
communicationsmedicine Article

https://doi.org/10.1038/s43856-024-00542-7

Sepsis endotypes identified by host gene
expression across global cohorts

Check for updates

Josh G. Chenoweth 1 , Joost Brandsma1, Deborah A. Striegel1, Pavol Genzor 1, Elizabeth Chiyka1,
Paul W. Blair1, Subramaniam Krishnan1, Elliot Dogbe2, Isaac Boakye3, Gary B. Fogel4,
Ephraim L. Tsalik 5,12, Christopher W. Woods 5, Alex Owusu-Ofori2,6, Chris Oppong7, George Oduro7,
Te Vantha8, Andrew G. Letizia9, Charmagne G. Beckett10, Kevin L. Schully11 & Danielle V. Clark1

Abstract

Background Sepsis from infection is a global health priority and clinical trials have failed to
deliver effective therapeutic interventions. To address complicating heterogeneity in sepsis
pathobiology, and improve outcomes, promising precision medicine approaches are
helping identify disease endotypes, however, they require a more complete definition of
sepsis subgroups.
Methods Here, we use RNA sequencing from peripheral blood to interrogate the host
response to sepsis from participants in a global observational study carried out in West
Africa, Southeast Asia, and North America (N = 494).
ResultsWe identify four sepsis subtypes differentiated by 28-day mortality. A lowmortality
immunocompetent group is specified by features that describe the adaptive immune
system. In contrast, the three high mortality groups show elevated clinical severity
consistent with multiple organ dysfunction. The immunosuppressed group members show
signs of a dysfunctional immune response, the acute-inflammation group is set apart by
molecular features of the innate immune response, while the immunometabolic group is
characterized by metabolic pathways such as heme biosynthesis.
Conclusions Our analysis reveals details of molecular endotypes in sepsis that support
immunotherapeutic interventions and identifies biomarkers that predict outcomes in these
groups.

Sepsis is life-threatening organ dysfunction due to a dysregulated host
response to infection1. The signs and symptoms of sepsis are highly
variable and typically nonspecific, including aberrations in vital signs
like tachycardia and tachypnea alongside indications of organ dys-
function, such as altered mental status, hypotension, and renal dys-
function, potentially leading to shock and death. The infecting pathogen,
pathogen load, site of infection, comorbidities, and immunological
response by the patient contribute to the clinical presentation and course

of disease resulting in a complex heterogeneous syndrome. In addition,
themodel for host response to sepsis has evolved from a simplified linear
hyperinflammatory phase followed by a compensatory anti-
inflammatory phase to a more complex paradigm where pro- and
anti-inflammatory mechanisms are acting in concert2. The failure to
develop effective therapeutics and the limited success in developing
diagnostic or prognostic tests are often attributed to this clinical and
immunological heterogeneity3,4.
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Plain language summary

Sepsis is a life-threatening multi-organ failure
caused by the body’s immune response to
infection. Clinical symptoms of sepsis vary
from one person to another likely due to dif-
ferences in host factors, infecting pathogen,
and comorbidities. This difference in clinical
symptoms may contribute to the lack of
effective interventions for sepsis. Therefore,
approaches tailored to targeting groups of
patients who present similarly are of great
interest. This study analysed a large group of
sepsis patients with diverse symptoms using
laboratory markers and mathematical analy-
sis.Wereport fourpatientgroups thatdifferby
risk of death and immune response profile.
Targeting these defined groups with tailored
interventionspresentsanexcitingopportunity
to improve the health outcomes of patients
with sepsis.
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To overcome the problem of heterogeneity in sepsis there is a growing
interest in leveraging biologically related host response phenotypes or
endotypes to guide precisionmedicine and companion biomarker discovery
for diagnosis and clinical management. Notably, the human host response
to infection is highly sensitive and specific, enabling the use of protein and
gene expression measurements in peripheral blood for characterization of
patient groups based on related underlying sepsis pathophysiology5–8. Host
gene expression analysis fromperipheral blood leukocytes can also diagnose
pathogen class or identify subjects that respond differentially to corticos-
teroid treatment9–11. In some cases, these findings have been translated to
FDA-approved assays for infectious sepsis diagnosis and pathogenesis12,13.

