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A dolphin-inspired compact sonar for underwater
acoustic imaging
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Underwater imaging sonars are widely used for oceanic exploration but are bulky and

expensive for some applications. The sonar system of dolphins, which uses sound pulses

called clicks to investigate their environment, offers superior shape discrimination capability

compared to human-derived imaging sonars of similar size and frequency. In order to gain

better understanding of dolphin sonar imaging, we train a dolphin to acoustically interrogate

certain objects and match them visually. We record the echoes the dolphin receives and are

able to extract object shape information from these recordings. We find that infusing prior

information into the processing, specifically the sparsity of the shapes, yields a clearer

interpretation of the echoes than conventional signal processing. We subsequently develop a

biomimetic sonar system that combines sparsity-aware signal processing with high-

frequency broadband click signals similar to that of dolphins, emitted by an array of trans-

mitters. Our findings offer insights and tools towards compact higher resolution sonar

imaging technologies.
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Underwater imaging sonars are an essential technology for
oceanic exploration and have been in use for many decades
in several applications. Biomimetic sonars that are inspired

from marine mammals such as dolphins are an emerging develop-
ment in this field1. The biological sonar of dolphins surpasses any
current man-made imaging sonars of similar size and frequency2–4.
Dolphins can use their biosonar to identify objects varying in size,
shape, and material5. Behavioural studies demonstrate that dolphins
can sense objects both visually and echoically, and transfer infor-
mation across these sensory modes6,7. This behaviour is demon-
strated by echoic-to-visual (EV) cross-modal matching-to-sample
(MTS) experiments, in which a dolphin uses echolocation to inspect
a sample, and identify the match from amongst alternative objects
through its visual sense8.

Obtaining a deeper understanding of how dolphins process
echolocation information is challenging. The dolphin brain and
sonar are complex systems, which makes it hard to examine their
individual aspects like shape-recognition, without isolating others
such as behavioural biases. Moreover, the instrumentation
required to record or transmit dolphin-like signals with high
frequency and bandwidth has only been slowly evolving over the
past decades4. In order to better understand the shape-
recognition capabilities of dolphin biosonar with an aim to
replicate it in a biomimetic system, we conduct EV-MTS
experiments in a pool8–10 (Fig. 1a). In these experiments, the
dolphin is able to perform certain target-discrimination tasks.
This allows us to better observe the capabilities of dolphin
echolocation using high-frequency recording equipment. Fur-
thermore, we develop a biomimetic-sonar system that mimics the
dolphin’s biosonar by using (1) a broadband dolphin-like trans-
mit signal, (2) emitted by high-frequency transmitters placed at
different locations, and (3) multiple repeated clicks. We use this
to insonify the same objects used in the EV-MTS trials and
analyse the recordings. The aim is to determine what sonar
performance we can obtain and what processing may be required

to differentiate targets as effectively as the dolphin. From a
practical viewpoint, this helps evaluate techniques that may help
enhance the performance of man-made sonar.

While dolphins are capable of shape recognition, it is unclear
how they perform this task well given their limited sensory
aperture. In some cases, dolphins may also have to face noisy
scenarios where the transmit energy they can expend in each click
may be inadequate. Their use of repeated interrogation clicks
during transmission11 may help them overcome noise-induced
false alarms because target returns are often consistent while
noise is not12. Furthermore, prior research shows that dolphins
use beam-steering in transmissions during target recognition8,13.
This combined with the dolphin’s movement may ensure that
different aspects of the targets are adequately insonified via a
multi-look evaluation, which is important to overcome masking
effects that may hide features in some cases12,14.

For the reception, one modality possibly used in odontecetes is
via their lower-jaws11,15–19. Irrespective of its details, the aperture
of a dolphin’s sensor array while acoustically scanning a target is
limited in the cross-sectional plane of its head, which has a dia-
meter D usually less than 20 cm20. Considering this limited size,
dolphins perform well in terms of fine angular resolution, viz. the
ability to distinguish small details or features located close to each
other. We try to quantify this in the context of conventional
narrowband sonar, in the following. Dolphins are known to
transmit clicks with different spectral content21. For typical bot-
tlenose dolphin clicks with most energy within 110–130 kHz11

(Supplementary Fig. 2) which correspond to type-E clicks as
classified by Houser et al.21, a nominal click frequency is around
120 kHz. When acoustically imaging using a head-sized receiver
and a signal of wavelength λ using narrowband sonar, the angular
resolution is ~λ/D radians22. Based on this, we would expect its
lower limit on an angular resolution to be around 3.6°. However,
dolphin experiments23 show they can achieve a angular resolu-
tion as fine as 1°.

Fig. 1 Set-up used for echoic-to-visual matching-to-sample and biomimetic-sonar trials. a Pool set-up. b Box housing the visual alternatives.
c Underwater box containing the sample object, where the dolphin performs the echoic interrogation. d Schematic of the underwater set-up used for the
trials indicating the sample box, object, Plexiglas screen, hydrophone array and approximate location of dolphin (or biomimetic transmitters). e Biomimetic
transmission system with three co-located transmitters. f Set-up used for biomimetic-sonar trials with underwater transmitters facing the sample object.
g An array of 16 hydrophones is placed behind the Plexiglas screen covering the sample object, recording the acoustic information during the trials.
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This performance looks impressive also in light of the number
of sensors that a narrowband sonar receiver would need to
achieve this. Even if we consider a receiver aperture spanning a
dolphin’s head size, a large number of sensors covering this
region would be required to adequately perform acoustic sensing.
This is because narrowband processing requires that neighbour-
ing sensors cannot be separated by more than half a wavelength
of spacing. Exceeding this limit leads to spatial aliasing—dupli-
cation of targets in the sonar’s output visualisation in the form of
repeated images known as grating lobes22. If we were to use a
two-dimensional circular head-sized sensor array with area πD2/
4, the number of sensors required to fully populate it and avoid
aliasing would be > πD2

4 λ=2ð Þ2, i.e. at least 773. Using current man-

made technology, it is impractical to design or fabricate arrays
with such a large number of sensors packed within a small region,
let alone process such a sizeable amount of data. Thus, man-made
sensor arrays operating at these frequencies and aperture would
have to be sparse, i.e. with fewer sensors than necessary to avoid
spatial aliasing.

