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Crowdsourcing bridge dynamic monitoring with
smartphone vehicle trips
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Monitoring and managing the structural health of bridges requires expensive specialized

sensor networks. In the past decade, researchers predicted that cheap ubiquitous mobile

sensors would revolutionize infrastructure maintenance; yet extracting useful information in

the field with sufficient precision remains challenging. Herein we report the accurate

determination of critical physical properties, modal frequencies, of two real bridges from

everyday vehicle trip data. We collected smartphone data from controlled field experiments

and uncontrolled Uber rides on a long-span suspension bridge in the USA (The Golden Gate

Bridge) and developed an analytical method to accurately recover modal properties. We also

successfully applied the method to partially-controlled crowdsourced data collected on a

short-span highway bridge in Italy. Further analysis projected that the inclusion of crowd-

sourced data in a maintenance plan for a new bridge could add over fourteen years of service

(30% increase) without additional costs. Our results suggest that massive and inexpensive

datasets collected by smartphones could play a role in monitoring the health of existing

transportation infrastructure.
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Mobile sensors could reform the way we measure infra-
structure health. Smartphones contain dozens of sen-
sors that are carried by almost 50% of the population

globally1. Analyses of crowdsourcing networks have uncovered
truths about the social, economical, civil, and technological
systems we rely on in an urban environment, e.g., quantifying
urban human mobility2–4, understanding the perception of built
environment5, modeling and predicting infectious disease
spread6, etc.7–9. Recently, there has been an increased focus on
self-sustaining sensing platforms such as data generated by
vehicle fleets, either with smartphones or dedicated sensors10–12.

The effectiveness of a crowdsourcing application is a question
of precision and scale. While crowdsourced data has a proven
value and cost-effectiveness in a variety of large-scale applica-
tions, there remain fundamental challenges for those that call for
precise measurements in time and space. Civil infrastructure
monitoring techniques require highly curated data, often sampled
at a high rate by synchronous data-acquisition systems and low
noise sensors. Nearly two decades ago, the potential of mobile-
sensor networks was established analytically and using synthetic
models13–15. Following this foundational work, researchers have
been eager to produce successful real-world applications that use
crowdsourced smartphone data to extract the dynamical prop-
erties of existing bridges – a problem with stringent spatio-
temporal measurement constraints.

There is a global need to endorse infrastructure monitoring to
optimize the service of the most critical assets of highway net-
works and the urban environment. A failure to maintain a city’s
bridges, buildings, and other infrastructure can have disastrous
consequences, from enormous repair costs to the loss of human
life16. The vast number of U.S. bridges with structural problems
accentuates shortcomings in bridge maintenance protocols17,18.
Modern bridge condition assessments are based on field inspec-
tion notes from visual inspections rather than large digital data-
sets; a paradigm that severely limits the frequency of structural
health assessments, the depth of the information collected, and
the ability to execute preventive maintenance.

Crowdsourcing bridge vibration data would modernize struc-
tural health monitoring (SHM) and bridge asset management at a
global scale. Longitudinal data collection and analyses are
essential for tracking changes in structural state, informing pre-
emptive repairs, and service life analyses19–25. In typical SHM
applications, a synchronized sensor network is mounted on a
bridge (scale on the order of hectometers to kilometers) to
measure acceleration (scale on the order of millimeters
per second squared (milli-G)). While sensor data provides
advantages over field inspections, due to high costs, such static
sensor networks are rarely incorporated in a bridge management
system. Despite the implications of Moore’s Law, installation and
maintenance costs are often still too high for the vast majority of
bridge owners.

Mobile-sensor networks resolve this financial bottleneck by
bypassing high-end sensing systems. Smartphones or other cheap
sensors, either mounted on11 or riding in vehicles12, can con-
tribute useful data. The primary appeal of a mobile-sensor net-
work is that it does not require dedicated devices: it can repurpose
existing ones resulting in cheaper and more convenient data
collection compared to traditional methods. For example,
smartphones can scan a city’s infrastructure with a wide spatio-
temporal coverage at little or no cost through the existing travel
patterns of the host vehicles, e.g., taxis12. A recent study showed
that just two mobile sensors produces SHM information com-
parable to 240 static sensors26, with other studies reporting
similarly large efficiencies27–32. Simultaneously, applications of
deep learning in material science have exemplified how sparse
structural response measurements can be used to accurately

predict global behavior, e.g., load distributions33, and optimize
multiscale design.

Recent applications of smartphones in civil engineering34–38

showed that while the embedded accelerometers exhibit many
undesirable characteristics, they can sufficiently capture structural
vibrations. Simultaneously, theoretical and experimental research
on vehicle-bridge interaction relationships have established gov-
erning equations and influential parameters36,39–45. Nevertheless,
there remain open questions on estimation precision in a real
setting. For instance, the literature lacks a successful example in
which bridge modal properties are extracted exclusively from
crowdsourced mobile smartphone data. Most importantly, prior
work has not considered uncontrolled or partially controlled
smartphone datasets (from ridesourcing or crowdsourcing), i.e.,
cases where analysts have little or no influence over key data
collection parameters (see “Methods” for detailed classifications
of data controllability).

As such, the core question remains unanswered: can crowd-
sourcing produce precise structural health information under real-
world conditions? This paper provides strong evidence that sup-
ports crowdsourcing. It shows that data collected by smartphones
in moving vehicles under real-world conditions can be used to
identify structural modal properties of a bridge, information
which is vital to condition assessments and damage detection
frameworks13,20,23–25,46,47. The following results based on
uncontrolled and partially controlled crowdsensed data collected
on two structurally diverse bridges, verify that pre-existing mobile
sensing mechanisms and datasets, originally established for other
purposes, can produce important structural information and
therefore could be utilized to extensively monitor the health of
networks of bridges, worldwide.

Results and discussion
Determining most probable modal frequencies. The Golden
Gate Bridge is a long-span suspension bridge in California, USA,
with a 1280-meter-long main span. Two distinct datasets were
collected: a field study where researchers drove over the bridge
102 times, recording data with two smartphones (iPhone 5 and
iPhone 6) and data collected by Uber drivers in 72 bridge trips
during normal operations. In the following, these are referred to
as controlled and ridesourcing datasets. Impressively, while these
datasets are relatively small, they produce accurate results,
demonstrating that mobile-sensor-based SHM can be applied
easily, cheaply, and immediately in the real world.

Figure 1 describes the controlled data collection process and
the spatial analysis method. The experiments focus on the
identification of the first ten vertical and torsional frequencies of
the Golden Gate Bridge, which are below 0.5 Hz (see “Methods”
for a complete catalog).