Despite these advances, the performance of host-based measures can
be population-specific and impacted by the epidemiology of illness14. Sepsis
is a global health priority accounting for 47 million deaths in 2017. There is
an urgent need to identify, characterize, and generalize sepsis endotypes in
diverse populations to facilitate new and better prognostic and therapeutic
solutions, especially in low- and middle-income countries that carry the
greatest burden for sepsis15. Toward this goal, we analyze host gene
expression in a large prospective multi-site international sepsis cohort in
West Africa, Southeast Asia, and the United States as part of the Austere
environments Consortium for Enhanced Sepsis Outcomes (ACESO)10,11.
We employ soft-clustering decomposition that allows for the visualization
and identification of both discrete and overlapping clusters within high-
dimensional gene expression data, thereby accommodating the syndromic
nature of sepsis16. As a result, we can report the identification of molecular
endotypes from the combined global cohort that predict sepsis mortality.
Interpretation of the new gene expression features described here from
understudied populations suggests that immune dysregulation is a key
component of the biology linked to sepsis heterogeneity and outcomes.

Methods
Study sites and subjects
Blair P.W. et al.17 describe a detailed description of the entire study cohort.
Five hundred and six patients across three sites had specimens available for
this study. Study protocols were approved by the Naval Medical Research
Command (NMRC) Institutional Review Board (IRB) (Cambodia sepsis
study # NMRC.2013.0019; Ghana sepsis study # NMRC.2016.0004-GHA;
Duke sepsis study (Duke # PRO00054849) in compliance with all applicable
Federal regulations governing theprotectionofhumansubjects aswell ashost
country IRBs. The study protocol in Cambodia was approved by the Cam-
bodian National Ethics Committee for Health Research (NECHR). The
protocol in Ghana was approved by the Committee on Human Research,
Publication, and Ethics (CHRPE) at KwameNkrumahUniversity of Science
& Technology. All procedures were in accordance with the ethical standards
of theHelsinkiDeclaration of theWorldMedical Association.All patients, or
their legally authorized representatives, provided written informed consent.

Demographic comparisons
To compare gender, size, age, andmortality in the study,we considered all the
patientswithavailable28-daymortality information.For continuousvariables
(age)were comparedusingWelch’s two-sample t-test, while discrete variables
(mortality) used the Wilcoxon rank sum test18. To show the distribution of
individual data, medians, and interquartile ranges, the age was plotted and
colored in relation to gender, mortality, and site using functionalities of
ggplot19, and ggridges20 packages in R statistical environment21.

RNA-seq library preparation from patient peripheral blood
Specific details for the preparation of RNA for sequencing are described in
Rozo et al.22. Briefly, the peripheral blood RNA was collected in PAXgene
RNA tubes (PreAnalytiX), total RNA was purified using PAXgene Blood
miRNA KIT (Qiagen) and depleted of human rRNA and globin using
Globin-Zero Gold rRNA Removal Kit (Illumina). The vendor (Azenta)
prepared thepaired-endRNAsequencing according to standardprocedures
and sequenced generating ~ 50 million, 150-bp long paired-end reads per
sample.

Genome alignment and sequencing data pre-processing
Sequencing data were aligned to the human genome (GRCh38). Briefly, all
samples underwent quality control using FastQC 23. Passing samples were
aligned to the genome usingHisat224, and transcripts were assembled using
Stringtie25. Low-expression features (counts per million <10), sex-linked
features (located on chromosomes X, and Y), and features not mapping to
known genes were removed to decrease noise and avoid gender bias in
feature selection and modeling. To normalize the data between different
study sites, the raw read counts were normalized using Median Ratio
Normalization (MoR) method26. Normalized data were then transformed
using Variance Stabilizing Transformation (VST). The processing yielded
3061 genes for 506 patients from across the three study sites.