One prominent advantage of dolphin biosonar that allows it to
outperform narrowband sonar is its use of broadband
signals12,21,24. A broadband frequency-domain sonar processing
approach using such signals can reduce the effect of grating lobes
to some degree. Such processing has been used for building bio-
inspired sonars14,25, including ones that use dolphin-like
signals24,26–30, and the performance advantages of using these
signals have been highlighted12,31,32. Biomimetic transmission
systems that are able to produce narrow directed beams have
been designed18,33–37, and bio-inspired receptors that mimic
those of porpoises have been developed38, with potential appli-
cations to miniaturised sonar systems. However, a compact sonar
still faces the limitation imposed on the reception due to sensory
aperture. Replicating the transmission system using a broadband

signal combined with multi-look transmitters alone does not
solve the problem without infusing additional information, as we
demonstrate later on. Given these challenges, the performance
demonstrated by the dolphin sonar gives us much to aim for.
Some studies tested whether the dolphins’ movement during
echolocation is key to their superior performance via an approach
similar to synthetic-aperture scanning, but found that movement
is not essential to the performance as they can use beam-steering
and shaping8,9.

While dolphins could use simple acoustic features such as
target strength of the echoes to perform echoic–echoic matching
of objects5,39, these are not necessarily helpful for EV-MTS tasks.
In many cases, dolphins have been shown to match object shapes
across visual and acoustic senses even the first time they are
presented with an object7,40. Some hypotheses have been put
forward that echolocation yields some mental pictorial repre-
sentation of the object41. In any case, it is obvious that the dol-
phin’s echoes during EV-MTS trials contain enough information
to reconstruct the shapes that it acoustically interrogates, or at
least features that allow target discrimination. There are no
visualisations of these in terms of target shapes in an interpretable
form using multi-sensor array recordings yet, though previous
works have used such arrays13,42–44 for objectives like testing the
transmit-beam focusing hypothesis.

Here, we investigate what sonar processing is required to
reconstruct the object shapes that the dolphin acoustically
interrogates, using the echoes received by the dolphin during the
EV-MTS trials. Subsequently, we replicate this processing on a
biomimetic sonar. We elucidate that infusing information on
target sparsity into the processing allows us to acoustically
visualise the object’s features better than conventional techniques.
We then examine the discrimination of these targets using a
quantitative metric. We show that the improved sparsity-aware
processing enables target discrimination using a compact sonar
set-up, thus taking us a step towards closing the performance gap
with dolphins who are able to discriminate the same targets. This
technology can be used for improved acoustic imaging, especially
in underwater environments where sound is an ideal sensing
medium— sound waves travel longer distances in sea-water than
electromagnetic waves1. The sonar’s compactness can make it
easier to mount on underwater robots used for ocean exploration.

Experimental design
The subject of this study is a 10-year-old male Indo-Pacific bot-
tlenose dolphin (Tursiops aduncus) named Ginsan, housed at the
Marine Mammal Breeding and Research Centre at Ocean Park,
Hong Kong, who has training and experience in EV-MTS tasks
and has been the subject of previous similar research8–10.
Research sessions consist of either EV-MTS trials (Fig. 1), or
biomimetic-sonar trials which replicate the acoustic part of the
former for a performance comparison. The EV-MTS trials’
objectives are to examine the dolphin’s capability to match objects
across sensory modalities (acoustic to visual), with the goal of
creating a biomimetic system to achieve good discrimination
performance under similar settings.

During the EV-MTS trials (‘Methods’), Ginsan has to match
different sample objects to one of several alternatives visually8.
Sample and alternative stimuli are presented to Ginsan’s echoic
and visual senses respectively (Fig. 1a–d and Supplementary
Movies 1 and 2). This ensures that the dolphin extracts infor-
mation on the object’s shape or its features from its click echoes,
to perform the task. In order to present stimuli to his echoic sense
only, an underwater anechoic box is developed (Fig. 1d). Several
sample shapes were used in the trials, of which four are con-
sidered in this study, named SQ (square, Fig. 2a), FF (double F,

Fig. 2 Bartlett processor visualisations with dolphin-echolocation data.
a, b SQ and FF objects used in the echoic-to-visual matching-to-sample
experiments, respectively. Bartlett visualisations using (c), acoustic dataset
#1 for SQ and (d) acoustic dataset #2 for FF sample objects, highlighting
shape features that can be matched to the sample's shape (white dashed
lines). The discrimination coefficients of these visualisations are 0.046 dB
and 0.005 dB (Table 1).
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Fig. 2b), OC and EL. SQ and FF are equated for reflective surface
area, thus ensuring their overall reflectivity is comparable.

The biomimetic-sonar trials are set up in a similar way as the
EV-MTS trials, mimicking the scenario during the dolphin’s
echoic interrogation, with the biomimetic-transmitter system
replacing the dolphin. During these, the system is mounted in the
pool in front of the object. Its size is comparable to a dolphin
head, and it consists of three co-located transmitters whose main
beams are pointed at the object (Fig. 1e). The transmitted signals
are broadband with a centre frequency of 120 kHz similar to the
type-E dolphin clicks21 recorded by us (Supplementary Fig. 2).
Each transmitter emits a click-train inspired by the repeated
interrogation approach used by dolphins12. Three transmitters
are used to ensure diversity in the angle at which the object is
insonified. Using each transmitter, we obtain different aspects of
the object during imaging, reducing the chances of missing out
object features due to shadowing (further discussion in ‘Meth-
ods’). This is inspired by the dolphin’s beam-steering
capability8,13, which allows it to target different parts of the
objects during echolocation. The biomimetic-sonar captures three
such different aspects, so its coverage is limited compared to a
dolphin which is free to use more beam directions during inter-
rogation. Moreover, the fixed set-up cannot fully emulate any
advantage the dolphin may obtain due to its movement, although
this is partly captured by the three different locations of the
transmitters. Previous work suggests that movement may not be
essential to the dolphin’s performance8,9. For both types of ses-
sions, a planar array of 16 sensors is placed in the sample box
recording the acoustic information (Fig. 1d, g). Its width and
height are roughly double the diameter of a bottlenose
dolphin’s head.

Data preprocessing and modelling
For the dolphin-echolocation trials, we use four acoustic datasets
recorded in September 2014 numbered #1 to #4, which contain
recordings of Ginsan’s transmissions and their echoes with a high
signal-to-noise ratio (SNR). During the sessions in September
2014, Ginsan is able to find the correct alternative in 13 out of 20,
i.e. 65%, of the 4-alternative trials where several different sample
objects were used in the study8,9 (Fig. 3). As compared to a
baseline random-chance score of 25%, this is significantly higher,
statistically (P= 1.837 × 10−4, n= 20 independent experiments),
showing that Ginsan performs better than random-guessing using

the cues from acoustic interrogation. Specifically, Ginsan is cor-
rect in all six of the tasks where the samples are SQ or FF, i.e.
100%, which is also significantly higher than random chance
(P= 2.441 × 10−4, n= 6 independent experiments). From the
biomimetic-sonar trials, we use four datasets numbered #5 to #8
containing biomimetic transmissions and echoes.