The methodology developed to determine the most probable
modal frequencies (MPMFs), the main result of the analysis, is
illustrated in Fig. 2. The plots in Fig. 2a are produced via the
synchrosqueezed wavelet transform48 (with Morlet basis) and a
mapping of time to a local coordinate system (in space) based
on simultaneous Global Positioning System (GPS) measure-
ments. Figure 2b shows the data aggregation step: a plot of the
frequencies that were most consistently present over all the trips
versus bridge length (space). In the final step, depicted in
Fig. 2c, a kernel density estimate (KDE) is fit to the histogram
(displayed as solid line) of the frequency candidates. Further
details are presented in the “Methods” section and Supplemen-
tary Notes 1 and 2.

The MPMFs are defined as the peaks of the KDE probability
density function. The MPMF results for the controlled data and
ridesourcing data and their corresponding probability density
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Fig. 1 Illustration of controlled data collection and the spatial segmentation approach. a Sensor layout on the dashboard of the first vehicle (Nissan
Sentra) which was used to collect first fifty trips. b Sensor layout on dashboard of the second vehicle (Ford Focus) which was used to collect fifty-two trips.
For all vehicle trips over the Golden Gate Bridge, The smartphones were facing upward, such that one axis was well-aligned with gravity. Such an
orientation is not strictly necessary; although, knowledge on the configuration of the sensors is helpful for data preprocessing. c Generic schematic of
spatial segmentation of a bridge which is defined through two independent parameters: Δs and c, which remain uniform over the length of the bridge. The
red circles represent the centers of each segment, while the light colored boxes show the segment widths. A close-up of three adjacent segments si−1, si,
and si+1, is shown to detail the segmentation parameters: c is the length of each segment, co is the length of the overlap between segments, and Δs is the
distance between the centers (red circles) of adjacent segments.

Fig. 2 Illustration of the main methodology used to extract most probable modal frequencies (MPMFs). a The synchrosqueezed wavelet transform is
calculated for each of the bride crossings individually. The time variable is then remapped into linear location (r) on the bridge, resulting in the space-
frequency representation of the signal. Ridges are then identified as peaks at each location. (Steps 1-6 in the methodology, see “Methods”). b Peaks from
each individual location are first aggregated in the spatial groups shown in Fig. 1, then among all datasets, resulting in one space-frequency diagram of
identified ridge clusters. Each location in space represents one spatial segment from Fig. 1 (Step 7). c The most prominent vibration frequencies from each
spatial group are selected and a histogram of these is created. The modes of this histogram are identified using a kernel density (KDE) fit; these picks are
considered the MPMFs (Steps 8–9 in methodology, see “Methods”).
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functions are displayed in Fig. 3; these plots highlight the likely
vibrational frequencies. The MPMF values are displayed in
Tables 1 and 2 for the controlled and ridesourcing data,
respectively. For KDE, a Gaussian kernel was selected with a
bandwidth equal to 1% of the frequency range considered (0.005
Hz since the range is 0–0.5Hz). Initially, MPMFs were chosen by
visual inspection of the PDF. The corresponding cumulative
distribution function (CDF) indicated that the chosen MPMFs for
the iPhone 5 were in the upper 2% and those MPMFs for the

iPhone 6 were in the upper 10% (see Table 1 for precise values).
That is for all MPMFs in this work, the selection was automated
by setting an upper threshold for the CDF of the frequency
candidates, e.g., 10%.

The MPMF results are compared with the most comprehensive
report on the modal properties of the Golden Gate Bridge. The
true values in Tables 1 and 2 are based on data collected over a
three-month period with a wireless network of 240 acceler-
ometers and found over sixty vibrational modes (vertical,
transverse, and torsional)49,50. In particular, there are seven
vertical modes and three torsional modes below 0.5 Hz (see
Table 3 in “Methods”). The fundamental vibrational modes
(lowest frequencies) are often the highest contributors to the
overall dynamic response of a structure51; i.e., they are most
important.

Overall, the first two modal frequencies of the bridge are
estimated accurately by both the iPhone 5 and the iPhone 6 in the
controlled experiments (see Fig. 3 and Table 1). The iPhone 5
data estimates the first frequency as 0.106 Hz and the second
frequency as 0.132 Hz. Similarly, the iPhone 6 data estimates the
first frequency as 0.108 Hz and the second frequency as 0.132 Hz.
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Fig. 3 Final estimates of probability density functions (PDFs) from smartphone vehicle trip (SVT) data. A histogram (gray bars) and kernel density
estimates (black line, Gaussian kernel with bandwidth of 0.005 Hz) is shown for each dataset: (a) results from iPhone 5 in controlled data. (b) Results from
iPhone 6 in controlled data, (c) results from ridesourcing data. Blue dashed lines refer to true modal frequencies of the bridge (see Table 1). The local
maxima (modes) of each multimodal PDF corresponds to a possible modal frequency. The iPhone 5 most probable modal frequencies (MPMFs)
correspond to the two largest peaks, which estimate the first and second modal frequencies (m = 1, 2). The iPhone 6 MPMFs correspond to the three
largest peaks, which estimate the first, second, and third modal frequencies (m = 1, 2, 3). The known modal frequencies of the Golden Gate Bridge are
indicated for reference. Details of the MPMFs displayed in (a) and (b) are provided in Table 1. In the PDFs based on ridesourcing data there are over a
dozen MPMF candidates (local maxima), a significance threshold of 0.90 was set for the CDF values, which resulted in five MPMFs. Details of the MPMFs
displayed in (c) are provided in Table 2.

Table 1 Most probable modal frequencies (MPMFs) for the
controlled data, extracted from the peaks of Fig. 3a, b.

iPhone 5 iPhone 6

m MPMF CDF MPMF CDF True

1 0.106 (0.000) 0.98 0.108 (1.89) 0.95 0.106
2 0.132 (0.000) 1.00 0.132 (0.000) 1.00 0.132
3 – – 0.166 (2.35) 0.90 0.170

The vibration mode numbers are indicated by m, where frequencies are sorted in ascending
order. MPMFs (estimates) and true frequency values are in Hertz with corresponding errors (%)
in parentheses. Cumulative distribution function (CDF) values indicate the significance of each
peak in the overall probability density function (PDF).

Table 2 Most probable modal frequencies (MPMFs) for the
ridesourcing data, were extracted as the peaks of Fig. 3c in
the top ten percentile (five in total).

m MPMF CDF True

1 0.106 (0.000) 0.97 0.106
6 0.291 (3.32) 1.00 0.301
7 0.347 (2.35) 0.97 0.339
9 0.445 (0.000) 0.99 0.445
10 0.458 (0.650) 0.93 0.461

The vibration mode numbers are indicated by m, where frequencies are sorted in ascending
order. MPMFs (estimates) and true frequency values are in Hertz with corresponding errors (%)
in parentheses. Cumulative distribution function (CDF) values indicate the significance of each
peak in the overall probability density function (PDF).

