19)
Z}t H(z,) Z'H(z,)

where z, = ¢ = %A and z, = %A = 9% denote the
Z-domain variable evaluated, respectively, at the frequency lines
w, and w;,. Combining Eqs. (18) and (19), yields
ZbH(Zb) - ZaH(Zu) H(Zb) - H(Za)
ZiH(Zb) - ZiH(Za) ZhH(Zb) - ZaH(Za)
y! =AY~
zpH(z,) — 2z H(z,)
(20)

z,"'H(z,) — 23" H(z,)

From this point onwards, it is straightforward to formulate an
eigenvalue problem based on Eq. (20). This is achieved, first, by
writing down such equation for all the N discrete frequency lines
in the frequency range of DC (w,) to the Nyquist frequency (wa),
ie, for w, and w, ranging, respectively, from w, to Wy, -1 and
from w; to Wy, - Then, combining the obtained equations corre-
sponding to each pair of evaluated frequency values in a single
matrix equation gives

frequency lines w, and w, (Vw, > w,) separated by a single dis- lI/*IB1 = AlII*IBO (21)
crete frequency step Aw, giving
with
H(z,) — H(z,) H(z,) — H(z)) H(ZNf) - H(ZNf—l)
zH(z,) — z)H(z,) z,H(z,) — z;H(z)) ZNIH(ZNI-) - ZfolH(Zfol)
B, — € RNo(+Dx N(N;=1) (22)
ZH(z,) — 2H(z,) BH(;) — HE) o 2 Hiey) - 2 Hiy )
and
z,H(z,) — z)H(z,) z,H(z,) — z,H(z)) ZNfH(ZNf) - szle(Zfol)
z1H(z,) — z5H(z,) zH(z,) — z{H(z)) zlzfo(sz) - zlzvf—lH(ZNf—l)
B] — ’ c RNO(rH—l)xN,-(Nf—l) (23)
2T H(z)) — z20T H(z,) 25T H(z,) — 20T H(z,) 2y Hzy) — 2§, H(zy, 1)
designating the system matrices computed solely from the mea-
sured Frequency Response Function (FRF) and the Z-domain
variable evaluated at all the frequency lines in the frequency range
H(z,) H(z,) of DC to the Nyquist frequency wy, . Itis worth noting that B, is
z,H(z z
g ¢ forward shifted in the time domain by At with regard to B, and
. z,H(z,) . z,H(z,) - that Eq. (21) can be solved for ¥ and A if it is post multiplied
¥ : —A¥ : =Tr (18)  ejther by B} or BY, giving
2" H(z,) Z"H(z,)

BB/ (B,B!) " = wvay! (24)
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or
B,B!(B,B/) " = way! (25)

However, similarly to the ITD technique, rather than considering
either of these solutions alone, the Double Least Squares
approach!®2? is used to formulate the following eigenvalue pro-
blem

B=vYAY! (26)
with
B— (BIB{E (B,BI) ™' +B,BY (BOB‘E)_I) € RN DN, (1)

27)

1
2

computed as a linear combination of Egs. (24) and (25). Once the
eigenvalue problem (26) is solved, the mode shape matrix, ®@, is
determined as the first N, rows of ¥ and the continuous time
poles, A;, are retrieved from the diagonal of A.

Implementation and stabilization. Because By and B; in Eq. (27)
are complex matrices, the estimation of the modal parameters
according to Eq. (26) yields mode shape vectors and poles not
occurring in complex conjugate pairs. If modal shape vectors and
poles occurring in complex conjugate pairs are preferred, the
modal properties should then be computed using the following
expression

B, = WAY ™! € RN D N(m+D) (28)

where B,, is a real matrix given by
1

Bre:2

(Re(B,BY) (Re(B,B)) ™" + Re(B,B) (Re(B,B)) ')
(29)

with Re(e) denoting the real part of a complex quantity. For
implementation purposes, it is convenient to rewrite matrices By
and B, in Egs. (22) and (23), respectively, as

z Z
B, = ® H(z)) - ® H(z,)
4 =
and
zi z5
B, = ® H(z)) — ® H(z,)
2+ 21

ZONf Z?\If—l
® H(ZNf) - ® H(ZNf—l) (30)
Zzyilf Z?\If—l
le\lf le\lf—l
: ® H(ZNf) - ® H(ZNf—l) (31
ZKITI Z?I;rll

Measured FRF H(z) and Z-domain values z/ evaluated at
the measured frequency lines with increasing time shifts, »

=~

Computation of matrices Bg and B1 according
to Egs. (30) and (31).