We preprocess the data to extract the listening periods for all
clicks employed for the interrogation. The main processing step
involves applying a source-localisation technique based on
matched-field array processing22,45. Based on the available data,
the processor visualises the region insonified by the dolphin or
biomimetic transmitters during the experiment. To do this, we
first require a forward model of the echoes corresponding to each
transmitted click based on the physics of the set-up, which we
develop. All these components are described in ‘Methods’.

Results
Bartlett processing. Standard array-processing-based visualisa-
tion techniques like Bartlett have been in use for a long time22,45.
To tap into the information across the available bandwidth in the
echoes, we use broadband Bartlett processing which averages the
output for different frequency bands (see ‘Methods’). This is able
to exhibit some shape features of the sample in its visualisation
(Fig. 2c, d). However, these visualisations are noisy due to the
effect of grating lobes, which arise in the output at each frequency
band when conventional processing is applied on data from an
array of sensors separated by a distance greater than λ/222. Our
array’s sensors are separated by at least 12.5 cm, which exceeds
the half-wavelength limit for the frequencies considered. Broad-
band Bartlett processing smears out these grating lobes to some
degree via the naive procedure of averaging across frequency
bands, but does not suppress them entirely.

We now pose the question—are there enough features in the
processor output to distinguish the sample in the box from
another alternative? To answer this, we superpose the shapes of
the candidate alternatives onto the outputs, and evaluate which of
the superpositions show more overlap. We compute the amount
of overlap as the correlations of outputs against shapes of the
sample and alternative object, based on matched filtering
(‘Methods’). A metric called discrimination coefficient R,
represents how much more the output is correlated with the
sample rather than the alternative. This is a measure of how well
the processor output enables us to choose the correct sample
versus an alternative. We specifically examine discrimination
between the objects SQ and FF (Fig. 2a, b) since the dolphin
exhibited more proficiency in distinguishing these in the EV-MTS
trials. If the sample for a trial is SQ, the alternative compared
against is FF, and vice versa. Datasets #1 to #6, which have either
SQ or FF as the sample, are considered for testing SQ-FF
discrimination. The R values computed for Bartlett outputs
(denoted with B) for datasets #1 to #6 are tabulated in Table 1
(data available in ref. 46).

Fig. 3 Dolphin’s performance in 4-alternative echoic-to-visual matching-
to-sample trials. Ginsan was correct on 13 of his choices out of 20 trials
where several different sample objects were used in the study. He got 6
choices right in all 6 trials where the sample was either SQ or FF, two of the
shapes considered in the current study.

Table 1 Discrimination coefficient R computed for SA and
Bartlett processor outputs from different datasets.

Dataset number Sample object RB (dB) RSA (dB)

1 SQ 0.046 3.97
2 FF 0.0053 1.44
3 SQ 0.0057 1.26
4 FF 0.0149 1.85
5 SQ 0.21 3.6
6 FF 0.020 1.92

A larger value of R indicates that the processor output contains more features showing evidence
of the correct sample’s presence against the alternative.
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The RB values for the dolphin-echolocation data (#1 to #4) are
close to zero. This indicates that the Bartlett outputs computed on
the same acoustic data available to Ginsan during the task are not
clear enough to facilitate target discrimination. We recollect that
the dolphin completed the EV-MTS task successfully in 100% of
the trials. One reason is that the dolphin’s sonar system
inherently possesses more information such as the transmit time
and signal, which are unknown to us, because so far we have only
been ‘listening in’ to its interrogation. This leaves our processors
at a disadvantage when processing the dolphin-echolocation data,
though the exercise reaffirms to us that the acoustic information
can be visualised, and that we should aim for better performance.
In order to gauge our processors’ performance without this
disadvantage, we test discrimination of SQ and FF with our
biomimetic sonar, which makes the transmit time and signal
available to us.

When visualising the biomimetic-sonar echoes, Bartlett
processing (Fig. 4a, b) performs better than it did with the
dolphin-echolocation data (Fig. 2a, b), due to the incorporation of
knowledge of the transmit time, signal, and source location.
However, the outlines in the Bartlett outputs are still blurry and
the discrimination coefficients are not large, indicating some

features are observable but not clear enough to facilitate confident
discrimination of the objects. The processor’s limited discrimina-
tion performance does not seem to add up given that the dolphin
was able to pick the correct alternative in all the EV-MTS trials
where the sample is SQ or FF. This inspires us to move beyond
conventional processors to obtain better visualisations that
facilitate clearer target discrimination using additional prior
information. Humans, too, are known to use prior information
for sensing with limited data47–50.

Sparsity-aware broadband processing. To bridge the perfor-
mance gap noted above, we design a smarter processor that uses
information missing in the conventional approach discussed so
far. The first piece of information that is not effectively used in
the Bartlett approach is the prior knowledge on the sparsity of the
object. The samples explored in this study occupy only a small
fraction of the space within the interrogated box. Moreover, each
click results in well-defined acoustic returns from only some
portions of the objects. We infuse this information into our

Fig. 4 Comparison of biomimetic-sonar data visualisations using
sparsity-aware (SA) and Bartlett processing. a, b Bartlett visualisations
with datasets #5 and #6 respectively. Discrimination coefficients of these
are 0.21 dB and 0.02 dB. c, d SA visualisations for datasets #5 and #6
respectively. e, f SA visualisations for datasets #5 and #6 respectively
shown with shading masks in the shape of the samples highlighting the
matching features. The discrimination coefficients of these are 3.6 dB and
1.92 dB, respectively.

Fig. 5 Sparsity-aware (SA) processor visualisations with dolphin-
echolocation data, showing improvement over Bartlett processing (Fig.
2). a, b SQ and FF objects used in the echoic-to-visual matching-to-sample
experiments. c, d SA processor visualisations using datasets #1 and #2,
highlighting shape features that can be matched to the sample's shape
(white dashed lines). e, f SA processor visualisations using datasets #1 and
#2 with superposed shading masks in the shape of the respective sample,
highlighting matching features. These visualisations yield discrimination
coefficients of 3.97 dB and 1.44 dB, respectively.
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processing by tuning it to search for sparse solutions, so that it
paints the target with only a small number of voxels.