Dimensionality reduction
To aid in data interpretation we employed multiple dimensionality reduc-
tion methods including principal component analysis (PCA)21, uniform
manifold approximation, and projection (UMAP)27. For PCA and UMAP,
data were filtered to contain the 494 subjects with 28-day mortality infor-
mation and analyzed in an R statistical environment21. Topological data
analysis (TDA) was used to group participants with comparable gene
expression profiles in an unbiased manner28,29 and identify trends and
endotypeswithin the sepsis cohort.TDAwas performedusing theAyasdiAI
machine intelligence platform (Symphony AyasdiAI, Palo Alto, CA, USA)
on the normalized RNA sequencing data, employing a correlation metric
combined with two proprietary neighborhood lenses. Groups of patients
with similar gene expression profiles were definedwithin the TDA structure
based on node density and connectivity. By its very essence, TDA captures
the continuous nature of data30, and it therefore allows for a degree of
overlap between adjacent phenotypes (i.e., a patient can be a member of
more thanone group at the same time). In theTDAnetworkpresentedhere,
resolution and gain settings were selected that limited the degree of overlap
between groups (less than 10% of participants were allowed to be shared),
while at the same timemaintaining the integrity of the TDA structure. PCA
and UMAP analysis was plotted using ggplot219 package in R21. All figures
were finalized using Adobe Illustrator.

Differential gene analysis within and between TDA groups
The normalized expression table of 3061 genes for 505 patients was filtered
to only contain 494 patients with known mortality outcomes. In case of
between TDA groups comparison, patients that could be attributed to
multiple TDA groups were removed leaving only patients exclusive to
individual TDA groups. Within TDA groups, patients were compared by
28-daymortality, contrasting thosewho died by 28-day and thosewho lived
to day 28. The significance of the mean difference was evaluated using a
Welch two-sample t-test and the final p.value was adjusted for multiple
comparisons using Benjamini & Hochberg31 model in R21. The complete
results of both analyses can be found in the corresponding tables in Sup-
plementary Data 2. Data were sorted by p.adjusted or p-value along with
log2 fold change (L2FC) to highlight the most significantly changed genes.
Terms for all comparisons were combined and respective L2FC values were
plotted as a heatmap using the ggplot219 package in R21. To cluster genes, the
distance matrix was calculated using manhattan method32, row order was
determined by unsupervised hierarchical clustering using mcquitty
method33 and the dendrogram was plotted using the ggdendro package34 in
R. Resulting figures were finalized using Adobe Illustrator.

Gene set enrichment analyses within and between TDA groups
Gene set enrichment analysis was performed using the results of differential
gene expression analyses within and between TDA groups. For each con-
trast, the log2 fold changes (L2FC) were calculated using group means and
ranked in decreasing order. For the ‘between’ TDA comparison, only genes
with significant p.adjust value (≤=0.05)were considered for the analysis. All
geneswere considered for thewithinTDA comparison due to the low count
of statistically significant values. For gene set enrichment analysis of the
entire cohort comparing 28-day mortality, we used genes with significant
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p.value (≤=0.05). The selected genes were compared against the Molecular
SignatureDatabase gene set representingHallmarkpathways accessedusing
themsigdbr35 package and analyzed using the clusterProfiler36 package. For
the full cohort, we set pvalueCutoff parameter to 0.05 to detect significant
pathways only, whereas for other analyses we set this parameter to 1 and
marked the statistically significantly enriched pathways in the figures with
boxes for a clearer comparison. All the gene set enrichment results are
shown in SupplementaryData 2. Final datawas plotted as stackedbarplot or
heatmap using ggplot219, rows organized by unsupervised clustering using
the manhattan distance matrix and the ward.d clustering method37, and a
dendrogram plotted using ggdendro package34 in R. Resulting figures were
finalized using Adobe Illustrator.

