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Suzuki–Miyaura coupling of 
arylthianthrenium tetrafluoroborate  
salts under acidic conditions

Li Zhang    1, Yuanhao Xie    1,2, Zibo Bai    1 & Tobias Ritter    1 

The palladium-catalysed Suzuki–Miyaura cross-coupling (SMC) is currently 
the most commonly used reaction to construct carbon–carbon bonds in 
the pharmaceutical industry. Typical methods require the use of a base, 
which limits the substrate scope. To mitigate this shortcoming, substantial 
effort has been made to develop base-tolerant organoboron reagents, 
efficient catalysts and reaction conditions that do not require external 
bases. Still, many boronic acids cannot be used or must be independently 
protected, and many Lewis-basic functional groups poison the catalyst. 
Here we report a conceptually different SMC reaction that can proceed even 
under acidic conditions, with a broad substrate scope. Key to this advance 
is the formation of an acid-stable, palladium-based ion pair between the 
reaction partners that does not require base for subsequent productive 
transmetallation. Boronic acids that cannot be used directly in other SMC 
reactions, such as 2-pyridylboronic acid and boronic acids with strong Lewis 
bases, can now be used successfully.

Aryl(pseudo)halides and arylboronic acids serve as the common cou-
pling partners for the Suzuki–Miyaura cross-coupling (SMC)1,2. Many 
arylboronic acids3 are less toxic, more stable and easier to store and 
handle than other aryl nucleophiles, which contributes to the popular-
ity of the SMC reaction. However, many heteroarylboronic acids are 
insufficiently stable4,5, especially under the basic reaction conditions 
required for productive transmetallation6–9 of the aryl substituent from 
the arylboronic acid to the intermediate arylpalladium(II) (pseudo)
halide complex (Fig. 1a)6,8,9. The low stability of heteroarylboronic acids 
is especially problematic because heteroarenes such as pyridine, imi-
dazole and thiophene are some of the most prevalent substructures 
in pharmaceuticals and agrochemicals10–12. For example, the 2-pyridyl 
problem is a well-recognized challenge13,14; it results in the unproduc-
tive protodeboronation of 2-pyridylboronic acid under the reaction 
conditions4. This problem has been tackled by independent protection 
of the boronic acid as its cyclic triolborate15 or N-methyliminodiacetic 
acid (MIDA) boronate derivatives16. These derivatives slowly hydrolyse 
to the boronic acids under basic reaction conditions for subsequent 

transmetallation to palladium with the aid of a copper co-catalyst15–17. 
No successful SMC protocol that uses 2-pyridylboronic acid directly 
is currently available. A successful approach to circumvent fast 
decomposition of other heteroaryl4 or otherwise also problematic 
polyfluoroaryl5 boronic acids include catalyst development18–20 to 
accelerate the rate of transmetallation, development of SMC under 
neutral reaction conditions21–23 and the use of aryl electrophiles other 
than common (pseudo)halides21,23. For example, the Buchwald group 
developed a specific Pd-XPhos precatalyst that allowed for effective 
cross-coupling of 2-thiophenyl boronic acid in more than 90% yield18. 
The Sanford group succeeded in developing a nickel-catalysed SMC 
under neutral reaction conditions for benzoyl fluorides, in which an 
intermediate nickel fluoride is basic enough to engage in transmet-
allation, without the need for exogenous base (Fig. 1b)21. The Niwa 
group approached the problem from a similar angle, in which the zinc 
hydroxide complex [(TMEDA)Zn(OH)(OTf)]3 exhibits sufficient halo-
philicity to allow for transmetallation from aryltrifluoroborates, and 
also under otherwise neutral reaction conditions (Fig. 1c)22. The Carrow 
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salts29–31—which are more readily accessible selectively in late-stage 
functionalization than halides or diazonium salts—as versatile cou-
pling partners for cross-coupling chemistry. Upon oxidative addi-
tion to Pd(0), arylthianthrenium reagents deliver cationic Ar-[PdII]+ 
complexes without strongly coordinating anions31. We anticipated 
that aryltrifluoroborates might form a suitable ion pair with the 
cationic palladium intermediates obtained from arylthianthrenium 
salts. Aryltrifluoroborates exhibit high stability to acid32,33 and can be 
formed by B‒X bond metathesis34 from arylboronic acids and HBF4, 
as well as external BF4

‒ ions directly, which seemed ideal, given that 
arylthianthrenium salts are most commonly obtained as tetrafluor-
oborates salts29.

