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The novel SARS-CoV-2 (severe acute respiratory syndrome 
coronavirus 2) pathogen has infected around 60 million peo-
ple and caused more than a million deaths worldwide (https://

covid19.who.int/; as of November 2020). As a result, there is a need 
to find treatments that can be applied immediately to reduce mor-
tality or morbidity.

Repurposing existing drugs is a rapid and effective way to pro-
vide such treatments by identifying new uses for drugs that have 
well-established pharmacological and safety profiles1. Many drugs 
used to treat different diseases have already been successfully repur-
posed and approved for new indications2. While repurposing can be 
conducted at any point in drug development, its greatest potential 
can be applied to drugs that are already approved3. In the case of 
the COVID-19 pandemic, it is a fast and cost-efficient approach to 
identify novel treatments4.

Recent studies have increasingly employed computational meth-
ods to systematically predict new drug targets or drug repurposing 
candidates. In contrast to experimental high-throughput screening, 
in silico approaches are faster, lower-cost, and can serve as an initial 
filtering step for evaluating thousands of compounds. Thus, they 
are useful for prioritizing drugs that warrant further evaluation and 
experimental validation. This requires the application of suitable 
algorithmic approaches to identify mechanisms relevant or specific 
to the disease4.

This Review discusses current in silico drug repurposing efforts 
for COVID-19, followed by a discussion of the lessons learned from 
different perspectives (from data resources to the quality of predic-
tions) and a proposed unified strategy to improve the response in 

potential future outbreaks. The covered studies employed standard 
drug repurposing workflows and data-driven algorithms.

As new studies are published almost every day, it is not possible 
to provide a broad and comprehensive overview of all repurposing 
studies. Hence, this Review focuses on the computational methods 
for drug repurposing, their application, availability and feasibil-
ity in a selection of studies (peer-reviewed and preprint) that were 
selected to cover a wide variety of different methods. It is worth 
noting that most of these studies are not considered successful clini-
cally. Nevertheless, it is important to properly evaluate and improve 
the predictive power of in silico approaches that are capable of uti-
lizing information from existing drugs as well as host and virus biol-
ogy, even with limited availability of data on the novel emerging 
pathogen. This promotes a rapid and practical response to infection 
and therefore improves success in future pandemics, particularly in 
tackling the rise in infection cases at the early stages of the pan-
demic or ahead of vaccine development.

Data resources
Besides experimental datasets, the rapid availability of resources 
that integrate different data types is crucial in a pandemic. Sharing 
data accelerates research, as computational methods depend on 
high-quality datasets, and experimental labs do not need to col-
lect the information on their own. The large number of resources 
used in COVID-19 drug repurposing studies have shown that data 
can be quickly generated and gathered through strong community 
efforts. This section presents a selection of data resources used in 
the reviewed studies to describe the resource types that accelerated 
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computational drug repurposing approaches: most of them are 
general data resources that were already established before the pan-
demic but that have been extended with COVID-19 or SARS-CoV-
2-specific data. The resources used in the reviewed studies are 
listed in Supplementary Table 1. A list of COVID-19 specific data 
resources that were not used in the reviewed studies but may 
become relevant in the future is given in Supplementary Table 2.

Molecular data resources. All molecular data used in the reviewed 
publications were extracted from already established, general data 
resources that were quickly extended with SARS-CoV-2-specific 
data. Resources such as GenBank5, the GISAID initiative6, or 
UniProt7 provide genomic/proteomic sequence information about 
hosts and SARS-CoV-2. Structural resources collecting informa-
tion about proteins, such as the Protein Data Bank (PDB)8, were 
extended by various SARS-CoV-2-specific proteins. Finally, tran-
scriptome resources that collect gene expression data were used in 
several COVID-19 drug repurposing approaches. For instance, the 
Genotype-Tissue Expression (GTEx)9 program offers insights into 
tissue-specific gene expression. Expression in lung tissues is of high 
interest in COVID-19 drug repurposing research and was often 
integrated in computational models or studies. Other resources, 
such as the LINCS L1000 database10, profile gene expression changes 
under certain drug treatment conditions and were used to identify 
drugs with reverse expression profiles to the samples infected with 
SARS-CoV-2.