The second piece of information that is not efficiently used in
Bartlett's processing of the dolphin-echolocation data is the
broadband nature of the clicks (Supplementary Fig. 2). In the
Bartlett approach, recall that we are limited to computing an
output for each frequency component separately. Subsequently,
we average the output components across frequencies, leaving the
final image noisy (Fig. 2c, d). This does not effectively utilise the
information across multiple frequencies. For example, voxels that
the processor evaluates as being occupied by the object at some
frequency bands, may not be evaluated as being occupied at other
bands, and in the final stage, an average of these separate
inconsistent evaluations at different frequencies is visualised.
Better suppression of noise and grating lobes can be gained if the
multi-frequency information is utilised during the processing
itself, but we are forfeiting this if we combine this information at
the output stage after processing using the conventional method.

How can we use broadband information better than conven-
tional processors? To answer this, note that if a recording
contains a broadband echo, it manifests as a simultaneous energy
increase across a large spectrum of frequencies (Supplementary
Fig. 2). This information is particularly useful when a broadband
signal is considered because the processor can check for
consistency across a larger number of frequency bands. We use
this information by designing an approach that seeks solutions
where there is consistency in the energy level across frequencies
corresponding to detected echoes, during the processing itself. In
doing so, we better exploit the broadband advantage offered by
the dolphin’s transmit signal.

To improve our visualisations and incorporate these two pieces
of information, we develop a sparsity-aware (SA) processor based
on the compressed sensing philosophy (‘Methods’)51,52. Com-
pressed sensing-based approaches work well in reconstructing
signals from sparsely sampled data52. The SA processor ensures
sparsity information is used by minimising a cost function based
on a p-norm (with p equal or close to 1) to obtain its output53.
Consistency information is used by ensuring the visualisation is

consistent across frequency bands considered (detailed explana-
tion in ‘Methods’).

We generate SA processor outputs for the dolphin-
echolocation datasets (Fig. 5 for #1 and #2) and biomimetic-
sonar (Fig. 4, c and d for #5 and #6). We also tabulate the
discrimination coefficients RSA (for SA processing) with datasets
#1 to #6, in Table 1 (data available in ref. 46). A comparison of
Figs. 5 and 2, and the panels of Fig. 4 demonstrates that SA
processing yields clearer outputs than Bartlett - the grating lobe
levels and fuzziness are suppressed, and the outputs show
discernible shape features matching the sample objects. Addi-
tional results using the SA processor with dolphin-echolocation
datasets #3 and #4 (Supplementary Fig. 3) and biomimetic-sonar
datasets #7 and #8 (Fig. 6) further elucidate the processor’s
capability to capture some features of the sample in its
visualisation. Figure 6 shows the outputs for the objects OC
(Fig. 6a) and EL (Fig. 6b). Although some features are missing or
distorted in the visualisations, there are enough to distinguish the
objects.

For all datasets considered, the large RSA values which are
greater than the corresponding RB values (Table 1) further
illustrate that SA processing does better than conventional
processing and yields enough features to distinguish the sample
object from an alternative. The output components that
contribute to large RSA values are shown by superposing the
shape masks in Figs. 4e, f and 5e, f.

A table comparing the information used by different
approaches is shown in Fig. 7. The Bartlett processor applied to
the dolphin-echolocation data uses the least amount of informa-
tion, whereas the SA processor applied to the biomimetic-sonar
data uses the most information. Consequently, the performance
of the SA processor with biomimetic-sonar data (Fig. 4e, f) is the
best. Furthermore, we demonstrate the benefits of repeated
interrogation in the SA processor outputs in Supplementary
Fig. 5. The use of additional clicks yields clarity improvement in
the processor outputs due to better noise suppression.

Discussion
Dolphins’ superior acoustic imaging performance compared to
man-made sonars clearly indicates a sophisticated processing
system well-evolved for the task. We conduct the EV-MTS trials
to examine their shape-discrimination capability, by guaranteeing
that Ginsan discerns the sample shape from the acoustic data to
perform his task. This allows us to gauge our biomimetic sonar
under similar conditions and gives us a performance goal to shoot
for. Ginsan’s good performance in the EV-MTS trials indicates
there is enough information in the echoes received during
acoustic interrogation to discriminate the shapes from alter-
natives. We visualise the acoustic information by generating a
spatial representation from the received echoes using matched-
field processing. To the best of our knowledge, this is amongst the
first attempts that successfully visualise the acoustic information
in dolphin-sonar echoes with array recordings. Since the visua-
lisations are formed from the same information available to
Ginsan, they allow us a fair evaluation against dolphin biosonar
using our own processing.

Our biologically inspired sonar system uses high-frequency
broadband transmitters emitting dolphin-like signals, repeated
interrogation with multiple clicks, and different transmitter
locations to get multiple aspects of the target, similar to the
advantages a dolphin-biosonar system enjoys. If conventional
processing is used, the visualisation clarity is limited because the
reception system’s compactness and sparse sampling leads to
grating lobes in the output, and the target-discrimination per-
formance possible with this does not look as convincingly good as

Fig. 6 Sparsity-aware processor visualisations with objects OC (octopus)
and EL (elephant). a, b The sample objects OC and EL. c Output from
dataset #7 where OC is the sample. d Output from processing the first
transmitter's click in dataset #8 where EL is the sample. The visualisation
using all three transmitter clicks is similar but with the horizontal bar on the
right more prominently seen (see Supplementary Fig. 4).
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the dolphin’s. This demonstrates that with the given hardware
and physical set-up, the target-discrimination performance we
can achieve is limited if additional information is not used. We
surpass this limit using SA processing, producing clearer outputs
where grating lobes are suppressed using the information on
sparsity of the targets, and information on the cross-frequency
consistency of the signals. This improved processing enables
better shape discrimination using data from both the dolphin and
biomimetic-sonar. This elucidates how incorporating additional
prior information such as sparsity, and better exploiting the
broadband nature of the signal, can help us improve upon the
conventional processing that is widely used in man-made
sonars today.

The SA processing method is powerful enough to reconstruct
identifiable shape features using just three clicks (one per trans-
mitter) allowing it to be operationally fast. Furthermore, it uses
only 15 sensors which are undersampling the space and span a
size on the order of the dolphin’s head size, thus beating the size-
performance trade-off faced by current-day sonars. If additional
clarity is needed in noise-limited environments, the sonar’s
repeated interrogation feature can help it overcome the noise by
using multiple clicks until the image is clear enough.