Performance modeling
All modeling as well as plotting of ROC curves were performed in Python
(v3.9.12). The LogisticRegression, RepeatedStratifiedKFold, and cross_val_-
score functions from the sklearn (v1.1.2)38 python package were used to
perform modeling. The logistic regression was run with amax_iter setting
set to 1000. The stratified k-foldswere runwith 10 repeats and 10 splits. The
cross-validation score used roc_auc as a scoring metric. The mean and
standard deviation of the resulting AUROCs were calculated using mean
and std functions from the sklearn38 python package. ROC curves were
plotted using RocCurveDisplay and pyplot functions from sklearn and

matplotlib (v3.5.1)39 python packages respectively. Resulting figures were
finalized using Adobe Illustrator.

Comparison of the clinical parameters
All clinical comparative analysis was conducted in the R statistical
environment21. The data were filtered to include 480 patients used in the
TDA analysis. The available clinical features were filtered to those collected
at timepoint 0 (T00h) and those for which measurements were collected
single time and were unlikely to change throughout the study (i.e., medical
history). The 28-daymortality time point was also included, due to its study
relevance. The features were further filtered to those with data available for
at least two patients in each TDA group being compared. To compare
groups the patients were combined into a single group if needed (i.e.,
t1+ t2+ t3 = t123). The variance was evaluated using aov, and TDA group
comparisons were evaluated using t.test built-in R functions respectively21.
The results of the analyses are provided in Supplementary Data 1.

Statistics and reproducibility
All comparisons were evaluated using standard statistical methods built-in
into the R statistical computing environment. The different TDA com-
parison patient groups were clearly defined and are described in Supple-
mentary Fig. 2d. All statistical significance tests were subject to multiple
testing corrections and the adjusted p-value (p.adjusted) was reported first,
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Fig. 1 | Experimental design, demographics, and initial prognostic modeling.
a Data for this study was generated from subjects enrolled in three different sites
located in Cambodia (orange), Duke (blue) (USA), andGhana (purple). bThemean
and median age were nearly identical (~50 years of age) for each gender (F: female –
light tan; M: male – light brown). The median and quartiles are indicated by boxplot
and the mean as red dotted lines. c, d The 28-day mortality was also very similarly
distributed between genders and averaged a ~ 17% death ratio for the entire study
cohort. Red spheres and bar fill indicate patients that died. e Principal component
analysis of the 3061 selected genes did not reveal any site-specific or mortality-
specific patient clustering. Point color indicates site, and point size indicates mor-
tality. fVolcano plot of differential gene expression analysis comparing subjects that
died by day 28 to those that survived. Labels show for top ten most significantly

changed genes (p.adjust ≤ 0.05). The bar insert shows a total number of significantly
changed genes (p.adjust ≤ 0.05, blue – decrease, red – increase). g Results of gene set
enrichment analysis using Molecular Signature Database Hallmark gene data sets
show significantly different pathways (p.adjust ≤ 0.05). Numbers in gray show the
percentage of pathway coverage. h The 28-day mortality-based log2 fold changes of
eight genes were used for prognostic mortality modeling. i Receiver operating
characteristic curve showing performance of eight-gene model (AUC = 0.812 ±
0.070) in predicting 28-daymortality relative to the predictive power of quick sepsis-
related organ failure assessment (qSOFA, AUC = 0.716 ± 0.075) score. The lightly
shaded regions surrounding the curves correspond to 0.5 standard deviations. All
modeled curves were generated with repeated stratified k-fold cross-validation
described in the methods.
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followed by the p-value second in case corrected values were insignificant in
order to reflect trends. This study was based on the results and materials
collected in previously completed human clinical trials that did not involve
sample replicate collection.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Gene expression predicts mortality in global sepsis cohorts
Total RNA from peripheral blood collected at enrollment (July 2016 –
October 2017) was sequenced from 494 subjects in observational studies of
sepsis in Ghana, Cambodia, and Durham, North Carolina (Fig. 1a, Sup-
plementary Fig. 1a)17,22,40. Male and female subjects were similar in age and
28-day mortality in the combined cohort (Fig. 1b, Supplementary Fig. 1b).
The overall 28-daymortality, defined as the percentage of patients that died
within 28 days of enrollment into the study, was 17%, with individual
cohorts having 28-daymortalities of 8% (Duke), 13% (Cambodia), and 32%
(Ghana), respectively (Figs. 1c and 1d, Supplementary Fig. 1c, and 1d).
Inspection of the data following preprocessing revealed no site bias (Fig. 1e,