Results and discussion
Reaction development
A commercially available Pd(0) complex catalyses the SMC between 
phenylboronic acid and arylthianthrenium tetrafluoroborate 1-BF4, 
both in the absence and presence of HBF4 (Fig. 2a). Acid is not required 
for productive cross-coupling, but it is tolerated. Such tolerance ena-
bles reactions in the presence of Lewis-basic functional groups because 
they are in situ protected by protonation where they otherwise would 
not be under basic or neutral conditions (Fig. 2a)35. Previous work has 
demonstrated tolerance of several basic functional groups under  
pH 3−7 when aryl halides are used as substrates24,25. Yet, various het-
erocycles that failed under previous conditions25 are tolerated in our 
acidic SMC of arylthianthrenium salts (Supplementary Table 2). Basic 
intermediates that are required for other SMC reactions (for example, 
the pre-transmetallation intermediate shown in Fig. 2b) are not required 
in the SMC with arylthianthrenium salts: although oxidative addition 
generates a cationic arylpalladium complex A, the corresponding aryl-
trifluoroborate counter-ion is generated from the arylboronic acid, 
and either the tetrafluoroborate counter-ion of the thianthrenium salt 
under neutral conditions, or HBF4 under acidic conditions (Fig. 2c and 

group developed a SMC from aryldiazonium salts that can also proceed 
without exogenous base23. Finally, the Liotta group reported a SMC 
of aryl halides at pH 3−7 via a hydroxo palladium intermediate, which 
shows Lewis basic group tolerance for several substrates24,25. All of these 
modern advances have substantially increased the substrate scope 
in arylboronic acid derivatives compared with the otherwise robust, 
conventional SMC reaction. However, despite all of the advances so 
far, the 2-pyridyl problem, for example, remains unsolved because 
2-pyridylboronic acid is unstable towards protodeboronation even 
under neutral conditions4,21–23; the rate constant for protodeboronation 
from pH 4‒10 under SMC reaction conditions is 10−2 s‒1, as determined by 
the Lloyd-Jones group4. Moreover, reactions under both conventional 
basic and modern neutral conditions fail in the presence of a variety of 
functional groups with high Lewis basicity, probably due to catalyst poi-
soning upon coordination to the transition metal catalyst26,27. Despite 
the advances made on catalyst improvement18–20 and conditions in 
acidic buffer24,25, challenges in heteroaryl SMC persist.

Herein we report a conceptually different SMC that can also 
tolerate acidic conditions (Fig. 1d); it solves both the difficulty in 
engaging otherwise fragile coupling partners, including heteroar-
ylboronic acids such as 2-pyridylboronic acid, and also provides a 
general solution to avoid catalyst poisoning caused by Lewis-basic 
functional groups (Fig. 1e). Acid prevents transmetallation in other 
SMC reactions, basic and neutral, because the Lewis-basic groups 
that are required for productive transmetallation—such as the 
uncharged palladium hydroxide in conventional SMC (Fig. 1a)6, pal-
ladium fluorides7,28, Pd‒O‒B pre-transmetallation intermediates9 
from anionic aryltrihydroxyborates (Supplementary Figs. 25–27), 
and possibly also the nickel fluoride and zinc hydroxide shown in 
Fig. 1—are protonated. Our goal was to develop a reaction in which an 
ion pair, stable to acid, can function as a pre-transmetallation inter-
mediate and thereby enable transmetallation even in the presence 
of acid (Fig. 2). Our group previously disclosed arylthianthrenium 
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Supplementary Fig. 3–9). Both ions result in the formation of ion pair B.  
The anion's aryl π system and the cationic palladium may engage in 
a cation−π interaction36,37 that could both facilitate formation of B 

while being geometrically appropriate for ensuing transmetallation 
under both neutral and acidic conditions. [Pd(tBu3P)2], with sterically 
hindered monodentate ligands38, is the optimal palladium catalyst, 
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consistent with ion pair formation (Supplementary Table 3); a second 
tBu3P is reluctant to coordinate to A due to steric repulsion38, leaving 
a coordinating site for the cation–π interaction of substrates. Past 

research has demonstrated boron-to-palladium transmetallation via 
cationic arylpalladium intermediate in the presence of zinc hydroxide22, 
but the process fails in the presence of acid (Supplementary page 15). 
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The reaction reported here provides a transmetallation pathway for 
SMC that can tolerate stoichiometric strong acids.