=~

Computation of matrix Bye according to Eq. (29).

= _~

Eigenvalue decomposition of matrix Bye according to Eq. (28),
and estimation of eigenvectors W and discrete-time eigenvelues A.

= _~

Estimation of the mode shape matrix, ®, from the
eigenvectors ¥, and of the continuous-time poles, 4;,
from the discrete-time eigenvalues A.

~~
< -

natural frequencies, f;, and damping ratios, ¢;, and the corresponding
mode shape vectors, ¢;.

pCF algorithm

Fig. 1 Identification flowchart. Major steps of the identification process
with the proposed poly-reference Complex Frequency (pCF) algorithm
from the measured Frequency Response Function (FRF).

where ® denotes the Kronecker product. It is well-known, for
instance, from refs. 1113, that real-valued eigenvalue problems, as
in Eq. (28), yield more stable estimates for the modal properties
over the different model orders. In the case of the pCF technique,
in particular, this is explained by the fact that the real-valued
matrix B, possesses better numeric condition than its complex
counterpart B. In modal analysis, a common practice is to plot
the so-called stabilization diagram to distinguish the physical
modal properties from the numerical ones. An efficient way of
constructing a stabilization diagram with the proposed pCF
identification technique consists of computing the system
matrices B, and B; for the maximum model order, n_,,,
according to Eq. (28).

Once these matrices are computed, the eigenvalues, A,,, and the
eigenvectors, ¥,,, can be computed for increasing model order n,
ie, for n=1,... ,n,,.. Since the pCF algorithm uses the full
FRF matrix in the computation of system matrices By and B, the
estimation of the modal properties with such an algorithm might
be time-consuming. In order to improve the computational
performance of the algorithm, one should consider using the
approach driven by the Discrete Fourier Transform described in
ref. 13, A flowchart illustrating the main steps of the identification
process with the pCF algorithm is shown in Fig. 1.

Results

In order to assess its accuracy and robustness, the pCF approach
is applied to three application examples, namely, a simulated
input-output vibration test of a T-shaped steel structure and
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Fig. 2 Details of the T-shaped structure and its simulated FRF. a Dimensions and measured Degrees of Freedoms, b Finite Element model used to
generate the Frequency Response Function (FRF) matrix by means of state-space simulation; and ¢ element (10,5) of the FRF matrix H(w) wherein the blue
solid line corresponds to the exact FRF, the red solid line to the FRF contaminated with noise, and the solid green line to the noise STandard Deviation

(STD).
Table 1 Exact modal properties computed from the finite element model of the T-shaped structure
Mode Type Natural frequency (f) [Hz] Damping ratio (&) [%] Modal mass (m;) [Kg]l
1 1st bending mode along X direction (BX1) 10.1882 1.0 3.2187
2 1st bending mode along Y direction (BY1) 10.4626 1.0 3.1178
3 1st torsional mode (T1) 28.8591 1.0 0.1726
4 2nd bending mode along X direction (BX2) 59.10m 1.0 11040
5 2nd bending mode along Y direction (BY2) 92.8089 1.0 0.1874
6 3rd bending mode along X direction (BX3) 145.9538 1.0 0.2968
7 1st bending mode along Z direction (BZ1) 182.8250 1.0 0.0659
8 3rd bending mode along X direction (BY3) 250.1182 1.0 0.0815
9 4th bending mode along X direction (BX4) 318.4404 1.0 0.0524
10 4th bending mode along Y direction (BY4) 340.7061 1.0 0.0704

output-only vibration tests of a steel specimen and of a 15-storey
reinforced concrete building. The analysis performed, as well as
the results obtained from such tests, are described as follows.