Overall, this compact biomimetic sonar is able to visualise
shapes and facilitate target-discrimination underwater. This sys-
tem could be of use in underwater sensing, or feature identifi-
cation for navigation. Its compact size makes it suitable for
mounting on small underwater vehicles, paving the way for next-
generation oceanic exploration.

Methods
Methodology for EV-MTS trials. Ea
ch trial is conducted as follows8. At the start of each trial, a sample object is placed
inside the box 20 cm away from the screen in the dolphin’s absence. Alternative
objects are presented in air in display boxes (Fig. 1b), thus ensuring they are
accessible to the dolphin’s visual sense only, as he cannot effectively echolocate in
air7. During the trial, an assistant switches on a bubble curtain in front of the object
to block any echolocation before the dolphin is positioned in front of the box.
When the dolphin is positioned to start his interrogation, the bubble screen is
switched off via a sensor which is synchronised with the acoustic recordings. The
trainer sends Ginsan into the experiment pool. The dolphin enters the pool and
echoically interrogates the sample object in the box underwater, while his trans-
missions are recorded. Once Ginsan has enough information, he swims over to the
other side of the pool where the alternatives are placed. Via this set-up, Ginsan is
allowed to freely control the duration and position of his acoustic interrogation,
and also to move around during this period. On a cue by the experimenter, the
blinds covering the objects are pulled up revealing all visual alternatives simulta-
neously. The dolphin inspects the alternatives and presses the response paddle
underneath his chosen object. An external observer announces if the dolphin made
a correct choice and the trainer reinforces the animals with a whistle and a fish if
the choice is correct. After a brief interval during which the sample stimuli are
changed, the next trial is started. During this, the dolphin stays in an adjacent pool,
thus preventing him from seeing the objects placed inside the box or prematurely
echolocating on the next sample. Similarly, to ensure blind and unbiased trials,

neither does the person operating the sample box know what alternatives had been
placed in the alternative boxes, nor does the person operating the alternative
display boxes have any knowledge of the sample object. The trainer of the dolphin
also stays at the entrance of the pool and does not interact with the dolphin until
the trial is over. Moreover, the box setups used ensure that no unintentional cueing
of the dolphin is possible. Steps are also taken to randomise the objects across the
trials. During the 20 trials, the alternatives are all placed in different orders using a
prepared pseudorandom configuration, and each of the four locations have the
correct choice an equal number of times. The samples presented to the dolphin are
also selected using a pseudorandom configuration, which ensure that the same
sample does not repeat consecutively, in order to reduce recency bias on part of the
dolphin. The sample configurations during sessions also ensure that all four objects
of the study are repeated an equal number of times, thus ensuring it was a balanced
study. This research was fully approved by the Institutional Animal Care and Use
Committee of both the National University of Singapore and Ocean Park Hong
Kong, and all experiments were performed in accordance with relevant guidelines
and regulations.

Construction of underwater sample box used in trials. The underwater anechoic
box is developed from polyvinyl chloride (PVC) schedule-80 pipe and fittings to
house the sample object, with an opaque Plexiglas screen in the front that is
transparent to sound (Fig. 1d)8. Attached to the side panels are 6-mm-thick
neoprene sheets that block echolocations from entering from the side. Thus,
acoustic sensing is the only way for Ginsan to perceive the sample. The objects are
made from 32 mm diameter white schedule-40 PVC pipe and fittings filled with air,
which increases their acoustic reflectivity underwater. The objects are suspended in
the box using a PVC holder that can be lowered and attached to the rear side of the
box, ensuring that they are always placed in the same location during the trials.

Biomimetic-sonar hardware. The transmitter is a custom-made split beam
transducer54 with a nearly flat frequency response within 105–140 kHz. The 10-dB
beam-width at 120 kHz is roughly 20°, which is wide enough to ensure that all
three transmitters beams cover the insonified sample object at the range con-
sidered, in line with recommendations in previous biosonar work12. The total sonar
device size is within a 36 cm diameter circle excluding the mechanical parts used
for mounting, which is comparable to the size of a dolphin head. During the trials,
the sonar is mounted at a position similar to the dolphin’s location during the EV-
MTS trial. For transmissions, a pre-recorded short-duration broadband click signal
which has good autocorrelation, is fed to the transmitter at 2.5 MHz sampling rate
to obtain good time resolution on the transmitted signal. The click repetition rate is
set at 80 Hz, based on the observed rates used by dolphins for object interrogation
at the target ranges considered in the EV-MTS trials. Each transmitter transmits for
5 s each.

Recording hydrophone array. For both the EV-MTS and biomimetic-sonar ses-
sions, an array made of 16 Reson TC4013 miniature reference hydrophones55 is
placed in the sample box 3 cm away from the Plexiglas screen recording the
acoustic information (Fig. 1d, g). The hydrophones’ frequency response is nearly
flat within 5–140 kHz, and has a sensitivity of -211 dB ± 3 dB re 1 V/μPa. The array
was built by constructing a frame (87 × 78 cm) from 16mm schedule-80 PVC pipe
and fittings, and its size is comparable to that of the dolphin’s head. The signals
from the array are acquired after preamplification via two National Instruments
data acquisition systems consisting of a PXIe-1062Q56 8-Slot 3U PXI Chassis, a
PXIe-8108 Core 2 Dual 2.53 GHz Controller and two National Instruments PXI-
6133 32 MS Memory Series Multifunction data acquisition systems. Data are
acquired with a custom-written MATLAB software at 500 kSamples per second per
channel, which covers the frequency range containing most energy within the
clicks11.

Fig. 7 Information utilised in the different processing techniques and types of experimental data used in the study. The Bartlett processor applied to the
dolphin-echolocation data uses the least amount of information, whereas the sparsity-aware processor applied to the biomimetic-sonar data uses the most
information. Consequently, the performance of the SA processor with biomimetic-sonar data is the best amongst the approaches considered.
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Selection and preprocessing of acoustic data to extract echoes. For dolphin-
echolocation data analysis, we use four acoustic datasets recorded in two sessions in
September 2014 with high SNR in the 50–170-kHz band. These consist of 10-s-
long time series recorded at a sampling rate of 500 kHz with 16-bit resolution. The
data contain 150–500 echolocation clicks transmitted by Ginsan (Supplementary
Fig. 2a). For matched-field array processing, we choose from amongst trials in
which Ginsan’s response in the task is correct, since the acoustic data in these trials
is more likely to contain adequate information for target discrimination. The clicks
are transmitted with a duration of roughly 7.5 ms between them. The listening
period in the data after each transmitted click contains echoes returning from the
object (Supplementary Fig. 1b). We preprocess the data to extract the listening
periods for all the clicks.