Network and interaction resources. Protein–protein interaction 
(PPI) networks enable visualization and analyses of the interac-
tions between either host or virus proteins and other host proteins. 
Furthermore, PPI networks allow for particular adaptation and search 
strategies (for example, edge filtering) and can be connected to drug 
resources. Gordon et al.11 identified 332 high-confidence virus–host 
interactions between SARS-CoV-2 and human proteins. It was the 
only newly created and exclusively SARS-CoV-2-related resource used 
in the reviewed publications of this work. VirHostNet12,13, a virus–host 
PPI resource that already existed before the 2019/2020 SARS out-
break, was expanded with 167 new SARS-CoV-2 interactions. In con-
trast to virus–host PPIs, host PPIs are not virus specific. All resources 
that were used in the reviewed studies were already available before 
the pandemic but have since been widely used in COVID-19 drug 
repurposing approaches14,15. Besides molecular networks, knowledge 
graphs, such as the Global Network of Biomedical Relationships 
(GNBR)16, have demonstrated their utility for drug repurposing. 
These networks comprise various types of biological relationships 
assembled from literature and were integrated into COVID-19 drug 
repurposing approaches17.

Drug and trial resources. Drug databases that already existed 
before the pandemic and that are continuously extended with 
newly developed drugs were used to connect the results of differ-
ent approaches to potential drugs. A widely used drug database is 
DrugBank18, with more than 13,000 drug entries of approved and 
in-trial drugs, including drug targets. On the other hand, ChEMBL19 
and ZINC1520 contain millions of compounds that exhibit drug- 
like properties.

Drug repurposing approaches also benefited from trial databases 
as they can be used to validate whether the predicted drugs are already 
in trial or have not yet been evaluated. Examples of such resources are 
the EU Clinical Trials Register (https://www.clinicaltrialsregister.eu/) 
and ClinicalTrials.gov (https://clinicaltrials.gov/). The latter contains 
more than 350,000 research studies from 219 countries.

Drug repurposing studies
Various clinical, experimental and computational drug repurpos-
ing efforts have been rapidly mobilized prioritizing compounds to 

identify promising drug candidates for the SARS-CoV-2 pandemic. 
In this section, we examine a selection of studies representing the 
different computational approaches to identify potential new tar-
gets and repurposable drugs for COVID-19.

Virus-targeting approaches. Virus-targeting approaches mostly 
rely on structure-based drug screening methods, which take the 
three-dimensional structures of target proteins to predict affinities 
or interaction energies of known chemical compounds to the pro-
teins (Fig. 1). These methods were mainly used to identify candidate 
drugs that target viral proteins, so we refer to them as virus-targeting 
approaches, although they can also be applied to host proteins. 
Two main methodological workflows were applied, namely, 
structure-based21 and deep-learning (DL)-based drug screening. 
Here, we describe these methods and compare 23 COVID-19 drug 
repurposing studies22–44.

Structure-based drug screening. The first step for structure-based 
screening is the selection of the drug library and the target pro-
tein. For COVID-19, the intuitive candidate for targeting virus 
proteins were antivirals. Thus, many studies limited their search 
to these. The number of screened drugs ranged from 3 (ref. 37) 
to 123 antiviral drugs33. Broader studies, such as that by Chen et 
al.26, combined compounds from the KEGG (Kyoto Encyclopedia 
of Genes and Genomes) and DrugBank databases to screen  
7,173 drugs.

The other crucial step is the selection of the target protein and 
its corresponding three-dimensional structure (experimental or 
predicted). Wu et al.40 performed screening on 19 encoded pro-
teins of the virus. By comparison, most other studies focused on the 
3CLpro, envelope (E), spike, RNA polymerase and methyltransfer-
ase proteins.

Virtual screening of the drug libraries utilized established 
software, such as Autodock45 and Glide46. Candidate drugs were 
selected using respective scoring methods, followed by validations 
with molecular dynamics simulations30,37.

Most drugs were predicted for 3CLpro (Supplementary Table 3), 
which was also the focus of most studies (17 studies), followed by 
RdRp and PLPro. For 3CLpro, the predictions ranged from 2 (ref. 29) 
to 27 (ref. 40) drugs per study. The 5 most frequently predicted 
drugs were ritonavir (8 studies), lopinavir (6 studies), nelfinavir, 
remdesivir and saquinavir (5 studies each). However, 99 of the can-
didate drugs were only predicted in 1 study, showing a high vari-
ability in the resulting candidate sets. Interestingly, the studies that 
screened full databases also predicted antiviral drugs as top scorers 
(Supplementary Table 4). Of the 23 studies, 10 have not yet been 
peer-reviewed, which we discuss in the section on ‘A unified drug 
repurposing strategy’.