Application example 1: Simulated input-output vibration test
of a T-shaped structure. The first application example used to
demonstrate the robustness of the pCF algorithm consists of
a EMA simulated with a Finite Element (FE) model of a T-
shaped structure. The dimensions of such structure and the
position of the sensors considered in the simulated EMA are

shown in Fig. 2a, and the corresponding FE model with a total of
240 Degrees Of Freedom (DOFs) is depicted in Fig. 2b. The FE
model comprising 40 beam elements with 6 DOFs per node (e.g.,
three translations and three rotations) was clamped at the
bottom-most node. The exact first 10 eigenfrequencies and
damping ratios used in the simulated EMA are summarized in
Table 1, and the corresponding exact mode shape vectors are
shown in Supplementary Fig. 1 and Supplementary Table 1.
The structural damping was modeled as the special case of
proportional damping by setting the damping coefficients of all
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Fig. 3 Diagrams constructed from the noise contamineted FRF of the T-shaped structure with a SNR of 20 dB. a, b Poly-reference Least Squares
Complex Frequency (pLSCF) and ¢, d poly-reference Complex Frequency (pCF) stabilization plots constructed from the noise contaminated Frequency
Response Function (FRF) with a Signal-to-Noise Ratio (SNR) of 20 dB by identifying models with order, n, ranging from 1 to 100. b, d Details of the two

closely spaced modes around 10.5 Hz.

modes equal to 1%. In order to simulate the vibration responses,
the T-structure was excited independently at DOFs S01, S02, S03,
S04, S05, S06, SO7 and S08, shown in Fig. 2a with a white
Gaussian noise. The simulated responses were measured in
acceleration at all DOFs, yielding a FRF matrix with 10 rows and
8 columns. Assuming that the two beams are rigid along their
neutral axes, i.e., that there is no axial deformation, the measured
outputs are enough to yield the modal configurations of the first
10 vibration modes of the T-structure. The exact FRF matrix was
computed by means of the frequency-domain state-space
formulation in the frequency range of 0-400 Hz. The resulting
FRF matrix was evaluated at a total of 1024 frequency lines with a
resolution of 390.625 mHz.

Afterward, the simulated FRF containing only the contribution
of the first 10 vibration modes was contaminated with white noise
sequences with three different values for the standard deviation to
mimic FRFs estimated in real vibration tests. Noise standard
deviations of 1.0%, 0.01% and 0.0001% were used to yield noise-
contaminated FRFs with Signal-to-Noise Ratios (SNRs) of 20, 40
and 60 dB, respectively. This was achieved by adding a complex
random number to the FRF at each frequency line. This number
was computed such that its amplitude was given as a random
number of a normal distribution with zero mean and the
considered standard deviation times the maximum absolute value
of the FRF, and its phase was a uniform random number between
0 and 2. In the following, the identification results obtained with
the pLSCF and pCF techniques from the noise-contaminated FRF
with an SNR of 20 dB are presented. The results from the FRFs

contaminated with SNRs of 40 and 60dB are shown in
Supplementary Figs. 2 and 3. Figure 2c¢ shows the element
(10,5) of the noise-contaminated FRF matrix with an SNR of
20 dB, its corresponding exact counterpart and its noise standard
deviation.

Next, the pLSCF and pCF methods were applied to the noise-
contaminated FRF matrices. The pLSCF technique is known for
being a very accurate and robust frequency-domain identification
algorithm. Hence it is deemed nowadays as a standard modal
identification approach by the modal analysis community and is
commercialized in several modal identification software. This
accuracy and robustness allow for the creation of clear
stabilization diagrams that facilitate the identification of the
physical modal properties. Therefore, the pLSCF algorithm is
used as a reference in the three application examples presented in
this paper. In order to sort out the physical modal properties from
the numerical ones, stabilization diagrams were constructed with
both techniques by identifying models with order, n, ranging
from 1 to 100. The stabilization diagrams constructed with pLSCF
and pCF are shown in Fig. 3a, b and in Fig. 3¢, d, respectively,
wherein the vertical solid red lines indicate the natural
frequencies automatically identified with the hierarchical cluster-
ing algorithm described in refs. 20-22. Figure 3a, c presents the
identification results in the frequency range of 0 to 400 Hz, while
Fig. 3b, d shows the details of the closely spaced modes around
10.4 Hz.