Supplementary Fig. 1e, 1f, 1g, 1h). Differentially expressed genes between
28-day survivors and non-survivors include transcripts previously linked to
sepsis outcomes such as IL1R2, OLAH, and CX3CR1 (Fig. 1f and Supple-
mentary Fig. 1i and 1j)6,41. Gene set enrichment analysis42,43 was used to
identify biological pathways enriched innon-survivors.Hypoxiawas the top
enriched termwhile interferon response was significantly reduced (Fig. 1g).
Feature selectionusing theMinimumRedundancyMaximumRelevance44,45

algorithmwasperformedusing391differentially expressed genes todevelop
a prognostic classifier for 28-daymortality (SupplementaryData 1). The use
of Minimum Redundancy Maximum Relevance resulted in a list of the top
50 ranked genes in decreasing relation to the risk of sepsis-relatedmortality
(Supplementary Data 1). Average performance versus the number of fea-
tures used in logistic regression was determined and resulted in eight
transcripts (Fig. 1h). These top eight were used as inputs to logistic
regression. Performance with qSOFA scores that combine mental status,
respiratory rate, and blood pressure was also evaluated in these same
subjects1. The eight-transcript model had improved performance
(AUROC= .81) versus the model using qSOFA alone (AUROC= 0.72) in
the 441 subjects where matched data were available (Fig. 1i). These results
show that a molecular prognostic for sepsis mortality can be derived from
diverse global cohorts.

Fig. 2 | Topological Data Analysis of the combined
global sepsis cohort. The normalized expression of
the top 1000 genes from 506 subjects was used to per-
form Topological Data Analysis (TDA). This decom-
position method groups patients based on their gene
expressionprofiles andproduces a relationshipnetwork
consisting of nodes (clusters of patients with similar
gene expression) and edges (one or more patients are
shared between two adjacent nodes). aThe sepsis TDA
network was divided into four groups along a left-to-
right axis, which corresponded to differences in 28-day
(d28) mortality. The TDA network was colored by 28-
daymortality on a continuous scale ranging from green
(0%of patients in the node died) to red (40%ormore of
patients in the node died). bPatientswere stratified into
three high-mortality groups (t1, t2, t3) and one low-
mortality group (t4-5) (yellow - highlights TDA sub-
group; red – indicates mortality).
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clinical tool. The TDA group-specific feature selection identified a total of thirteen
genes for stratified 28-day mortality prognostic. a Heatmap of hierarchically clus-
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showing TDA group membership and direction of expression change. b TDA
overlay showing expression of two of the biomarker genes across the entire study
cohort. TDA groups are indicated with dashed lines and labels. c Receiver operating
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described in the methods.
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Data dimension reduction identifies patient groups that improve
prognostic performance
Genome-wide expression profiling has been used successfully to identify
septic shock subclasses that describe biological heterogeneity5,7. We hypo-
thesized that heterogeneity within, and across global cohorts could com-
promise the performance of the molecular sepsis prognostic. To identify
relevant groups for improved prognostic models, we used topological data
analysis (TDA) to cluster patients in an unsupervised, data-drivenmanner16