Table 3 Ten modal frequencies of the Golden Gate Bridge
from ref. 50: seven vertical and three torsional, all below
0.5 Hz.

m Type Shape Frequency (Hz)

1 V A 0.106
2 V S 0.132
3 V S 0.170
4 V A 0.216
5 T A 0.230
6 V S 0.301
7 T S 0.339
8 V A 0.371
9 T A 0.445
10 V S 0.461

The vibration mode numbers are indicated by m, where frequencies are sorted in ascending
order; mode types V and T refer to vertical and torsional modes; A and S refer to anti-symmetric
and symmetric mode shapes with respect to the middle of the main bridge span.
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In addition, the iPhone 6 data estimates the third modal
frequency as 0.166 Hz. Estimates made by the iPhone 5 for both
frequencies and the iPhone 6 for the second frequency are
accurate up to three significant digits, the precision used in our
study (<0.5% error). Estimates of the first and third frequency by
the iPhone 6 have errors of 1.9% and 2.3% respectively. These
errors are low and within an acceptable range in the context of
operational modal identification. In practice, independent
methods are employed to corroborate estimates of modal
properties. For a given dataset, modal frequency estimates will
vary based on the method yet will often be within 1−2% of each
other52; in some cases discrepancies can be as high as 5−7% for
certain modes, methods, and datasets40.

The ridesourcing data consists of 72 datasets representing 37
different vehicles and 19 smartphone models, which were
generally collected at higher driving speeds (see Tables 4 and 5
in “Methods”). In the PDF from the ridesourcing data, there are
over a dozen MPMF candidate peaks that are distributed more
evenly (see Fig. 3c). The MPMFs were chosen as the peaks in the
upper 10% of the CDF, which resulted in five candidates. Table 2
compares these MPMFs with the true modal frequencies.
Impressively, each of the five MPMFs corresponds to a true
modal frequency and includes the fundamental mode (m= 1).
Additionally, the MPMFs here include four new modes that were
not detected in the controlled trip data (m= 6, 7, 9, 10). This
result reflects how the content of the frequency information is
subject to the context of the vehicle trips, such as, vehicle
attributes, smartphone sensors, etc. In general, in order to be
measured, the frequency content must be present in the bridge
vibrations, meaning the modes of interest must be externally
excited by the dynamic loads, e.g., traffic, wind, etc. (see
Supplementary Note 1 for further details).

The fundamental vertical frequency (m= 1) and the third
torsional frequency (m= 9) were estimated perfectly to the
nearest thousandth (0.000% error). The fifth vertical frequency
(m= 6), the second torsional frequency (m= 7), and the seventh
vertical frequency (m= 10), were estimated with errors of 3.3%,
2.3%, and 0.65%, respectively. It is important to note that the
proposed method can detect both vertical and torsional modes
because the dataset provided vertical (gravity direction) accelera-
tion measurements. In this study, distinctions between vertical
and torsional MPMFs were made by matching them with the
closest known modal frequencies (see Tables 2 and 3). The
inclusion of other acceleration channels may enable the detection
of longitudinal and transverse modes.

There are more peaks in the PDF from the ridesourcing data
than there are in those from the controlled data. Furthermore,
many of the peaks in the ridesourcing PDF appear notable,
whereas in the other PDFs, there were 2–3 primary peaks and the
others were negligible. This may suggest that there is a higher
potential for false positives when dealing with uncontrolled
datasets. On the other hand, this may be an artifact of a relatively
small sample size that would resolve with larger volumes of data.

Number of vehicle trips versus accuracy. The quantity of bridge
trips in both tests is arbitrary: one could reasonably ask "How
many datasets are needed to accurately estimate a bridge modal
frequency?”. Answers to questions such as this could help produce
practical guidelines that drive large-scale efforts to regularly col-
lect vehicle scanning data. This was considered using random
subsets of the controlled trips, i.e., choosing NS < 102 bridge trips
and repeating the analysis to extract MPMFs. The following
analysis focuses on the first two modal frequencies as those were
detected by both sensors previously. The average detection error
(i.e. difference between MPMFs and true values) is provided in

Table 4 List of thirty-seven vehicle types present in the
ridesourcing dataset.

Vehicle type Number of trips

BMW 3-series 1
BMW X1 1
Chevrolet Cruze 3
Chevrolet Malibu 2
Chevrolet Trax 2
Chrysler Pacifica 1
Ford Focus 1
Ford Fusion 3
Ford Taurus 1
Honda Accord 3
Honda Civic 2
Honda CR-V 1
Honda Insight 1
Honda Odyssey 1
Hyundai Elantra 2
Hyundai Ioniq 1
Hyundai Sonata 3
Kia Forte 2
Kia Optima 1
Lexus RX 1
Mazda CX-5 3
Mazda CX-9 1
Mazda MAZDA6 1
Mercedes-Benz C-Class 1
Mercedes-Benz E-Class 1
Mitsubishi Outlander 1
Nissan Altima 4
Nissan Frontier 1
Subaru Impreza 1
Subaru Outback 1
Toyota C-HR 1
Toyota Camry 5
Toyota Corolla 2
Toyota Prius 9
Toyota RAV4 1
Toyota Sienna 4
Volkswagen Jetta 2

Table 5 List of nineteen smartphone types present in the
ridesourcing dataset.

Phone model Number of trips

iPhone 5s 2
iPhone 6 2
iPhone 6s Plus 2
iPhone 7 3
iPhone 7 Plus 7
iPhone X 2
iPhone 8 Plus 1
Pixel 2 1
Pixel 2 XL 1
Galaxy J7 2
Galaxy Note 4 10
Galaxy Note 8 3
Galaxy Note Edge 5
Galaxy S4 1
Galaxy S5 17
Galaxy S6 4
Galaxy S7 3
Galaxy S8 5
Galaxy S9 1
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Fig. 4. Overall, these curves show that the frequency extraction
procedure excels as more data becomes available.

Figure 4 a shows the behavior of the first frequency errors as data
subsets grow larger and Fig. 4b shows the same relationship for the
second frequency. In all cases, the MPMF errors fall to the order of
10% when the number of datasets reaches 10. Beyond this point, a
gradual (not purely monotonic) increase in accuracy continues as
the dataset size increases towards 100. With only 40 datasets, one
can see that the iPhone 5 estimates for both frequencies become
quite accurate; within 6% of the true values, which is also true for
both smartphone estimates of the second modal frequency.

Overall, errors for the second frequency decreased more
consistently and rapidly than those for the first frequency. In
other words, less effort was required to estimate the second modal
frequency with a high accuracy. With either smartphone, an
estimate of the second modal frequency can be achieved within
5% of the true value with as few as 30 datasets; and with 50
datasets, the error reduces to 4%.