Comparing the results shown in Fig. 3a, b to those depicted in
Fig. 3¢, d, it becomes clear that the pCF performs as robust as the
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Fig. 4 Results obtained from the vibration data of the T-shaped structure. Measured and synthesized Frequency Response Function (FRF) matrix H(w):
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those estimated with the poly-reference Least Squares Complex Frequency (pLSCF) technique, and d MAC between the FE modal vectors and those
estimated with proposed poly-reference Complex Frequency (pCF) approach from the noise-contaminated FRF with a Signa-to-Noise Ratio of 20 dB.

pLSCF algorithm. The natural frequencies, damping ratios and
modal participation factor vectors automatically identified with
the aforementioned hierarchical cluster algorithm from the set of
estimates obtained with both methods were subsequently used to
compute the mode shape vectors by means of the so-called Least
Squares Frequency Domain (LSFD) algorithm?!:2>30. The
computation of the mode shape vectors with such an algorithm
was carried out with no upper and lower residuals since there is
no influence of out-of-band modes in the frequency range of
interest. Finally, all the estimated modal properties were used to
synthesize the FRF matrix. In Fig. 4, elements (10,8) of the FRF
matrices synthesized from the pLSCF and pCF estimates are
compared to their exact counterparts in terms of phase (Fig. 4a)
and magnitude (Fig. 4b).

By comparing the results shown in such figures, it is clear that
the proposed pCF technique performs as robustly as the pLSCF
approach in terms of input-output broad band modal identifica-
tion, even when dealing with very closely spaced modes. With
regard to the mode shape vector estimates, the proposed pCF
provided slightly better accuracy than the pLSCF technique,
particularly in the estimation of the second modal vector. This is
verified in Fig. 4c, d, where the Modal Assurance Criterium
(MAC) between the FE mode shape vectors and their estimates

from both techniques are shown. The pCF also performed as
robustly as the pLSCF approach when applied to the noisy FRFs
with SNRs of 40 and 60 dB, as shown in Supplementary Figs. 2
and 3. The natural frequencies and damping ratios estimated with
pLSCF and pCF techniques are summarized in Table 2. In this
table, it is also shown the accuracy of the estimates provided by
both techniques in terms of relative error. By comparing these
results, one verifies that the pCF provided estimates for the
natural frequencies and damping ratios that are in good
agreement with their exact counterparts. Although the relative
error of the pCF estimates for the damping ratios are slightly
higher than those of the pLSCF technique, they are still
reasonably close to the exact ones.

Application examples 2: Output-only vibration test of a plat-
form specimen. The second application example consists of the
OMA of two independent steel platform specimens shown in
Fig. 5a.

The specimens were used in a previous study to investigate the
coupled dynamic behavior of offshore oil platforms when they are
connected by a bridge31:32, Each platform comprises one 5 mm-
thick steel plate and four steel columns with squared cross
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Table 2 Results obtained with the poly-reference Least Squares Complex Frequency (pLSCF) and the proposed poly-reference
Complex Frequency (pCF) for the T-Structure
Mode pLSCF estimates pCF estimates
f,- Rel. error fi Rel. error f,- Rel. error E,» Rel. error
(Hz) (% % 103) (%) (%) (Hz) (% % 103) (%) (%)
1 10.192 33.46 0.94 52.78 10.189 3.71 0.92 5415
2 10.459 36.35 0.78 61.11 10.463 0.10 0.62 68.95
3 28.861 5.97 0.96 51.90 28.857 8.20 0.95 52.35
4 59.105 7.4 0.98 5114 59.098 5.43 0.94 53.01
5 92.806 3.40 0.99 50.33 92.802 7.03 0.89 55.71
6 145.953 0.88 1.00 50.10 145.940 9.30 0.86 56.99
7 182.822 1.42 0.99 50.29 182.821 222 0.90 55.07
8 250.114 172 1.00 50.24 250.104 5.72 0.86 57.25
9 318.448 2.46 1.00 50.24 318.419 6.62 0.84 58.14
10 340.720 414 0.99 50.39 340.676 8.83 0.71 64.57
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Fig. 5 Setup adopted in the vibration test of the steel platform specimens. a Photo of the real platform specimen, b dimensions (in millimeters) of the
top-site of the steel platform specimens, excitation forces, sensors' positions and measurement directions.

sections placed 50 mm away from the edges of the top plates. The
top-site steel plates are squared with dimensions of 300 x 300 and
400 x 400 mm, as indicated in Fig. 5b. The steel columns, which
are clamped to the steel plates at the top and to a stiff wooden box
at the bottom, are 600 mm high and have squared cross sections
5mm wide. The vibration responses in acceleration were
measured at a total of 6 DOFs, three of which were measured
on the platform with a smaller plate and three on the bigger one,
as also indicated in Fig. 5b.