DL-based repurposing strategies. DL models can predict binding 
affinities or docking scores and have shown advantages over con-
ventional docking protocols. While standard docking protocols are 
limited to millions47, DL approaches can analyze billions of chemi-
cal compounds. This allows them to be applied to whole databases, 
which increases the diversity of the tested compounds and the like-
lihood of finding unconventional compounds47. Furthermore, they 
are capable of processing more (physico-)chemical features48 and 
can find features related to a non-favorable docking47. However, 
most of these methods require datasets for training, which often 
come from real docking simulations; thus, the performance of many 
DL-based approaches still rely on the accuracy of the docking soft-
ware used for training.

Ton et al.42 developed DeepDocking47, which utilizes quantitative 
structure–activity relationship models trained to predict docking 
scores of compounds targeting the SARS-CoV-2 3CLpro protein. 
It requires fewer docking pipelines, since it performs docking only 
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on subsets of compounds and can produce a reduced list of com-
pounds, which is also enriched in potential top hits.

Nguyen et al.49 developed the method MathDL, which utilizes 
low-dimensional mathematical representations of the drug–target 
protein complex structures, which are then fed to DL algorithms 
to predict binding energies of drug–protein complexes. For 
SARS-CoV-2, the authors used experimental binding affinity data 
from SARS-CoV ligand–3CLpro complexes from PDBbind and 
SARS-CoV protease inhibitors as training data to predict binding 
energies on DrugBank compounds for SARS-CoV-2 3CLpro (ref. 50) 
and does not depend on docking software.

Beck et al.44 developed a DL-based drug-target interaction predic-
tion model, named Molecule Transformer-Drug Target Interaction. 
It utilizes simplified molecular-input line-entry system (SMILES)51 
representations for drugs and protein sequences as input for train-
ing and predicts affinities. For SARS-CoV-2, the model was trained 
on commercially available antiviral drugs and viral target proteins. 
Antiviral drugs already used against SARS-CoV-2 were found 
among the candidate drugs identified.

Host-targeting approaches. Host-targeting approaches involve iden-
tifying potential drugs that interfere with host mechanisms that con-
tribute to viral pathogenesis, which also makes them less prone to 
drug resistance52,53. In addition, SARS-CoV-2 infections can trigger a 
hyper-reactive immune response characterized by the excessive release 
of pro-inflammatory cytokines and chemokines54. Thus, drugs that 
modulate the host immune response can benefit critically ill patients 
with COVID-19 by targeting specific dysregulated pathways54–56.

Signature-based approaches. Signature-based approaches primar-
ily utilize transcriptome datasets from samples infected with 
SARS-CoV-2 or closely related human coronaviruses to identify  

candidate drugs through connectivity mapping (Fig. 2), a 
well-established approach that relies on finding drug-induced 
expression signatures exhibiting reverse profiles to a disease 
signature57,58. Several studies adopted this as a primary method 
for identifying new therapeutics for COVID-19. Loganathan et 
al.59 performed differential expression analysis of virus-infected 
cells and extracted consistently dysregulated genes in infected 
conditions. They were used to query the Connectivity Map data-
base58 for drug perturbation profiles exhibiting anti-correlated 
expression signatures. A modified approach was implemented by  
Jia et al.60, wherein expression data from infected and healthy 
individuals were used as input to a pathway-guided drug  
repurposing framework. They identified disease co-expression 
clusters and performed enrichment analyses prior to reverse  
signature matching60.

Network-based approaches. The general network-based approach 
applied in drug repurposing studies on COVID-19 integrates 
multiple data sources, including virus–host interactions, PPIs, 
co-expression networks, functional associations or drug–target 
interactions (Fig. 2). Network-based algorithms or topology mea-
sures are applied to the assembled networks to identify relevant 
host protein targets or regions of the host interactome that can  
be targeted.

Multiple studies implement random-walk-based algorithms 
as the primary method to identify new putative drug targets. Law 
et al.61 implemented several algorithms on a virus–host interactome 
to identify additional SARS-CoV-2 interactors. The coronavirus 
spike protein primarily has been established to mediate viral entry 
into host cells62. Similarly, but focusing on a specific context, Messina 
et al.63 explored the pathogenic mechanisms triggered by the spike 
protein using data from three closely related coronaviruses. They 
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Fig. 1 | Workflows of virus-targeting computational drug repurposing approaches. The input data consist of protein structure information (experimental 
or predicted) and chemical structure of drugs from public databases. Two analysis workflows can be applied: standard analysis consisting of docking 
followed by molecular dynamics (MD) simulations and DL-based analysis. Finally, the output data of both approaches generally consist of a ranking of 
drugs based on their (predicted) docking scores. The drugs can be further evaluated by whether or not they are in clinical trials.
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implemented a random walk algorithm on assembled molecular 
networks using the spike protein as seed to identify relevant targets 
for COVID-1963. In addition, CoVex64 implemented TrustRank65, 
a variant of the PageRank66 algorithm, to propagate scores  
from user-defined seeds to the other host proteins and rank host 
drug targets.