These plots indicate that, depending on the smartphone sensor,
only a relatively small amount of datasets is needed to get a rough
estimate of a modal frequency—between 10 and 50 datasets can
achieve an error on the order of 10%; however, a considerably
larger amount of data, about 80 or 90 datasets, is needed in order
to reduce errors to the order of 3%. More specifically, once the
error falls below 10% error, each additional 10 datasets tends to
reduce it further by about 1%.

Application on short highway bridge. The Golden Gate Bridge
is an atypical bridge. Suspension bridges comprise less than 1% of
US bridges. They have flexible main spans that usually exceed 500
m in length, corresponding to low fundamental modal fre-
quencies (on the order of tenths of Hz). The proposed method
was applied to a 28-m-long reinforced concrete bridge to evaluate
its performance on a short span, which better represents a typical
highway bridge. According to the Federal Highway Administra-
tion national bridge inventory, over 25% of US bridges have
maximum spans between 15 and 50 m53. It is difficult to establish
expected values for the fundamental frequencies of such bridges;
however, they can be considered greater than 1 Hz54,55 and are
therefore more likely to coincide with vehicle modal frequencies,
which usually range 1–3 Hz56,57.

The studied bridge is in Ciampino, Italy and is part of the
European route E80 in the Rome metropolitan area monitored by
ANAS Sp.A. The highway exchange is a system of ramps and

turns, consisting of 30 short bridge spans (see Fig. 5a). The bridge
span was instrumented with six accelerometers to record ambient
vibrations nearly continuously from September 2020 to April
2021 (see Fig. 6 in “Methods” for the sensor layout). Successive
batches of data (collected in two-hour intervals) were processed
using the automated frequency domain decomposition (AFDD)
algorithm58 to determine the structural modal properties of the
bridge and track them over time (hours, days, weeks). Based on
these analyses, the fundamental frequency (m= 1) of the bridge
was determined as 2.58 Hz; this is the reference value for the
mobile sensing results.

Smartphone-vehicle trips were recorded using an Android-
based smartphone application that was developed by the
researchers for the ANAS Sp.A. road maintenance crew; as such
the data was partially controlled by the analysts (see Table 6 in
“Methods”). The app was equipped with a geofence to
automatically trigger data collection whenever the crew traveled
over the bridge span of interest. Over 250 bridge trips were
collected by the crew using mobile devices with the smartphone
app. The proposed method processed 280 datasets to estimate
MPMFs and compare with the identified fundamental frequency.
Figure 5b–d illustrates the spatial segmentation pattern, the PDF
of the frequency candidates using Gaussian KDE, and the error
versus number of trips. As shown in Fig. 5c, the MPMF from
mobile-sensor data matches the reference frequency (1.94%
error). The PDF also shows some small, statistically insignificant
peaks at other frequencies. The second and third frequencies were
not detected in this batch of data. As observed when comparing
controlled and ridesourcing datasets, the observability of modes
depends on many physical factors such as bridge excitation,
vehicle attributes, etc. Note vehicle-bridge-road interaction effects
are not accounted for in the proposed method. Recent work has
shown how information about the vehicle system, e.g., transfer
function, and road profile can improve the accuracy of the
estimated bridge modal properties59–62 (see Supplementary
Note 4 for discussion).

Figure 5d, presents the effect of sample size on the fundamental
frequency estimation error. The analysis conducted was identical to
that which produced Fig. 4 (based on random subsets of data). As the
number of samples increases to 100, the error drops to 5%. Beyond
this point, the error continues to decline, at a much slower rate.

There are three main observations: First, similar to the error
trends seen for the long-span bridge in Fig. 4, in this application,
the errors decrease in two phases, a rapid change followed by a
gradual one. The difference being the approximate N value at
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Fig. 4 Errors of the most probable modal frequencies (MPMFs) as a function of the size of the data subset. a Smartphone MPMF errors for the first
vertical frequency (m= 1). b Smartphone MPMF errors for the second vertical frequency (m= 2). Each line represents the mean error for a different
smartphone.
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which this transition occurs (N ≈ 20 vs. N ≈ 100). Second, the
error of the fundamental frequency estimate at N= 100 datasets
is 5.5%, which is comparatively higher than the primary
application (see Fig. 4). Part of this difference may be attributed
to the uncontrollability of the data or the fact that trips on short-

span bridges will generally contain fewer data samples due to
short-time durations. Future work may utilize metadata on the
uncontrolled factors such as smartphone mount, or vehicle
model, to quantify estimation uncertainty. In addition, specialized
methods for sensor noise reduction may be useful37. Finally, the

Fig. 5 Crowdsensing application to a short-span concrete bridge. a An aerial view of the E80 highway exchange in Ciampino, Italy (image from Google
Earth) with the studied bridge span highlighted in blue. b The geometry and spatial segmentation of the bridge. c The histogram and the fitted probability
density function found from processing 280 smartphone datasets. The probability density function indicates a large peak at 2.63 Hz which is near the
bridge’s fundamental frequency (m= 1) and is the only most probable modal frequency (MPMF). The reference frequencies for the first three modes are
shown with blue vertical dotted lines. d The average error per dataset. The error reduces substantially as the number of scans increases. Overall, the error
reduces more rapidly for 0 <N < 100 than for N > 100.
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Fig. 6 Network of fixed accelerometers on a short-span concrete bridge. The bridge is located at a highway exchange in Ciampino, Italy. All dimensions in
meters.
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spatial data aggregation technique was effective despite relatively
imprecise GPS data. Reported GPS errors were about 4.3 m on
average, which represented about 15% of the length of the bridge
(see “Methods” for details). Analyses of noisy acceleration data in
Supplementary Note 3 show similar results. Overall, the
successful applications suggest that the proposed method may
apply to a broad range of sensor qualities and bridge types.

Discussion. This paper proves that bridge vibration frequencies
can be identified from smartphone-vehicle trip data in real-world
conditions. It is emphasized that data from a single trip is
insufficient; yet as few as 100 crowdsourced datasets can produce
useful modal frequency estimates (below 6 % error) for both
short-span and long-span bridges. Collectively, the analyses of
controlled and ridesourcing data (N= 174 total) produced
accurate estimates of ten (seven unique) modal frequencies of the
Golden Gate Bridge; five of which had an error of 0.000%. The
number of trips considered in the primary study was less than
0.1% of the daily trips made on the Golden Gate Bridge; this
shows that there is an enormous sensing potential represented by
smartphones globally that contains valuable information about
bridges and other important infrastructure. Furthermore, the
accuracy of the most-probable modal frequencies (MPMFs)
improved as the number of datasets increased.