The two steel platforms were randomly excited at six different
positions (indicated by the blue arrows in Fig. 5b) by a pneumatic
actuator whose airflow was instantaneously adjusted by valves
actively controlled by an algorithm. The excitation signals used to
control each valve were independently generated by the algorithm
with flat spectral densities ranging from 2 up to 20 Hz to secure a
proper excitation of the first five modes. The vibration responses
due to the airflow excitation were measured in the acceleration
with HBK accelerometers (piezoelectric CCLD with TEDS, with a
sensitivity of 100 mV/g) with a sampling rate of 1652.9 Hz27-33. A
total of 164,993 time samples were acquired in the output-only
vibration test, which corresponds to a measurement duration of
approximately 1 min and 40s. Afterward, the acceleration time
series underwent a signal processing step to estimate the so-called
Half Spectrum (HS) matrix S} (w).

To achieve this goal, they were de-trended, filtered with an 8th
order lowpass Chebyshev Type I filter and resampled with a
sampling frequency of 68.8705 Hz. Finally, the HS matrix was
computed by taking the Fourier transform of the positive part of

the Correlation Function (CF) matrix estimated with 1024 time
lags. The estimation of the HS matrix was carried out by applying
an exponential window with a decay rate of 95% to the positive
part of the CF function to minimize the leakage effect on the
estimated HS. Once computed, the HS matrix with dimension 6 x
6 x 513 was used input data both by the pCF and the pLSCF
algorithm and the CF matrix by the ITD technique. In order to
facilitate the identification of the physical modes of the platforms,
stabilization diagrams were constructed with the pCF and the
pLSCEF by identifying models with order ranging from 1 to 60 and
with the ITD technique by varying the dimensions of the system
matrices from 1 to 60. Figure 6 shows the stabilization diagrams
constructed with ITD, pLSCF and pCF techniques. The
identification of the physical modes in such diagrams was again
carried out by means of a hierarchical cluster algorithm.

These modes are indicated by the vertical solid red lines in
Fig. 6. Comparing the results shown in Fig. 6, it is obvious
that the pCF provided clearer stabilization plots whose stable
poles matched the peaks of the spectral density singular values
(estimated with the classic Frequency Domain Decomposition
technique!”) shown in the background solely for comparison
purposes. The estimates for the mode shape vectors computed
with ITD, pLSCF and pCF are compared in terms of MAC with
the estimates from an FE model of the platforms in Fig. 7. In
these correlation analyses, the results obtained with the FE model
of the two platforms shown in the Supplementary Fig. 4 are used
as reference modal properties. As seen in Fig. 7a-c, the pCF
estimates for the first 6 six vibration mode shapes are slightly
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Fig. 6 Stabilization diagrams constructed to estimate the modal properties of the platform specimens. Results obtained with Ibrahim Time Domain
(ITD) (a-c), poly-reference Least Squares Complex Frequency (pLSCF) (d-f) and poly-reference Complex Frequency (pCF) (g-i) from the vibration
responses of the two steel platform specimens by identifying models with order ranging from 1to 60, and details of the closed spaced modes automatically

identified around 6.7 Hz (b, e, h) and 8.5 Hz (¢, f, i).

better correlated with those from the FE model than those
computed with ITD and pLSCF.