(Fig. 2a). In TDA, a 2-dimensional topological network is created based on
similarities between data points, aswell as the overall distribution of the data
in n-dimensional space (Supplementary Fig. 2a). This provides an intuitive
means of stratifying subjects with similar gene expression profiles into
groups where relative positionwithin the network can reveal shared biology
or endotypes. Nodes in the TDA network correspond to groups of patients
that are clustered together based on similarities in their gene expression,
with the node size dependent on the number of patients in each node. Since
TDAcaptures the continuous nature of data, it allows for a degree of overlap
between adjacentnodes,meaning that patients canbe included inmore than
one node at a time. This is represented by the edges in the network,
which indicate that one or more patients are shared between two nodes46

(Supplementary Fig. 2a).

TDA analysis of the gene expression data resulted in the identification
of 5 patient groups along amajor left-to-right axis (Fig. 2b&Supplementary
Fig. 2b). Further analysis showed that this axis corresponded to differences
in 28-day mortality of the patients: TDA groups t1, t2, and t3 all exhibited
elevated rates of 28-day mortality (22%, 22%, and 20% respectively) versus
the lowmortality groups t4 and t5 (10% and 11%, respectively) (Fig. 2b and
Supplementary Fig. 2b). Feature selection was repeated within the TDA
groups to ask if 28-day mortality prognostic performance could be
improved using a stratified approach. Groups t4 and t5 contained too few
non-survivors individually for this analysis, but shared a subset of subjects
and were therefore combined into one low mortality group t4-5 (28-day
mortality=11%) (Supplementary Fig. 2b and c). A total of 13 features across
these four final groups were identified by step-up performance analysis of
the previously identified 50 Minimum Redundancy Maximum Relevance
transcripts (Fig. 3a and b, Supplementary Fig. 3, Supplementary Data 1).
Models consisting of features for specific TDA groups were fitted and
evaluated using only the subjects belonging to the respective TDA group.
Performance increased in each of the 3 high-mortality groups (t1,2,3), and
was decreased in the low-mortality t4-5 group versus what was achieved for
the combined global cohort (Figs. 1i and 3c). All these group-specific fea-
tures and models proved to be more effective than qSOFA (Fig. 3c).

Clinical and laboratory features of high-mortality patient groups
describe multi-organ dysfunction
Wehavepreviously shownmultiple clinical andphysiologicalmeasures that
are abnormal in this combined global cohort including elevatedwhite blood
cells, blood urea nitrogen, and lactate17. To define the clinical basis of the
TDA-stratified patient groups we asked if physiologic and laboratory fea-
tures varied across the entire network and within the two major axes of the
network. Chemistry and hematology features including lactate, blood urea
nitrogen, lymphocytes, and white blood cells varied significantly across the
network (Fig. 4a and SupplementaryData 2).We lookedmore specifically at
the left-right axis described by the low (t4-5) and high-mortality (t1,2,3)
groups for significant differences. We noted a dramatic contrast in
lymphocyte-monocyte percentage (up in lowmortality) versus white blood
cells (up in high mortality) (Fig. 4a and b and Supplementary Data 2).
Lactate, blood urea nitrogen, and qSOFA are also significantly elevated in
the high mortality groups while oxygen saturation is decreased (Fig. 4a, b,
Supplementary Fig. 4, Supplementary Data 2). Additional symptoms
including confusion in the combined high-mortality groups indicate multi-
organdysfunction in these subjects. Inspection of the vertical axis definedby
groups t2 and t3 revealed a site-specific bias including pathogen etiologies
and hemoglobin\hematocrit (Fig. 4a and Supplementary Data 2). This is
consistent with our previous findings that show adjudicated bacterial, viral,
fungal, andparasitic infectionswere significantly different across theGhana,
Cambodia, and U.S. populations11.