Through a broad set of successful real-world applications, this
paper strongly demonstrates the robustness of crowdsourced
smartphone data for bridge health monitoring. The results
exemplified three broad classes of crowdsourced data from which
modal properties can be accurately extracted: controlled,
uncontrolled, and partially controlled. This shows that analysts
do not necessarily need to design or influence data collection
features such as vehicle speed, smartphone orientation, etc., in
order for the datasets to provide value to a bridge management
system. Pre-existing mobile-sensor datasets, originally captured
for other purposes, e.g., ridesourcing, public works, etc., may be
repurposed for infrastructure monitoring.

The MPMF analyses did not explicitly account for vehicle-
bridge-road-interaction effects yet were still successful in
identifying bridge modal frequencies accurately. This highlights
the strong and persistent traces of bridge modal frequencies
among the collected datasets in varied vehicle and road
conditions. Future applications that are more sensitive to
vehicle-bridge-road-interaction features may benefit from incor-
porating smartphone metadata, e.g., smartphone mount, vehicle
model, roadway type, etc., and vehicle dynamical properties to
achieve precise MPMFs or to quantify uncertainties with regard
to data controllability. In short, entropy is a desirable feature of
crowdsourced vehicle trip data which will help reduce bias in
estimated bridge properties (see Supplementary Note 3 for a
detailed discussion). Recommended future work can quantify

relationships between data controllability parameters and the
accuracy of modal property estimates.

Long-term studies on bridge dynamic features over various
environmental and operational conditions establish a foundation
for the rapid development and verification of new methods for
data-driven condition evaluations. Frequencies are a gateway to
additional modal properties and structural features which have
explicit relationships with certain types of bridge damage and
deterioration, e.g., mode shape curvature, local stiffness,
etc.19,20,46,47,59,63. Historically, such techniques have been con-
fined to academic research applications, which have only
impacted a small fraction of existing bridges20,64–70. Furthermore,
the majority of these studies are based on short-term data (a few
months); long-term structural behavior (at least one year of data)
is essential to establish the baselines and performance bench-
marks needed for condition evaluations71.

It is important to emphasize that machine intelligence, e.g., a
trained AI model, was not needed to determine accurate MPMF
results from aggregated smartphone-vehicle trip data. The real
power of crowdsourced data lies in the ease of obtaining
longitudinal data, which fuels a nearly continuous monitoring,
feature extraction, and detection system with which a present
state can be analyzed and compared to historical baselines (past
seasons over years). With these unprecedented data volumes,
automated structural condition assessment systems would no
longer be confined to methods rooted in surrogate model
optimization72–74; they could finally, truly benefit from advances
in artificial intelligence and computational learning as seen in
fields such as image and video recognition, recommendation
systems, or multimodal sentiment analysis75–80. When fueled
with long-term monitoring data, artificial intelligence has the
potential to provide bridge engineers and owners with unprece-
dented information for maintenance and operation at virtually
little to no extra cost.

The potential benefits of this paradigm are quantified in
analyses (see Supplementary Note 5) which generate reliability
profiles to simulate how bridge service life is affected by the
availability of condition information in a maintenance plan. The
analyses predicted that crowdsourced monitoring accumulates
information that adds over two years of service to a 43-year-old
bridge (15% increase) and adds almost fifteen years of service to a
brand new bridge (30% increase). The findings of this paper could
have an immediate impact on the management of bridges in
many countries; they emphasize the benefit of integrating
crowdsourced monitoring information into a bridge management
plan as soon as the bridge is in operation.

Methods
Data controllability definitions. The data considered in this paper represent three
broad classes of crowdsourced data: controlled, uncontrolled, and partially con-
trolled. Seven controllability dimensions were considered to characterize the

Table 6 Definition of data controllability and comparison: What level of influence did the analysts have on the following data
collection parameters? (✓= "Complete Control", ✕ = "No Control", = "Guidance Provided, No Enforcement").

Parameter Experiment Ridesourcing Highway Bridge

(Controlled) (Uncontrolled) (Partially Controlled)

Smartphone Model ✓ ✕ ✕

Smartphone Mount Type ✓ ✕

Smartphone Orientation ✓ ✕

Smartphone Sampling Rate ✓ ✕ ✓
Vehicle Make and Model ✓ ✕ ✕

Vehicle Speed ✓ ✕

Vehicle Route ✓ ✕ ✕
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smartphone-vehicle trip data: smartphone model, smartphone mount type,
smartphone orientation, smartphone sampling rate, vehicle make and model,
vehicle speed, and vehicle route. In its simplest terms, controllability metrics
address the following question: What level of influence did the analysts have on the
following data collection parameters? For each dimension, there are three possible
categories: Complete Control, No Control, and Guidance Provided, No Enforce-
ment. Complete control means the analysts dictated this dimension, while No
Control means the data collector controlled this dimension. Guidance Provided,
No Enforcement means the analysts provided a formal recommendation to the
data collector; however, the recommendation was not monitored or enforced
whatsoever.

Controlled data is defined as a dataset for which analysts had complete control
over all seven controllability dimensions. Uncontrolled data is defined as a dataset
in which analysts had no control over any of the seven controllability dimensions.
Partially controlled data are data that are neither controlled nor uncontrolled.
Table 6 provides details on the controllability of each dataset.

In summary, the experimental data collected on the Golden Gate Bridge was
controlled, the ridesourcing data collected on the Golden Gate Bridge was
uncontrolled, and the data collected on the highway bridge in Italy was partially
controlled.

Controlled Data. The controlled data were recorded by an iPhone 5 and iPhone 6
using the Sensor Play App which recorded about one dozen data fields including
sensor measurements, e.g., triaxial acceleration, GPS, gyroscope, magnetometer,
etc., and inferred values, e.g., speed, GPS error. The trip data was collected in
morning and afternoon rush-hour periods in five consecutive days (June 18–22,
2017). In the raw data, triaxial acceleration was sampled at about 100 Hz and GPS
coordinates were sampled at about 1 Hz. The acceleration data was irregularly
sampled. Temporal jitter was observed in most of the individual samples, i.e., non-
uniform sampling periods. Additionally, when comparing sampling rates of
independent datasets (different trips), the average actual sampling rate varied about
1–5% from the target value (the data was often undersampled). Therefore each
acceleration dataset was resampled to 100 Hz before processing. Since the positions
and orientations of the sensors were known, the acceleration channel used in the
analysis was the one which coincided with gravity. In summary, the measurement
channels used to determine MPMFs were triaxial acceleration and GPS.