To better probe the potential relevance of ion pair B, we evaluated 
different acids and thianthrenium counter-ions that would not allow 
formation of similar ion pairs (Fig. 2d). For example, when HCl was 
used instead of HBF4, less than 5% conversion was observed, consistent 
with chloride binding to A, which should preclude ion pair formation 
(Fig. 2d, entry 2). Likewise, no arylboronate anion should form when 
the BF4

‒ counter-ion is swapped for the triflamide counter-ion (Fig. 2d, 
entry 3). Under neutral conditions, the aryltrifluoroborate anion in B 
can be generated from the BF4

‒ counter-anion originating from the 
thianthrenium salt (Supplementary Figs. 3–7), yet triflamide (NTf2

‒) 
cannot form a similar structure (Fig. 2d, entry 5). Furthermore, arylpi-
nacolboronate is less effective than arylboronic acid (Fig. 2d, entry 6). 
When aryltriflate is used as the coupling partner with organoboron 
reagents, the yield is less than 1% (Supplementary Table 3). Methanol 
is the best solvent for the reaction (Supplementary Table 1), consistent 
with the observed fast B‒X metathesis in alcohol solvents32. All observed 
results are consistent with the relevance of ion pair B under both neutral 
and acidic conditions for productive coupling.

Mechanistic study
The reactions between phenylboronic acid, and 1-BF4 and HBF4·Et2O, 
respectively, were investigated by nuclear magnetic resonance (NMR) 
spectroscopy to establish a fast metathesis equilibrium to phenyltri-
fluoroborate under both acidic and neutral conditions (Fig. 3a and 
Supplementary Figs. 3–9). Oxidative addition of the arylthianthrenium 
salt 1-BF4 to the palladium catalyst proceeds quickly in the presence 
of HBF4 to afford palladium(II) intermediate A (specifically 3-BF4), 
which we could observe spectroscopically, but was unstable in the 
attempts to isolate its pure form (Fig. 3b and Supplementary Fig. 10). 
Our data suggest a weak interaction between the BF4

‒ counter-ion and 
the palladium cation in 3-BF4 because we can observe a heteronuclear 
Overhauser effect between the two ions (Supplementary Fig. 6) yet no 
J-coupling between the 31P of the ligand and the 19F nuclei of the anion. 
Following addition of phenyltrifluoroborate, the spectroscopic data 
are consistent with the formation of an ion pair B that also evaded more 
detailed characterization; however, it did afford cross-coupling product 
2 in 90% yield, as determined by NMR spectroscopy with an internal 
standard in the presence of HBF4 (Fig. 3b and Supplementary Fig. 16). 
Density-functional theory (DFT) calculations predict that the anion 
exchange between [H]+[Ph-BF3]‒ and [Ph-PdII]+BF4

‒ (A)26 to form the ion 
pair B and HBF4 is exergonic by 6.3 kcal mol–1 (Fig. 3c), and has a Pd–
C(ipso) distance in B of 2.42 Å, consistent with η1 coordination37. The key 
transmetallation from B has an activation energy of 22.5 kcal mol–1 and 
is turnover limiting for subsequent facile reductive elimination. Given 
the mechanism, we also probed the SMC reaction for aryldiazonium 
salts because a similar ion pairing should be accessible; however, the 
need for elevated temperatures to overcome the activation barrier to 
transmetallation leads to much lower yields due to the thermal insta-
bility of aryldiazonium salts (Supplementary Table 4). In contrast to 
aryldiazonium salts23,39, arylthianthrenium salts are thermally stable 
and, given their accessibility at a late-stage, seem to occupy a sweet spot 
for accessing ion pairs; that is, they are (1) sufficiently stable to form 
and resist acid, and (2) are reactive enough to proceed in the catalytic 
cycle of the SMC.

Substrate scope
Acid is not required for the catalytic mechanism shown in Fig. 3c and 
is not expected to influence the formation of the ion pairs. Yet, acidic 
conditions allow substrates that would otherwise not be tolerated to 
participate. For example, protodeboronation of 2-pyridylboronic acid 
proceeds too quickly under both basic and neutral reaction conditions 
(Fig. 3d). Previous protocols to address the 2-pyridyl problem under 
basic conditions require an additional step to prepare base-tolerant 

organoboron reagents15,16 or stoichiometric copper additives17. Under 
traditional basic SMC conditions, Lewis acids can coordinate to the 
pyridine ring and form a zwitterionic intermediate [M]+[Py-B(OH)3]‒, 
whereas under neutral reaction conditions, the related zwitterion 
[H]+[Py-B(OH)3]‒ is formed. Both readily hydrolyse, and the transition 
state of protodeboronation proceeds via heterolytic C–B bond frag-
mentation with protonation of the carbanionic carbon as boric acid 
(B(OH)3) is expelled4. We rationalize that a similar heterolytic fragmen-
tation in 4 would proceed at a much slower rate because BF3 is more 
Lewis-acidic than B(OH)3, and is therefore more stable towards hydroly-
sis because C–B bond heterolysis does not proceed at an appreciable 
rate (Supplementary Fig. 23). Zwitterion [H]+[Py-BF3]‒ (4) is formed via a 
reaction between 2-pyridylboronic acid and HBF4·Et2O in methanol. The 
related structure potassium 2-pyridyltrifluoroborate was reported but 
decomposes quickly in non-acidic SMC reaction conditions33. By con-
trast, 4 is stable towards hydrolysis in acid (Supplementary Fig. 24)40. 
The reaction between 2-pyridylboronic acid and arylthianthrenium 
salt only produces coupling product 5 in 5% yield under neutral con-
ditions, yet, in the presence of external HBF4·Et2O furnished 5 in 88% 
yield, consistent with the claims made in this manuscript about the 
relevance of stoichiometric strong acid.