Network proximity relies on the principle that a drug can 
be effective if it targets proteins within the neighborhood of 
disease-associated proteins in the interactome67. Zhou et al.68 uti-
lized this concept to compute the network proximity measure 
between drug targets and coronavirus-associated proteins in the 
human interactome. They also used the ‘complementary exposure’ 
pattern, which is based on the shortest distance between targets of 
two drugs predicted by network proximity, to identify potential 
drug combinations to treat COVID-19 patients68.

Several studies combined multiple network-based strategies to 
predict drug candidates. Gysi et al.69 characterized and extracted 
a COVID-19 disease module using experimentally determined 
SARS-CoV-2 interactors. They performed network-based analyses 
accounting for tissue specificity and potential disease comorbidities. 
They employed a multi-modal approach to the virus–host interac-
tome integrating network proximity, diffusion state distance and 
graph convolutional networks (GCNs) to identify drugs that can 
perturb the activity of host proteins associated with the COVID-19 
disease module. The final drug list was obtained by rank aggrega-
tion from the different pipelines69.

CoVex64 is a web platform for exploring SARS-CoV and SARS- 
CoV-2 virus–host–drug interactomes64. Users can predict drug 
targets and drug candidates using several graph analysis meth-
ods that allow custom seed proteins as input. For instance, 

KeyPathwayMiner70 is a network enrichment tool that identifies 
condition-specific subnetworks by extracting a maximally con-
nected subnetwork from the host interactome starting from the 
seeds. CoVex also implements a weighted multi-Steiner tree method 
that aggregates several non-unique approximations of Steiner trees, 
which are subnetworks of minimum cost connecting the set of 
seeds, into a single subnetwork.

Other studies additionally utilize machine learning to predict 
drug candidates against SARS-CoV-2. Belyaeva et al.71 implemented 
a hybrid approach between signature matching and network-based 
methods. Using autoencoders, they learned feature embeddings 
for drugs using drug-induced expression profiles to identify drugs 
exhibiting reverse profiles to the SARS-CoV-2 infection signature. 
Steiner tree and causal network discovery algorithms were then 
used to extract the mechanisms mediated by both SARS-CoV-2 and 
aging71. Ge et al.72 constructed a virus-related knowledge graph and 
employed a GCN algorithm. The list of drug candidates was further 
filtered for existing evidence of antiviral activities through text min-
ing72. Similarly, Zeng et al.17 assembled a large-scale knowledge graph 
derived from PubMed articles. A GCN model was then applied to 
learn low-dimensional embeddings of the nodes and edges17.

Lessons learned
In the following, we examine the quality and potential of the 
reviewed data resources and computational methods in order to 
improve the response in future pandemics.

Data resources. The availability of molecular datasets is a  
precondition to develop drug repurposing methods quickly. 
Besides that, network-based resources were a large driver in 
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Fig. 2 | Workflows of host-targeting computational drug repurposing approaches. Signature-based methods involve finding drug-induced expression 
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drug repurposing. However, a large portion of the publications 
are based on only a few primary resources, which always induces 
the risk of bias or measurement errors. In addition, the only type 
of molecular interaction network used was PPI. Still, high confi-
dence PPIs are needed since, for instance, none of the approaches 
included structure data. In the future, other network types, such 
as gene regulatory networks, should be considered. Other data 
resources, such as off-label data for drugs, should also be inte-
grated in drug repurposing studies.

Finally, existing drug and trial resources were widely used for 
developing the drug repurposing pipelines. However, we observed 
no standardization in trial resources, making it hard to analyze 
trials for certain drugs due to different names, different spellings, 
or typing errors. Standardization is usually implemented for drug 
resources (for example, DrugBank), but some drugs undergoing 
trials could not be found in the databases. Keeping the resources 
up to date and interconnected should be a focus and will enhance 
accessibility.