Vehicle trips in the controlled dataset were completed during morning and
afternoon rush hour periods. For each trip, the driver and passenger qualitatively
rated the traffic levels on a 1−3 scale, where 1 means no congestion and 3 means
stop-and-go conditions. Overall, these ratings were not significant, and only helped
to roughly correlate traffic with vehicle speed. Nonetheless, it is important to track
traffic volumes, e.g., car counts, as it directly influences the amplitudes of the bridge
vibrations.

As a form of controlled variety in the trips, two sedan-style vehicles were used
and five target speeds were defined: 32, 40, 48, 56, and 64 km h−1 (the speed limit
on the bridge is 72 km h−1; however, there are 40 km h−1 advisories for areas near
the toll gates, located at the south end of the bridge). The vehicle speed was
monitored visually by the driver (cruise control was not used). Instantaneous speed
data (automatically produced through the app) was used to compare with the speed
targets. Overall, the median speed values matched well with the target speeds. The
first fifty trips were completed using a Nissan Sentra and the remaining fifty-two
trips used a Ford Focus. Each vehicle trip was assigned a predetermined target
speed; while crossing over the bridge spans, the driver almost always (during one
northbound trip, the driver was ordered by an authority to increase the speed of the
vehicle; this resulted in an average speed well above the target speed of 48 km h−1.
During one southbound trip, high traffic congestion resulted in an average speed
that was well below the target speed of 32 km h−1. Two extra trips were made to
account for these instances, hence 102 in total) maintained an average speed
within ± 4 km h−1 of the target. A summary of vehicle trip details, e.g., the trip
speed distribution is provided in Table 7.

Uncontrolled ridesourcing data. Vehicle trips supplied by the ridesourcing
operator, Uber, were made by 37 distinct vehicle types that together constitute a set
of typical vehicle makes and models used in such fleets. The largest group, 9 trips
were made by Toyota Priuses; a breakdown of the number of trips by vehicle type is
presented in Table 4. Measurements were collected by the ridesourcing app itself
during regular operations in its default commercial-use settings, i.e., no mod-
ifications were made to accommodate bridge vibration analysis. The analysts had
no control over the data prior to its collection, i.e., no control over parameters
listed in Table 6. The ridesourcing operator, Uber, provided data as requested,
exclusively based on a geographical area of interest (the Golden Gate Bridge),
without any other specifications.

Each dataset (trip) contained about one dozen data fields, which included
sensor measurements, e.g., triaxial acceleration, GPS, gyroscope, magnetometer,
etc., inferred values, e.g., speed, GPS error, and vehicle and smartphone model
information. The triaxial acceleration data was provided in a raw, unknown
orientation, which required correction in order to extract the channel
corresponding to the vertical (gravity) direction. The Nericell approach81 was
selected to reorient the acceleration signals. This method uses triaxial accelerations
and GPS to estimate tilting angles and reorients them based on Euler angles. The
average GPS error value was about 7.7 m. In summary, the analysis to determine
MPMFs used only triaxial acceleration and GPS data.

Drivers used multiple types of smartphones, a summary of which is given in
Table 5. In total, in 19 trips, the device used was an iPhone model, ranging from
iPhone 5s to iPhone X and including multiple model variants. In 51 trips, the device
was a Samsung model, with the Galaxy S5 and Note 4 being the most popular (17 and
10 trips respectively). The vehicle speed histogram in Fig. 7 shows that most trips were
driven at relatively high speeds, above 70 km h−1 (43 mile.hr-1), while the rest of trip
speeds were distributed relatively evenly below that; it was assumed that this resulted
from varying traffic conditions on the bridge.

Partially controlled data. For the short-span highway bridge, 280 smartphone-
vehicle trips were recorded using an Android-based smartphone application that
was developed by the research team and was used by the ANAS Sp.A. road
maintenance crew. The app is equipped with a geofence to automatically trigger the
data collection whenever the crew traveled over the bridge of interest. The data
collected included direct measurements of triaxial acceleration, GPS, gyroscope,
and inferred values such as orientations (rotation) and GPS error. The rotation
vector is a post-processed vector produced by Android that represents the location
and orientation of the device. In summary, the provided rotation vector consists of
the last three components of the unit quaternion that comprise the necessary
information for device reorientation. A comprehensive description of the reor-
ientation method using quaternion vectors is presented in82,83. The Nericell
reorientation approach used for the ridesourcing data was not suitable because
orientations were already available through the data collection app. After reor-
ienting the triaxial acceleration signals, the channel corresponding to gravity was
selected for further processing.

It is important to note that the Nericell approach relies on GPS measurements
which generally have lower SNRs on shorter bridges. The GPS sampling rate for the
smartphone used in this research is 1 Hz. The average GPS accuracy reported by
the operating system of the device was 4.3 m with regard to a 28-meter-long bridge.
The Uber dataset showed noisier GPS data with an average error of 7.7 m, yet the
bridge considered was 1280 m long. To preprocess the GPS data, the coordinates
are first projected to a 1D axis along with the longitudinal axis of the bridge (see
Fig. 8). Next, the data points with GPS coordinates outside predefined bounding
boxes were discarded. After removing outliers, the missing coordinates were

Table 7 Details of the 102 vehicle trips made over the
Golden Gate Bridge.

Target avg. speed No. of trips Avg. traffic rating

32 26 1.5
40 29 1.2
48 17 1.2
56 20 1.1
64 10 1.0

Trips were completed using two different vehicles driving with five constant speeds. The
distribution of the trips taken for each speed is provided. The majority of the trips were at
40 km h−1 (29 out of 102) and the minority of the trips were at 64 km h−1 (10 out of 102).
Traffic ratings were recorded qualitatively on a scale of 1-3 for each trip based on observations
of the researchers. A rating of 3 indicates very high traffic, e.g.,bumper-to-bumper. 0
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Fig. 7 Distribution of vehicle speeds. The average speed was calculated for
each trip in the ridesourcing dataset. This figure plots a histogram of
the average vehicle speeds (bin size is 5 km-hr−1).
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recalculated by linear interpolation. The GPS errors did not appear to negatively
impact MPMF estimation. Overall, the spatial segmentation and aggregation
approach (especially with overlaps) helps to mitigate inaccurate spatial coordinates
caused by GPS errors. Future work attempting to extract spatial information of
bridge vibration, e.g., structural mode shapes, may require additional processing
such as advanced GPS filtering, clustering, and/or sensor data fusion for improved
location estimation, e.g. simultaneous localization and mapping84.

In total, nine different phone models were used and vehicle speeds varied from
9 to 72 km h−1 (median of 46.8 km h−1). More than one vehicle was used for data
collection; however, the precise number of different automobiles included was not
recorded and is unknown to the analysts. The drivers crossed the bridge during
their regular commutes; they were not provided any guidance on vehicle routes,
smartphone models, vehicle types, or trip quotas. The analysts recommended
drivers to drive at constant speeds and to mount their phones on a solid holder.
The analysts had no control over the smartphone model or vehicles used for data
collection and this metadata was not provided for each trip.