In the case of the biomimetic-sonar trials, the click transmissions are
synchronised with the recordings. Hence, in this case, we select listening windows
based on the expected arrival time of the echoes. Since the transmit signal is known
beforehand, we matched-filter the recorded data with the transmit signal to
improve the SNR of the received echoes57.

A fast Fourier transform is applied on the data to convert it into a frequency-
domain form that we use for further processing. In the case of EV-MTS trials, the
echoes are not received equally strongly at all the hydrophones. Moreover, Ginsan’s
clicks vary in their energy content at different frequencies across the spectrum.
Thus, the SNR of the received echoes in the data varies across both space
(hydrophone locations) and frequency. For array processing, we only use the
frequency bands at each sensor where the average SNR across all clicks exceeds a
threshold of 0 dB. One out of the 16 sensors mounted on the Plexiglas screen is
faulty, and the acoustic data from the remaining 15 is processed.

Statistical significance testing. The statistical significance of Ginsan’s perfor-
mance improvement compared to random chance (25%) is analysed with the Scipy
package in the Python programming language using a one-tailed binomial test. A P
value less than 0.01 is considered statistically significant.

Transmit click identification and analysis in dolphin acoustic data. A spec-
trogram of dolphin-echolocation acoustic data from dataset #1 is shown in Sup-
plementary Fig. 2a. The transmit clicks are broadband in nature, and the frequency
content of clicks varies across time. This matches observations in the literature21

which note that dolphins employ clicks with differing spectral content. In this
work, we do not process clicks with different spectral content differently, but rather
focus on a single frequency band for processing all the clicks. To identify the
transmit clicks in the data, first the data is bandpass filtered within (50, 170) kHz
because the average SNR of transmit clicks across all sensors is usually highest in
this band (Supplementary Fig. 2b). Using the timings for when the bubble curtain
is turned off as a cue, the locations of the clicks are identified in the recordings
made at one sensor with large SNR. This is done by first thresholding the acoustic
data to identify large bursts of energy, and shortlisting the clicks amongst these by
taking into account the minimum separation observed between clicks (at least
4 ms) (Supplementary Fig. 1b).

Creating a noisy dataset from biomimetic-sonar data. To test the effect of noise
in the data, we add synthetically generated white Gaussian noise samples57 denoted
by the matrix N to the echoes extracted from the listening period in biomimetic-
sonar dataset #5, denoted by the matrix S. The standard deviation of noise added is
adjusted so as to obtain data with SNR of 20 dB. SNR is defined in decibels as

10:log10
kSk2;2
kNk2;2, where ∥.∥p,q denotes the p, q row-norm of a matrix—a q-norm

across each row of the matrix followed by p-norm along the resultant column.
Noise samples are generated using MATLAB.

Forward model for acoustic data. We present a frequency-domain model for the
echoes received at the hydrophone array. In the following, CM ´N denotes the set of
complex matrices of dimensionM ×N. Assume the region being interrogated spans
a 3D x–y–z Cartesian space defined by the limits x 2 ½xmin; xmax�, y 2 ½ymin; ymax�,
z 2 ½zmin; zmax�. The axes’ origin is located at the centre of the back wall of the
sample box. The z coordinate is considered positive in a direction pointing from
the wall towards the Plexiglas screen.

Assuming the hydrophones are omni-directional, the received signal x(m, f, k)
at the mth sensor at frequency f during the kth click’s listening period is given by

xðm; f ; kÞ ¼
Z zmax

zmin

Z ymax

ymin

Z xmax

xmin

ζðf ; kÞGx;y;zνx;y;zðkÞ

βx;y;zðf ; kÞγx;y;zðm; f Þ dx dy dz;
ð1Þ

where ζ(f, k) represents the transmitted signal’s Fourier transform coefficient at f,
νx,y,z(k) is the directivity of the acoustic source (dolphin/biomimetic-sonar) towards
the location (x, y, z), βx,y,z(f, k) is the transmission coefficient from the source to
(x, y, z), γx,y,z(m, f) is the transmission coefficient from (x, y, z) to the mth
hydrophone, and Gx,y,z is the reflection coefficient of the insonified region at
(x, y, z). Gx,y,z is also an occupancy indicator, i.e, ∣Gx,y,z∣= 0 if there is no object at
(x, y, z). For simplification, we discretise our search space into N 3D cubical voxels,

and approximate Eq. (1) by a summation over N voxels, as

xðm; f ; kÞ ¼ ∑
N

n¼1
ζðf ; kÞGnνnðkÞβnðf ; kÞγnðm; f ÞΔxΔyΔz ; ð2Þ

where subscript n denotes the nth voxel, and the voxel spacings Δx, Δy and Δz can
be set to 1 without loss of generality. We can express γn(m, f) as

γnðm; f Þ ¼ qγ;nðmÞ exp � i2πftnðmÞ
c

� �
; ð3Þ

where i ¼ ffiffiffiffiffiffiffi�1
p

, c is the speed of sound in the pool water, and tn(m) is the distance
from the mth sensor to the nth voxel. qγ,n(m) accounts for amplitude reduction due
to the spreading of the wave propagating across this distance. We assume the object
and the sensor array are far enough so that the received sound wave’s amplitude
changes slowly across the sensors as compared to the phase. This is a reasonable
assumption because in our experimental setups, the variability in qγ,n(m) across
sensors is <5%. Thus, the variation of amplitude between sensor–voxel pairs can be
neglected. Hence qγ,n(m) is approximately equal for all sensor–voxel pairs and is
denoted as a constant qγ. Likewise, βn(f, k) is given by

βnðf ; kÞ ¼ qβ;nðkÞ exp � i2πfpnðkÞ
c

� �
ð4Þ

where pn(k) is the distance from the transmitting source to the nth voxel during the
kth click, and qβ,n accounts for the amplitude reduction due to spreading of the
wave propagating across this distance. Again, we assume pn(k) is large enough that
variability in qβ,n(k) across clicks and voxels can be neglected and it is denoted as a
constant qβ.