Aiming at assessing the accuracy of the modal parameter
estimation obtained with the three identification techniques, the
traces of the synthesized HS matrices are compared to that of the
measured HS in terms of magnitude (Fig. 7d) and phase (Fig. 7e).
Comparing the traces synthesized from the estimates of each
technique to their measured counterpart in such figures, it is clear
that the pCF provided very accurate estimates for the modal
properties of the platform specimens. The estimates for the natural
frequencies and damping coefficients computed with ITD, pLSCF
and pCF are summarized in Table 3, and the corresponding mode
shape vectors are shown in Supplementary Figs. 5-7. The mode
shapes shown in such figures were plotted with the aid of slave DOFs
under the assumption that the top plates on both platforms behave as
rigid bodies. By comparing the results shown in Table 3 and
Supplementary Figs. 5-7, one verifies that the pCF approach provided
estimates for the modal properties of the platform specimens that
match those obtained with the ITD and pLSCF approach.

Application examples 3: Output-only vibration test of a 15-
storey reinforced concrete building. The third application
example comprises the vibration responses of the Heritage Court
Tower (HCT) (depicted in Fig. 8a, b), which are used as real-life
OMA examples. The HCT is a relatively regular 15-storey rein-
forced concrete shear core building located at the corner of
Hamilton and Robson in Vancouver, British Columbia, Canada.
Figure 8a shows the northern and Fig. 8b the eastern facade of the
building. The HCT vibration measurements are a well-known set
of data in OMA literature. It is also well-known in the modal
analysis community for being a difficult multi-dataset application
example because is based only on two reference sensors3’. The
original publication of the ambient vibration test of the HCT is
found in ref. 34, and the full OMA of the data acquired in such
test was presented in the same year of this publication in ref. 1°,
The HTC test is also one of the examples in ref. 1%, and the data is
a part of the associated Matlab toolbox>?,

A detailed description of the ambient vibration test of the HCT
is found in APPENDIX B of ref. 1°. The HCT data comprise a
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Table 3 Natural frequencies (f,.) and damping coefficients
(2’,-) of the platform specimen estimated with Ibrahim Time
Domain (ITD), poly-reference Least Squares Complex
Frequency (pLSCF) and poly-reference Complex Frequency
(pCF)

Mode ITD pLSCF pCF

ffHD) &) f(HD §(%) fi(H) & (%)
1 6.6702 0.883 6.6952 0.949 6.6912 0.71
2 6.7535 0.552 6.7365 0.468 6.7368 0.497
3 8.4829 0.554 8.5022 0.514 8.4965 0.577
4 8.5899 0.737 8.6003 0.578 8.5974 0.594
5 10.8611 0.382 10.8514 0.267 10.8642 0.445
6 15.1008 0.507 15.0980 0.431 15.0873 0.555

total of four datasets. The first contains the data of only six
measurement channels, and the remaining datasets gather the
data of eight channels. Eight force balance accelerometers were
available for the ambient vibration test, two of which were used as
reference, whereas the remaining ones were used as roving
sensors. The former were mounted on the 14th (and second

topmost) floor and kept at the same position throughout the test.
The latter, on the other hand, were conveniently moved from
dataset to dataset so that the vibration responses of a total of 30
DOFs were measured along the height of the structure.
Acceleration responses of three DOFs were measured on every
second floor, beginning from the roof of the uppermost
penthouse down to the second floor. Figure 8c shows a detail
of the 14th floor where the reference sensors were mounted, and
Fig. 8d depicts the typical sensors’ locations and measurement
directions on every second floor. All datasets were acquired with a
sampling rate of 40 Hz for approximately 5 min and 28 s. In order
to estimate the first eight vibration modes, all datasets were
filtered with an eight-order Chebyshev type I lowpass filter with a
cutoff frequency of 8 Hz and resampled with a sampling rate
of 10 Hz.

Once conveniently processed, the measured acceleration
responses were used to estimate the HS matrix, Sj},(w), which
replaces the FRFs in the case of OMA. The non-parametric
estimation of HS from vibration response measurements is
described in several publications, for instance, in refs. 121921, The
benefit of using the HS in OMA is that it can be parameterized in
the same way as the FRF!1%19:36, and, therefore, it can be used as
input data by all the frequency-domain parametric modal
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Fig. 8 Heritage Court Tower in Vancouver, Canada. a Northern and b eastern facades of the 15-storey reinforced concrete building, ¢ detail of the 14th
floor where the reference sensors were placed and d typical sensors’ locations and directions on every second floor.

identification techniques initially designed for EMA. The
estimation of the HS was basically carried out in three steps.