Molecular definition of sepsis endotypes
Gene set enrichment analysis using molecular features was used to explore
the TDA-stratified groups.We first compared gene set enrichment analysis
results across the major left-right mortality axis (Fig. 5a, b, and Supple-
mentary Data 2). Type I and II interferon responses and allograft rejection
were elevated in the lowmortality t4-5 group, aswerepathways linked to cell
growth and proliferation including MYC and E2F targets. Key interferon-
stimulated genes including IFI27 and ISG15 were significantly elevated in
this group (Supplementary Fig. 5). These signatures are consistent with an
active adaptive immune response in the low-mortality patient group t4-5. In
contrast, the high-mortality groups were enriched for terms including
hypoxia and coagulationwhich are characteristic of severe sepsiswith group
t1 being the most elevated. The individual gene-level inspection identified
genes such as CYP1B1, S100A12, and IL1R2 that were most elevated in this
high-mortality group t1 (Supplementary Fig. 5 and Supplementary Data 2).
Notably, these genes characterize a CD14+ immunosuppressive monocytic
myeloid-derived suppressor cell population MS1 recently described in
bacterial sepsis and COVID-19 as negatively associated with survival47.
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Patient group t1 showed the least interferon response signatures by gene set
enrichment analysis versus all other groups. Taken together these data are
consistent with an immunosuppressed phenotype in group t1. Pathways
linked to inflammation including TNFα and IL6-JAK-STAT3 signaling
were also elevated in the high mortality groups compared to the low mor-
tality group. Comparison across the three high mortality groups revealed
that group t3 is most enriched for acute inflammatory signatures. We
assessed differences between groups t2 and t3 and noted a significant dif-
ference in heme metabolism consistent with the clinical hemoglobin
\hematocrit laboratory results (Fig. 4a and Supplementary Data 2).We also
asked if we could identify pathways linked to mortality within the potential
endotypes. A subset of signatures including interferon response and allo-
graft rejection describing the adaptive immune response was positively

linked to survival in all groups (Fig. 5b). However, we did note pathways
with TDA group-specific differences by outcome including the inflamma-
tory response term that was significantly enriched in survivors in the
immunocompetent low-mortality group t4-5.

Discussion
TDA decomposition of host gene expression from our combined global
sepsis cohort suggests at least 4 endotypes (Fig. 6). The low mortality t4-5
group with less severe clinical correlates is enriched for immunocompetent
molecular and hematological signatures most notably for the adaptive
immune response. This is in direct contrast tohighmortality group t1which
has reduced lymphocytes and interferon gene expression signatures
and has molecular markers consistent with immunosuppressive cells.

Fig. 5 | Gene-set enrichment comparison of TDA
groups and 28-day mortality. a Heatmap of nor-
malized enrichment values (NES) for the Molecular
Signature Database Hallmark pathways comparing
TDA groups to each other. The pathways were
grouped by unsupervised hierarchical clustering.
b Stacked barplot of NES values for the Molecular
Signature Database Hallmark pathways comparing
patients by 28-day (d28) mortality within TDA
groups. Black boxes with star in Fig. 5a and b indi-
cate statistically significant enrichment in gene set
enrichment analysis (p.adjust ≤ 0.05). Supplemen-
tary Fig. 2d describes the number of patients used in
each comparison (dead/alive and pair-wise col-
umns). To perform gene set enrichment analysis
against the Molecular Signature Database Hallmark
gene data set, for Fig. 5a we used genes with sig-
nificant log2 fold change values (p.adjust≤ 0.05), and
for Fig. 5b all genes. The TDA groups were colored
and shaded as follows: t4-5 – blue; t3 – yellow; t2 -
orange; t1 – red.
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High-mortality group t3 shares key clinical features of severe illness with
group t1, but gene set enrichment analysis shows that there is a robust innate
and adaptive immune response in this group. Group t2 is notable for heme
metabolism signatures and reduced mitochondrial gene expression linked
to oxidative phosphorylation. Overall, results from our combined global
cohort are similar to recent reports of biological endotypes using unsu-
pervised analysis of clinical and multi-omics data from sepsis studies.
Sweeney and colleagues identified three stable patient groups in a combined
analysis of bacterial sepsis cohorts designated Inflammopathic, Adaptive,
and Coagulopathic8. Another study found three stable sepsis subclasses
coined immune-innate, immune-coagulant, and immune-adaptive9.
Finally, Scicluna and colleagues identified four endotypes in European
cohorts designated Molecular Diagnosis and Risk Stratification of Sepsis
(Mars) 1-46. The Mars1 group was characterized by reduced expression of
T-cell and adaptive immune genes versus aMars3 groupwith robust innate
immune activation. Consistent across all these studies is the association of
reduced mortality and less severe clinical correlates with endotypes most
strongly defined by signatures of a functional adaptive immune response
similar to our immunocompetent group t4-5. In contrast, subclasses in these
studies that have reduced adaptive immune signatures, coagulopathies,
elevated mortality, and poor clinical scores align with our immunosup-
pressed group t1. The t3 group described here, with innate pathway sig-
natures linked to acute inflammation and high mortality shares these
features with the inflammopathic group reported by Sweeney and
colleagues8. Finally, group t2 characterized by heme biosynthesis is con-
sistent with the described immunometabolic endotypes and free heme has
been shown to contribute to sepsis pathogenesis6,48.