Based on this generic model, we derive specific data models for the two cases—
when the transmissions are (1) from the biomimetic-sonar and (2) from the
dolphin-echolocation. In the biomimetic-sonar experiments, the transmit signal
ζ(f, k) is predetermined by us. Hence, in this case, we matched-filter the recorded
data with the transmit signal. Since the signal is broadband, its autocorrelation is a
narrow pulse58. If we assume this to be an impulse with a peak qζ, the spectral
representation of the matched-filter output of the received signal at frequency f,
sensor m and click k can be expressed as

yðm; f ; kÞ ¼ ∑
N

n¼1
~GnðkÞ exp � i2πf ðpnðkÞ þ tnðmÞÞ

c

� �
ð5Þ

where ~GnðkÞ ¼ qζqβqγGnνnðkÞ. Note that Gn= 0 or νn(k)= 0 implies that
~GnðkÞ ¼ 0. Hence ~GnðkÞ is an indicator of the presence of an object in the nth voxel,
provided the biomimetic-sonar’s transmit beam in the kth click is incident on it.
The reason we employ three transmitters in the biomimetic-sonar can now be
better understood in the context of this model—it is because some voxels may not
be insonified in some clicks (νn(k)= 0 for some n or k). So, we use multiple clicks
with varying directivity/angles of insonification to ensure ~GnðkÞ is non-zero in at
least some of the clicks for the occupied voxels.

The M × 1 matched-filtered output vector of the observed data at all sensors, at
each click and frequency, is defined as y(f, k)= [y(1, f, k), y(2, f, k). . . , y(M, f, k)]T,
where T denotes the matrix transpose. From Eq. (5), y(f, k) can be represented as a
sum of the matched-filtered signal vector and contributions from ambient noise as

yðf ; kÞ ¼ Aðf ; kÞgðkÞ þ vðf ; kÞ; ð6Þ
where the occupancy vector gðkÞ 2 CN ´ 1 has nth element ~GnðkÞ and vðf ; kÞ 2
CM ´ 1 represents the effect of noise on the matched-filter output. The matrix

Aðf ; kÞ 2 CM ´N has m, nth element Am;nðf ; kÞ ¼ exp � i2πf ðpnðkÞþtnðmÞÞ
c

� �
.

For the dolphin-echolocation data, only the sensor locations are known,
whereas the transmit parameters such as the dolphin’s acoustic source position,
transmit time and signal are unknown quantities. We deal with this lack of
information by representing the model differently as compared to the previous
case. We represent the received signal at each mth sensor as

xðm; f ; kÞ ¼ ∑
N

n¼1
~Gnðf ; kÞ exp � i2πftnðmÞ

c

� �
; ð7Þ

where ~Gnðf ; kÞ ¼ qγζðf ; kÞGnνnðkÞβnðf ; kÞ. This encompasses our lack of
knowledge of some signal parameters in addition to the voxels containing the
object, clumped together. Gn= 0 or νn(k)= 0 implies that ~Gnðf ; kÞ ¼ 0. Hence
~Gnðf ; kÞ is an indicator of the presence of an object in the nth voxel, provided the
dolphin’s transmit beam in the kth click is incident on it.

Based on the model in Eq. (7), we are in a better position to understand why not
all object features are captured in the dolphin-echolocation data visualisation. One
reason for this may be that Ginsan uses his beam directionality to insonify only
some parts of the objects to get enough features to identify them (νn(k)= 0 for
some n or k), which is why only some parts are captured prominently. In addition,
Ginsan mostly echolocates from a location vertically below the object. Thus, the
shape features in the lower half of the object are closer to Ginsan during the
echolocation, which may explain why only they are captured in all the outputs
rather than the features in the top half. There are also distortions in some features
such as a warping of the lower pipes of SQ and FF. This might be because the
prominent target echoes come from points along the tube which are not necessarily
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in a straight line. Also, it is possible that we are not reconstructing the dolphin-
echolocation visualisation as effectively as Ginsan because more information on the
transmit signal is available to him.

From Eq. (7), the M × 1 observed data vector x(f, k)= [x(1, f, k), x(2, f, k). . . ,
x(M, f, k)]T at all sensors, at each click and frequency can be represented as a sum
of the received signal vector and the ambient noise, as

xðf ; kÞ ¼ Bðf Þgðf ; kÞ þ wðf ; kÞ; ð8Þ

where the occupancy vector gðf ; kÞ 2 CN ´ 1 has nth element ~Gnðf ; kÞ, wðf ; kÞ 2
CM ´ 1 represents the ambient noise component in the data, and the matrix Bðf Þ 2
CM ´N has m, nth element Bm;nðf Þ ¼ exp � i2πftnðmÞ

c

� �
.

In order to use these models for visualising the data, we first fix the space to be
scanned via the processor—a gridded 2D x–y cuboidal region spanned by the
sample objects considered, with a grid spacing of 0.5 cm. Based on this, the
matrices A and B can be constructed for the two scenarios based on the known
information. The frequency-domain linear model developed above facilitates the
use of convex optimisation methods to solve the acoustic imaging problem.

Bartlett processing. We wish to interpret the echoes of the dolphin/biomimetic-
sonar clicks to understand what acoustic information is present about the shape of
the sample object. This involves inverting the acoustic data to estimate the occu-
pancy vector g for the relevant frequencies and clicks used in the experiment.

In the biomimetic-sonar experiments, the transmit parameters are known to us.
Hence, we can successfully reverse the phase change undergone by each frequency
component of the echoes during propagation from the transmitter to the object to
the sensors. We can scan for occupancy of the voxels in the search space by
coherently using the information on phase variation across sensors and
frequencies, by reversing the model-predicted phase changes undergone by the
wave incident at each voxel. Using the Bartlett approach, we estimate the
occupancy vector ĝB for each click as45

ĝBðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
F

i¼1
diag AHðf i; kÞyðf i; kÞyHðf i; kÞAðf i; kÞ

� �s
; ð9Þ

where fi is the frequency at the ith bin considered, F is the total number of
frequency bins considered, diag(.) indicates a vector composed of the main-
diagonal entries of its matrix argument, and H indicates the Hermitian transpose.
The Bartlett processor output vector hB 2 CN is obtained as the average of the
outputs for all the K clicks, as

hB ¼ 1
K

∑
K

k¼1
ĝBðkÞ ð10Þ

In the dolphin-echolocation trials, the transmit time of the click, transmit signal
and position of the source are unknown to us. Thus, we do not have enough
information to reverse the phase changes undergone by each frequency component
of the wave during its propagation. This prevents us from combining the
information across frequencies coherently. This lack of information is manifested
in terms of the frequency-dependence of the unknown quantity g(f, k) for the
dolphin-echolocation data case (Eq. (8)) which shows that we have N × 1 unknown
variables at every frequency, as opposed to the biomimetic-sonar case where we
had a single unknown vector for all frequencies.