First, the positive CFs were estimated from the filtered
acceleration responses for a total of 1024 time lags in order to
yield accurate HS estimates. Afterward, an exponential window
with a decay rate of 99.999% was applied to the resulting CF
matrices in order to minimize the leakage and the influence of the
noise tail. Finally, the HS of each dataset was computed by taking
the Fourier Transform of the windowed CFs. This yielded HS
matrices with a total of 513 frequency lines with a frequency
resolution of 39.216 mHz.

The pLSCF and pCF techniques were then applied to the HS
matrix estimated from dataset four, which is regarded as the most
difficult among all the acquired datasets due to the weak ambient
excitation at the time of the test. Stabilization diagrams were
constructed with both techniques from the vibration responses of
all four datasets to distinguish the physical modal properties from
the numerical ones. Figure 9a, b shows the diagrams constructed
from the vibration responses of the fourth dataset by identifying
models with order, #, ranging from 1 to 60, wherein the vertical
solid red lines indicate the identified natural frequencies. The
light gray lines in the background of such figures are the singular
values obtained by computing the singular value decomposition
of the spectral density matrix!? at each frequency line. These lines
are plotted merely to confirm that the identified natural
frequencies are physical. The stability criteria used in the
diagrams of Fig. 9a, b were: 1% for natural frequencies, 7.5%
for damping ratios and 5% for mode shape vectors.

By comparing such figures, it is noticed that a much clearer
diagram was obtained with the proposed pCF algorithm. The
pCF method has the interesting ability of providing negative
damping ratio estimates for the non-physical poles, which makes
it easy to exclude them from the set of estimated modal

12

properties before plotting them. Another distinguishing char-
acteristic of the pCF is that the physical modal properties tend to
remain fairly stable for increasing model orders. Similarly to the
previous application example, the natural frequencies, damping
ratios and mode shape vectors identified from dataset 1 with
both methods were then used to compute the modal participa-
tion factor vectors by means of the LSFD algorithm?>. The
computation of such vectors was carried out with the upper and
lower residuals to minimize the influence of the out-of-band
vibration modes.

Once the modal participation factor vectors were estimated,
they were used to synthesize the HS matrix (S;;(w)) using the

modal model with upper and lower residual terms?!-23. In Fig. 10,
the traces of the HS matrices synthesized with the pLSCF and
pCF estimates are compared to the trace of the measured HS
matrix both in terms of magnitude (Fig. 10a) and phase (Fig. 10b).
Comparing the results shown in such figures, it becomes clear
that the pCF technique provided clearer estimates for the modal
properties of the HCT than the pLSCF approach. Similar results
were obtained from the remainder of the datasets, as summarized
in Table 4. These results show that the pCF approach provided
estimates for the modal properties of the HCT that are fairly
similar to those of the pLSCF approach. The Stabilization
diagrams constructed from datasets 1, 2 and 3 are shown in
Supplementary Figs. 8a, b, Supplementary Figs. 9a, b, and
Supplementary Figs. 10a, b, respectively, where the (a) panels in
these figures depict diagrams constructed with the pLSCF
technique and the (b) ones show the diagrams created with the
proposed pCF. The results synthesized by these diagrams
corroborate the tendency of the pCF method to provide estimates
for the modal properties in a more robust fashion than the pLSCF
approach, regardless of the model order utilized in the
identification process.
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reference Complex Frequency (pCF).
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Table 4 Poly-reference Least Squares Complex Frequency (pLSCF) and poly-reference Complex Frequency (pCF) estimates

obtained from all datasets acquired in the vibration test of the Heritage Court Tower