Due to favourable ion pair formation, a large variety of substrates 
that are incompatible with conventional SMC reaction conditions can 
now participate directly when using boronic acids as starting materials 
(Fig. 4 and Supplementary Table 2). Tolerance towards acid extends the 
substrate scope to compounds that cannot be converted through other 
reported SMC reactions directly from boronic acids without additional 
independent protection steps. For example, cross-couplings featuring 
basic heterocycles or amines (6–17) participate well in acid—a previous 
SMC to synthesize the nematicidal active compound41 14 resulted in a 
yield of 17% due to the presence of coordinative nitrogen atoms, but 
now can be obtained in 98% yield under acidic conditions through 
ion pair formation. Electron-donating or -withdrawing groups are 
well-tolerated on boronic acids (Supplementary Table 5). The scope 
of the ion-pair-based cross-coupling reaction also includes all those 
compound classes that are accessible with other modern SMC reac-
tions, for example for heteroarylboronic acids that are sensitive to 
base, such as 2-thiophenyl (18, 20), 2-furanyl (19), 2-benzofuranyl 
(21), 5-pyrimidyl (22), 3-pyrazolyl (23), 2-pyrrolyl (24) and 4-isoxazolyl 
(25). Likewise, base-sensitive pentafluorophenylboronic acid5,42 can be 
coupled with the etofenprox-derived thianthrenium salt to produce 34 
in 30 s at ambient temperature, which positions the SMC as a general 
solution to all compound classes for SMC. The reaction is robust and 
can be executed in ambient atmosphere and wet solvent; for example, 
SMC to produce 2 in 95% yield tolerates up to 50 vol% water (Supple-
mentary Table 1).

Conclusion
Our study reveals an unusual mechanism that can facilitate a general 
transmetallation pathway for C–C bond formation reactions under 
acidic conditions that has not been illustrated for other cross-coupling 
reactions. We anticipate that the ion-pair-interaction-promoted trans-
metallation can serve as a fundamentally different mechanism that is 
also suitable for other cross-coupling reactions such as carbon–heter-
oatom bond formations, which is under investigation in our laboratory.

Methods
General procedure for the SMC under neutral conditions
Under an ambient atmosphere, arylthianthrenium salt (0.200 mmol, 
1.00 equiv.), arylboronic acid (0.220 mmol, 1.10 equiv.) and Pd(tBu3P)2 
(5.0 mg, 10 μmol, 5.0 mol%) were added to a 4 ml vial containing a 
magnetic stir bar, followed by MeOH (2 ml, 0.1 M). The vial was sealed 
with a septum cap, and the reaction mixture was stirred vigorously at 
60 °C on a heating block. After the indicated time, the reaction vessel 
was opened to air, and the resulting mixture was concentrated by rotary 
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evaporation. The residue was purified by chromatography on silica gel 
to obtain the pure product.

General procedure for the SMC under acidic conditions
Under an ambient atmosphere, arylthianthrenium salt (0.200 mmol, 
1.00 equiv.), arylboronic acid (0.220 mmol, 1.10 equiv.), Pd(tBu3P)2 
(5.0 mg, 10 μmol, 5.0 mol%) and MeOH (2 ml, 0.1 M) were added to a 
4 ml vial containing a magnetic stir bar, followed by HBF4·OEt2 (28 μl, 
33 mg, 0.20 mmol, 1.0 equiv.). The vial was sealed with a septum cap, 
and the reaction mixture was stirred vigorously at 60 °C on a heating 
block. After the indicated time, the reaction vessel was opened to air, 
and the resulting mixture was concentrated by rotary evaporation. 
The residue was purified by chromatography on silica gel to obtain 
the pure product.

Data availability
Crystallographic data for the structure reported in this article have 
been deposited at the Cambridge Crystallographic Data Centre (CCDC) 
under deposition no. CCDC 2280716. Copies of the data can be obtained 
free of charge via https://www.ccdc.cam.ac.uk/structures/. The data 
reported in this Article are available in the main text or Supplementary 
Information.
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