Hence, for the dolphin-echolocation data, we cannot use coherent processing
which combines acoustic phase information in the data across frequencies and
provides better suppression of grating lobes and noise. This represents the
disadvantage when the transmission parameters are unknown to the processor, and
explains why Fig. 4 is qualitatively better than Fig. 5 and Supplementary Fig. 3. This
limitation applies to both the Bartlett and SA approaches and has been highlighted
in earlier works as well59. Thus, we resort to incoherent combinations across
frequencies. To do this with the Bartlett approach, we first estimate the occupancy
for each kth click and ith frequency as

ĝBðf i; kÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diag BHðf iÞxðf i; kÞxHðf i; kÞBðf iÞ

� �q
; ð11Þ

The Bartlett processor’s output vector is obtained as

hB ¼ 1
FK

∑
K

k¼1
∑
F

i¼1
ĝBðf i; kÞ ð12Þ

Notice that in this case, the magnitude (square root of energy) of the output is
averaged across frequencies, representing the incoherent summation.

Sparsity-aware processing. Conventional approaches such as Bartlett seek to
answer the question: ‘How likely is this spatial region to contain a portion of the
object?’. This question is tackled for each spatial region independent of other
regions. In contrast, sparsity-aware processing answers a different question: ‘What
is the minimum region occupied by the object that can explain the observed data?’.
The SA solution to whether each region contains the object or not is obtained by
considering the solution at other regions jointly.

In the biomimetic-sonar case, we can solve the inversion problem for g(k) if we
formulate it as a minimisation problem given by

ĝSAðkÞ ¼ arg min
gðkÞ

kgðkÞkpsubject to

∑
F

i¼1
kyðf i; kÞ � Aðf i; kÞgðkÞk22

� �
< ϵ;

ð13Þ

where ∥.∥p denotes the vector p-norm. For values of p close to or less than 1, this
minimisation enforces sparsity in the number of object-occupied (active) voxels in
ĝSAðkÞ. To be more specific, the processor estimates g(k) with a sparse set of active
voxels due to the minimisation of the p-norm across the columns, with p close to 1.
Asserting g(k) to be frequency-independent and solving the problem for all
frequencies simultaneously imposes consistency of the frequency information, as
highlighted in ‘Discussion’. The inequality constraint forces the estimate to follow
the observed data within a tolerance margin ϵ to account for noise. The choice of ϵ
draws a trade-off between how well the estimated value ĝSAðkÞ explains the data,
versus how sparse it is. We set the value of ϵ to be a fraction of the total energy of
the data, given by ∑F

i¼1 kyðf i; kÞk22. The value of p also defines how sparse the
output is expected to be, with smaller values of p yielding more sparsity. p is usually
set to 1.05 in the biomimetic-sonar case.

For the case of the dolphin-echolocation data, in order to solve the problem, we
define the N × F matrix GðkÞ ¼ gSAðf 1; kÞ; gSAðf 2; kÞ:::gSAðf F ; kÞ

	 

as the object

occupancy matrix for the kth click. This matrix encompasses information on which
portions of the scanned region reflected the echoes at any particular frequency.
Using the SA approach, we formulate the inversion problem for G(k) as

ĜSAðkÞ ¼ arg min
GðkÞ

kGðkÞkp;2subject to

∑
F

i¼1
kxðf i; kÞ � Bðf iÞgðf i; kÞk22

� �
< ϵ;

ð14Þ

This formulation involves minimising a (p, 2)-norm in the cost function. Similar to
the above case, for p close to 1, this minimisation enforces sparsity in the number
of active rows, i.e., object-occupied voxels. However, within active rows, the
columns may all be assigned occupancy values, which is consistent with the fact
that the signal is broadband and thus there is expected to be energy at all
frequencies considered (consistency information). We use p= 1 in this case (i.e.
smaller than the biomimetic-sonar case). This is because the SNR is poorer, and the
challenge posed by grating lobes is more in this case because coherent processing
cannot be done across frequencies (see Bartlett processing section). Thus, in this
case, we would like the output to focus more on suppressing the grating lobes and
exhibiting the most relevant few features from the echoes which likely correspond
to the target.

Now that we have represented the SA processing problem for the biomimetic-
sonar and dolphin-echolocation cases in the forms presented in Eqs. (13) and (14),
they can be solved efficiently using convex optimisation techniques because the
cost functions and constraints of the formulations are convex for p ≥ 1. These
particular types of problems that search for sparse solutions have been discussed in
the compressed sensing literature, and the underlying mathematics has been
tackled in earlier works51,53. We solve Eqs. (13) and (14) using the CVX toolbox60

and the MOSEK optimiser61 in MATLAB software.
For the biomimetic-sonar case, we solve three clicks (one click from each

transmitter) when there is not much ambient noise. For the dolphin-echolocation
case, we solve all the transmitted clicks identified.

We then obtain the SA processor output vector hSA 2 CN ´ 1 for the biomimetic
and dolphin-echolocation cases as

hSA ¼ 1
K

∑
K

k¼1
jĝSAðkÞj; ð15Þ

and

hSA ¼ 1
FK

∑
K

k¼1
∑
F

i¼1
jĝSAðf i; kÞj; ð16Þ

respectively, where ĝSAðf i; kÞ indicates the ith column of ĜSAðkÞ. We plot all the
processor outputs with the lower and upper limits of the colour scale set at 5th and
99.5th percentiles of the output voxel values respectively.

Computation of discrimination coefficient. We correlate the processor outputs
against visual representations of the sample and alternative objects using matched
filtering57. First, we compute the matched-filter templates corresponding to the SQ
and FF objects as binary masks si 2 CN ´ 1 where subscript i∈ {SQ, FF} denotes the
object correlated against. In these masks, voxels that are occupied by the object
have an entry of 1, and voxels that are not occupied by the object have an entry of
0. The spatial extent of the masks is the same as the region scanned by the
processor. Then, the matched-filter correlation of the processor output with the
two templates are computed and normalised with respect to their 2-norms,
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expressed as

Ci ¼
hTsi

khk2: k sik2
ð17Þ

Ci measures the degree of overlap with the object i. We then compute the ratio r of
the matched-filter correlation with the correct alternative’s template versus the

wrong alternative’s template, as r ¼ CSQ

CFF
if the sample object is SQ, and r ¼ CFF

CSQ
if the

sample object is FF. The discrimination coefficient R is defined as r converted to
decibels, i.e.

R ¼ 20log10ðrÞ: ð18Þ

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Processed acoustic data used in the study is available at the online repository Zenodo at
https://doi.org/10.5281/zenodo.641315946.

Code availability
MATLAB Code to visualise the acoustic data used in the study is available at the online
repository Zenodo at https://doi.org/10.5281/zenodo.641315946.
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