This study reinforces the generality of common sepsis endotypes,
introduces to the best of our knowledge new cohorts of relatively under-
studied populations from West Africa and Southeast Asia, and identifies
potential new therapeutic approaches to improving sepsis outcomes. The
endotype-specific gene expression features that we identify are similarly
regulated in stratified patient groups in multiple sepsis studies published
over the past decade (Supplementary Fig. 6)7,49–51. Notably, there is great
interest in using endotype and biomarker-guided strategies for precision
medicine interventions that incorporate immunotherapeutics in subjects
predicted to benefit52. Lymphocyte growth factors including IL7 have
shown promise in promoting the innate immune response in humans53.

Accordingly, endotypes have been proposed to contribute to inconclusive
results from immunomodulator trials in sepsis subjects10. A direct link
between outcomes and endotypes has been shown following the analysis of
data from patients treated with hydrocortisone9,10. Corticosteroid treatment
was shown to have differential effects on survival in subjects based on
immunophenotypic endotypes. Interestingly, our data offers some pre-
liminary support to this finding when we consider gene expression sig-
natures in survivors and non-survivors within TDA groups. We note that
terms including TNFα and IL6 signaling, and inflammatory response are
increased in survivors in the immunocompetent group t4-5 but decreased in
survivors in the acute-inflammation group t3 (Fig. 5b). Future studies will
validate our endotypes and prognostic models in additional international
sites across the globe40.

Conducting complex observational studies in low- andmiddle-income
countries presents unique challenges but is necessary to create a more
complete definition of sepsis endotypes and can only be done through a
global study using unified methods. Pathogen identification is especially
limiting because the infecting pathogen is often not identified in
the developing world. In the United States, common causative bacterial
pathogens include E. coli, Staphylococcus aureus, and Streptococcus
pneumoniae54. In Africa, common sepsis etiologies include Salmonella spp.,
malaria, andMycobacterium tuberculosis, particularly in persons livingwith
HIV infection55. We have previously shown that sepsis screening tools that
are widely used during clinical care had a sub-optimal performance for risk
stratification in diverse international cohorts17. Pathogen diversity and the
syndromic nature of sepsis might contribute to this result and encourage
future studies to reveal endotypes linked to pathogens endemic to low- and
middle-income countries or parasitic co-infections.

Data availability
Raw sequence data and processed subject gene level data used in this study
have been deidentified and deposited in dbGaP (Accession: phs003661.v1)
under restricted access in compliance with study informed consent and
National Institutes of Health Human Subjects Protection guidelines. Data
can be obtained following local IRB approval and with a letter of colla-
boration with the primary study investigator(s). Source data underlying the
data analysis used to generate the figures in this study can be found in
Supplementary Data 1 and 2.
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