Space-frequency representation of the signal. The instantaneous vertical
acceleration measurement at location r on the bridge is represented as a linear
combination of oscillatory modes plus noise:

xðr; tÞ ¼ ∑
D

d¼1
AdðtÞΦdðrÞ cosð2πωdtÞ þ eðtÞ ð1Þ

where Ad(t) is a time-dependent amplitude,Φd(r) describes the spatial mode shape and
ωd is the vibrational frequency of mode d, while e(t) represents the noise. Our main
goal is to identify the ωd frequencies given the signals xi(t)≡ x(ri(t), t), i= 1, 2…102,
where the correspondence between bridge coordinates and time, i.e. the ri(t) function is
given empirically based on the GPS measurements for each bridge crossing in our
dataset. Mathematical connection between these entities and bridge vibrations is dis-
cussed in more detail in the Supplementary Note 1. To achieve this, the time-frequency
representation of signal xi(t) is analyzed based on the assumption that the effective
amplitudes, Aeff

di � AdðtÞΦdðriðtÞÞ are slowly varying functions of time. This is
essential since contributions of different modes in the signal vary systematically and
stochastically based on the mode shapes and the dynamic forces acting on the bridge;
along with the presence of noise, this makes simple spectral methods, e.g. those based
on the Fourier analysis of the whole signal unsuitable. The synchrosqueezed wavelet
transform48,85,86 was employed based on its effectiveness at recovering instantaneous
frequencies of noisy signals with many harmonic-like components. This way, for signal
xi(t), a complex valued function Txi

ð f ; tÞ, is obtained, which gives the instantaneous
amplitude of the modal frequency f at time t. Then, the time variable is replaced by its
corresponding location ri(t) in bridge coordinates for each trip in the dataset, obtaining
Txi

ð f ; rÞ, the space-frequency representation of our signal. While in theory, r is often
considered a continuous variable, in the following, a discretized version is used which
corresponds to a signal downsampled to 1 Hz in time.

Spatial analysis of bridge vibrations. Modal analysis describes how the presence
of each structural vibration mode varies over space and time (see Supplementary
Note 1 for detailed formulation). The synchrosqueezed wavelet transform con-
structs time-frequency representations to quantify how frequency content in the
mobile-sensor data varies over time. In mobile acceleration data, the recorded
signal includes a mixture of the spatial vibrations of the bridge. The spatial analysis
approach in this paper consists of two steps: (i) transformation of GPS points to
bridge coordinates; and (ii) spatial segmentation of the bridge. This section
describes the first step; the following section describes the second step.

Figure 8 illustrates the first step of the process in which the GPS data are
mapped to points on the bridge. For this, it is helpful to use a digital map to select
points at the corners of roadway of the bridge which act as a frame of reference;
these points should coincide with the start and end of the bridge. With these
reference points established, the haversine formula can be used to calculate
distances between GPS points and transform them into another coordinate system.
The bridge coordinate system is viewed as a 2D Cartesian space defined based on
the reference points. Figure 8 shows how the reference points A and B on a map
(satellite view) are mapped to points A0 and B0 in the bridge coordinate system.
When possible, it is important to verify that the calculated distances, e.g., A0B0, are
consistent with the known geometry of the bridge. In addition, the quality of the
GPS data should be inspected. Once the sensor positions are represented in the
bridge coordinate system, the signal-to-noise ratio (SNR) of the points will vary for
each dimension; generally, for smartphones, the SNR will be significantly higher in
the primary traveling direction (parallel to the roadway, "Bridge x” in Fig. 8). In this
introductory application, it is sufficient to use only one dimension, e.g.,
x-coordinates, when describing the locations on the bridge at which data is being
collected. In further applications, it may be necessary to use both dimensions.

Spatial segmentation of a bridge. A fixed number of discrete, uniform over-
lapping segments are defined over the length of the bridge. The start and end of the
spatial segmentation scheme are consistent with the reference GPS points chosen
earlier to coincide with the bridge coordinate system. Figure 1 shows discrete
segments along the length of the bridge which have two defining parameters: the
segment length, c, and the distance between the centers of adjacent segments, Δs.

The overlap of two adjacent segments is then a function of c and Δs, namely,
co= c− Δs. The bridge segments, bars= [s1, s2, . . . , sM], collectively define an
interval in one-dimensional space, ½s1 � c

2 ; sM þ c
2�. Connecting these to the mea-

surements, for the ith bridge crossing, there is a discrete set of rij points that fall
inside each bridge segment.

When selecting these parameters, it is important to consider the vehicle speeds,
sensor sampling rates, and the geometry of the bridge, among other factors. The
spatial segmentation of the Golden Gate Bridge was set to have a large number of
wide segments. A large number of segments (largerM and smaller Δs) increases the
number of total entries in the frequency candidates vector, f̂ s (see below), which
improves the resolution of subsequent PDF estimates. Furthermore, wide segments
(larger c) improve overall robustness to noise; if the frequency net in space is too
small, then noisy, spontaneous frequencies, that are unrelated to the bridge’s
vibrations, may appear to be statistically significant. For the primary application
(controlled data), the spatial segmentation scheme was set to have segment centers
separated by 10 meters, or 129 equally spaced segments (Δs= L/129) and the width
of each segment was set to 258 meters (c= L/5, 20%). For the ridesourcing data
(uncontrolled), the width of each segment was c= 3L/20 (15%).

Determination of the Most Probable Modal Frequencies (MPMFs). The space-
frequency representation of the signal (Txi

ð f ; rÞ) is used as a basis of a statistical
aggregation method that aims to select frequencies that are present consistently in
the bridge vibrations and among the vehicle trips in our experiments. Note that a
later extension of our method would easily allow to focus on frequencies that are
present only in some locations, following the pattern of the associated spatial mode.
The end result of our method is a probability distribution with peaks representing
possible modal frequencies, from which the most probable modal frequencies
(MPMFs) are identifiable.

The first step is to identify the local maxima within jTxi
ð f ; rÞj, which are related

to the ridges of the synchrosqueezed wavelet transform (see the following section
for further details on this process).

Start with a set containing all local maxima of jTxi
j for each discrete location rij

for each bridge crossing. Only statistically significant peaks from each set will be
kept, i.e., those with a prominence in the top α percentile of the corresponding
empirical cumulative distribution function (CDF). The result is a family of piece-
wise ridges for each dataset, as illustrated in Fig. 2a. The process is repeated for all
N datasets. Then the ridges inside each bridge segment, sm 2 �s are aggregated for
each bridge crossing.