Technique Mode Dataset 1 Dataset 2 Dataset 3 Dataset 4 Average

fiHD G0 fHD GO fHD L) fHD L) g (D (%)

pLSCF 1 1.227 1.068 1.231 1.897 1.234 1.087 1.220 1.715 1.228 1.442
2 1.289 1186 1.289 1.270 1.290 1.043 1.284 1.760 1.288 1.315
3 1.448 1.487 1.461 1.750 1.456 0.820 1.464 0.960 1.457 1.254
4 3.862 1.512 3.880 1.275 3.875 1.305 3.861 1.053 3.869 1.286
5 4.249 1186 4.254 1.625 4.260 1.209 4.264 1.230 4.257 1.313
6 5.396 1.442 5.406 0.868 5.339 0.7M 5.347 1.728 5.372 1187
7 6.424 1138 6.432 0.955 6.369 1.065 6.420 1.298 6.41 ma
8 - - - - - - 7.557 0.802 - -

pCF 1 1.226 0.937 1.230 1.628 1.233 0.957 1.221 1.645 1.227 1.292
2 1.288 m4 1.287 1.088 1.291 1.003 1.297 1.074 1.291 1.070
3 1.448 1.237 1.455 1.276 1.457 0.741 1.450 0.935 1.452 1.047
4 3.866 1.285 3.875 1.229 3.873 1.223 3.869 1135 3.871 1.218
5 4.247 1116 4.260 1.445 4.258 1.236 4.279 0.946 4.261 1186
6 5.382 1.486 5.397 171 5.346 2.054 5.358 1546 5371 1.564
7 6.425 0.636 6.426 0.835 6.381 1.054 6.403 0.783 6.409 0.827
8 7.581 0.933 7.582 0.518 7.563 0.183 7.506 0.792 7.558 0.607

Moreover, the results summarized in Table 4 also show that the
proposed pCF algorithm provided estimates for the first eight
modes of the HCT, while only the first seven vibration modes
were identified with the pLSCF technique. The global mode shape
configurations of the HCT estimated with the pLSCF method are
shown in Supplementary Fig. 11, whereas the global mode shapes
estimated with the pCF approach are illustrated in Supplementary
Fig. 12. These global mode shapes were estimated by following
the classic merging approach described, for instance, in refs. 2137,
i.e., by merging the mode shape parts with the aid of reference
sensors, which are common to all datasets. Comparing the mode
shape configurations shown in such figures, it is observed that the
pCF method provided mode shape estimates that are very similar
to those estimated with the pLSCF approach.

Conclusion

A poly-reference frequency-domain modal identification techni-
que is proposed in this paper. Such an approach is formulated
using a frequency-domain function (e.g., the FRF or HS) in
Z-domain modal model. The underlying idea behind its for-
mulation is to estimate the modal properties by comparing the
frequency-domain function evaluated at two neighboring fre-
quency lines. By following this strategy, two system matrices can
be computed solely from the measured frequency-domain
vibration data and the Z-domain variables. Once such matrices
are computed, they are used to formulate an eigenvalue problem
that, in turn, is solved to compute the modal properties. The
method yields very clean stabilization diagrams, facilitating the
task of identifying the physical modal properties of the tested
structural systems. This robustness follows from the fact that the
pCF algorithm tends to yield numerical poles with negative
damping ratios, facilitating their removal from the stabilization
diagrams and, thereby, the identification of the physical modal
properties.

The proposed technique was compared to the commercial
pLSCF method, which is nowadays regarded as a standard in
frequency-domain modal parameter estimation due to its ability
of providing clear stabilization diagrams and accurate estimates
for the modal properties. This comparison was carried out by
means of three application examples: a simulated EMA and two
real-life OMA. In the first application example, the pCF provided
very clear stabilization diagrams even in the presence of very

close-spaced vibration modes and highly noise-contaminated
FRFs. In the last two real-life output-only examples, the proposed
method provided much clearer diagrams than the classic pLSCF
technique, which allowed for a robust and accurate identification
of the physical dynamic properties of the tested structural
systems.

Data availability

The vibration data of the HCT used as real life application example can be downloaded at
https://brincker-monitoring.com/oma-toolbox/. The vibration response data of the steel
platform specimens used in the second application example is available from the first
author upon request. The FRF data used in the first application example can be simulated
by means of the frequency-domain state-space model with the properties shown in
Table 1 and Supplementary Table 1.

Code availability

The application examples presented in this paper were elaborated with the signal
processing tools found in Prof. R.B.’s OMA toolbox, which can be downloaded at https://
brincker-monitoring.com/oma-toolbox/. Regarding the code related to pCF
methodology, the authors are currently pursuing IP rights. Once this process is complete,
the code will be made available upon reasonable request.
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