Next, with a shared bridge segmentation scheme, the prominence values of all
statistically significant ridges are aggregated among the whole dataset as well. In
other words, all datasets are aggregated (see Fig. 2) to produce a matrix of the
cumulative prominence values, PN, with respect to all frequencies, f, and all
segments, �s. Then, for each sm 2 �s, the prominence values are sorted in descending
order, and the frequencies associated with the top NR values are stored in a vector
f̂ sm , which is assigned to sm. These vectors are combined to create the frequency

candidate vector f̂ s , which has M ×NR entries.
The final probability distribution function (PDF) (shown in Fig. 2c as a

histogram) is produced using the frequency candidate vector. This empirical PDF is
expected to be multimodal, with each mode representing a possible vibrational
frequency. The MPMFs can be defined as a subset of the possible modal
frequencies having the largest amplitudes. At this stage, the problem of
determining the MPMFs, relies on the method used for estimating the PDF, as the
MPMFs are local maxima in the PDF. A kernel density estimation is used to fit a
smooth, nearly continuous PDF; this improves the precision with which MPMFs
are estimated.

The procedure for computing the MPMFs for N datasets is summarized below.
In addition to defining bridge segmentation parameters, it is necessary to select
parameters α and NR which impact ridge estimation and spatial frequency
aggregation. In practice, α ≤ 0.05 and NR= 5 were used.

1. Vertical acceleration signal xi(t) and linear position in bridge coordinates
ri(t) is extracted from the measurements for i= 1, 2,…N datasets.

2. Acceleration signal is filtered and downsampled to the desired frequency fcut.
Time and space are discretized accordingly: tij= j/fcut and rij= ri(tij) with
j= 1, 2…Mi. Note that time and space discretization along with the value of
Mj can differ among the measurements in the dataset if vehicles travel at
different speed. Note that this is not an issue because a common spatial
segmentation of the bridge is implemented later. The Golden Gate Bridge
analyses used fcut= 0.5 Hz.

3. Synchrosqueezed wavelet transform is calculated for each measurement
separately, resulting in the Txi

ð f ; tijÞ time-frequency representation of the
signals. Morlet wavelets were employed in this study.

4. The frequency-time pairs are mapped to frequency-space pairs, i.e.,
(f, tij)→ (f, rij). This change of variables remaps the synchrosqueezed
wavelet transform accordingly Txi

ð f ; tijÞ ! Txi
ð f ; rijÞ.

5. Define Pi(f, rij) as the local maxima of jTxi
ð f ; rijÞj ∀ i, j

6. Select a value for α. Compute FPi
ð f jrijÞ, the empirical CDF of Pxi

ð f ; rijÞ ∀ i, j.
Define the statistical ridges as the values in the upper α-percentile:
Pi(f1−α, rij) where f1−α are the values associated with FPi

ð f 1�αjrijÞ>1� α
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7. Aggregate the local frequency maxima using the summation
PN ð f ; smÞ ¼ ∑N

i¼1 ∑rij2½sm�c
2;smþc

2ÞPxi
ð f 1�α; rijÞ

8. Select a value for NR. Define f̂ sm as the extracted frequency vector which
contains the frequencies corresponding to the NR largest values in PN(f, sm).
Combine all M vectors to construct the frequency candidate vector f̂ s ¼
½f̂ s1 ; f̂ s2 ; :::; f̂ sM � (this constitutes aggregation in space).

9. Finally, estimate the PDF of f̂ s using kernel density estimation, from which
the most probable modal frequencies (MPMFs) are determined. For
reference, in this study Gaussian kernels were used with a bandwidth equal
to 1% of the frequency range.

Piecewise wavelet ridges. A ridge is a sequence of frequencies, f(r), that follow a
curve and trace maximum amplitudes87–90. Ridge extraction methods usually
consider either the transform’s modulus or its instantaneous phase. In applications
with noisy data, modulus-based methods are often preferred91,92. Ridge extraction
methods generally look for a smooth function (or set of functions), r→ ∣
Tx(fR(r), r)∣, that concentrates most of the energy in the time-frequency domain.
The nature of the estimated ridges rely on the complexities of the underlying signal
components as well as the extraction method. For example, if a signal has only one
component, x1(t)=A1(t)cos(2πφ1(t)), its true ridge is unique and equivalent to the
instantaneous frequency function, fRðtÞ ¼ φ0ðtÞ86.

In these applications, the signal has numerous underlying components, which
have distinct characteristics that influence ridge extraction: (i) the components
have time-invariant frequencies (a direct result of Eq. (S2) in Supplementary
Note 1); (ii) the components’ amplitudes are intermittent; they are, by nature,
stochastic and can vary quickly in time as they rely on an unknown dynamic
excitation (p(t) of Eq. (S1) in the Supplementary Note 1); (iii) as a corollary, some
components are expected to be present in one dataset, but absent in another. These
characteristics call for a multiridge detection technique93,94 that is capable of rapid
switching between components whenever one disappears or another emerges. The
approach used here is motivated by the method developed by95 for speech analysis,
which can accommodate rapid changes in spectral peaks, i.e., sudden births and
deaths of components in time.

Robustness analysis. To estimate the robustness of the methods, all analyses were
repeated for random samples selected from the data. For NS= 1, 5, 10, 20, 30, 40,
50, 60, 70, 80, and 90, NS bridge trips were selected at random and analyses were
repeated considering this random sample as an input. For each NS value, random
sampling and estimation are repeated 100 times; in each case, the top frequency is
selected (mode of the histogram created from the corresponding f̂ s values) and
compared with the candidate true modal frequencies of the Golden Gate Bridge.
The average error is calculated based on the closest candidate and also count the
number of times the error is less then 5%.

Furthermore, the bridge-vehicle system is simulated and the signal is analyzed
with the same methodology. This process yields similar results to what was
observed in the real data, as shown in Supplementary Note 3 and Figs. S1 and S2.

Data availability
All figure source data and raw data for the "Controlled Data” analyzed in this paper have
been uploaded to Dryad as "Source Data for Crowdsourcing Dynamic Bridge Monitoring
with Smartphone Vehicle Trips" (https://doi.org/10.5061/dryad.zs7h44jcw). Any access

to the controlled data must be cited as shown in96. The uncontrolled ridesourcing data
that support the findings of this study are available from Uber but restrictions apply to
the availability of these data, which were used under license for the current study, and so
are not publicly available. Data are however available from the authors upon reasonable
request and with permission of Uber. The partially controlled data that support the
findings of this study are available from ANAS Sp.A. but restrictions apply to the
availability of these data, which were used under license for the current study, and so are
not publicly available. Data are however available from the authors upon reasonable
request and with permission of ANAS Sp.A.

Code availability
Code to replicate this research can be requested from the corresponding author.
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