Computational predictions. Assessing the quality of predictions 
is challenging, since many studies are not peer-reviewed, do not 
perform experimental evaluation, or rely on clinical trial databases. 
We examined the quality of predictions by determining the over-
lap between the final candidate drug lists from the individual stud-
ies and the drugs undergoing clinical trials from ClinicalTrials.gov 
(https://clinicaltrials.gov/) and Biorender (https://biorender.com/
covid-vaccine-tracker) databases. In addition, we provide supple-
mentary in vitro screening data, such as IC50 values for viral targets 
and inhibition indices from cell culture studies for SARS-CoV-2 
(Supplementary Data 1). Our effort to compile these data shows 
that a substantial number of predictions have not been experimen-
tally tested.

Evaluating virus-targeting approaches. We identified 53 drugs 
predicted with docking simulations that are undergoing current 
trials (Supplementary Table 5). Wu et al.40 identified most of the 
drugs (36 drugs); however, these drugs were predicted for mul-
tiple viral proteins (for example, chlorhexidine for 11 and meth-
otrexate for 6 different viral proteins). This indicates that their 
approach did not yield specific and feasible candidates. After 
excluding this study, the remaining drugs were only predicted for 
one specific protein each, except for chloroquine (3CLpro and 
PLpro) and remdesivir (3CLpro and RdRp). The top five drugs in 
clinical trials, which were predicted by docking simulations using 
the 3CLpro main protease, were predicted by 14.3% (darunavir), 
19.0% (remdesivir), and 23.8% (lopinavir, nelfinavir, ritonavir) 
of the total number of included docking studies (Supplementary 
Table 6), showing that for each drug, the majority of studies were 
not able to predict them. Similar drugs were identified by the 
DL approach of Beck et al.44, who identified ritonavir, lopinavir 
and remdesivir, which are being tested in multiple clinical trials. 
However, these antiviral drugs have not yet shown well-defined 
results in patients. For ritonavir/lopinavir, only four trials are 
completed73–76 and preliminary results suggest no difference in the 
outcome after treatment77–79. Further investigation is required80. 
For remdesivir, some trials have been completed and the prelimi-
nary results in patients81–83 and human cell lines84 showed that it 
could be effective in treating SARS-CoV-2 infection.

Antiviral drugs are always the top hits among a large selection 
of drugs from databases, indicating high accuracy of the methods. 
These drugs are good candidates for experimental screening or 
clinical trials, independently of how reliable the computational pre-
dictions are. More interesting candidates are the additional drugs 
identified by these approaches; however, little experimental valida-
tion is available for these drugs and the majority of them do not 
enter clinical trials. A similar situation is observed in the emerging 

field of DL approaches, where most studies focused on demonstrat-
ing the accuracy of their predictions and developing benchmark-
ing datasets85,86. DL and docking simulation-based approaches are 
promising tools to identify repurposable drugs given their capac-
ity to deliver results in a short time. While a standard workflow is 
already established for docking simulations, DL-based approaches 
might robustly deliver testable candidate drugs. However, docking 
studies in particular were rarely peer reviewed, found very different 
candidate sets and partially used different scores for evaluation and 
ranking. This makes it necessary to validate these results by system-
atic comparisons of experiments.

Evaluating host-targeting approaches. Host-targeting approaches 
typically involve integration and analysis of multiple omics types 
and employ data-driven network-based methods; thus, a major lim-
itation is the lack of gold-standard datasets and the scarcity of data 
from the MERS-CoV (Middle East respiratory syndrome coronavi-
rus) and SARS-CoV outbreaks. Prior to the availability of sufficient 
SARS-CoV-2-specific data, earlier studies utilized preliminary data 
or augmented the analyses using data from closely related viruses. 
While the quality of the predictions is highly data-dependent, con-
tinued generation of SARS-CoV-2-specific omics data and pending 
results on clinical studies are expected to improve the predictions. 
Clinical expert knowledge remains crucial for filtering the drug 
predictions based on criteria such as toxicity and pharmacological 
properties. However, the efficacy of these candidate drugs in trial 
remains to be established and firm conclusions cannot be made 
because of the limited data availability.

The degree of overlap with drugs in clinical trials was generally 
low (Supplementary Tables 7 and 8), but more than half of the 
drugs (26 out of 41) predicted by an ensemble method primarily 
based on knowledge graphs17 are also undergoing clinical trials. 
While it should be noted that the drugs registered for clinical tri-
als were also used as their validation set at the time of writing, 
more of their predicted drugs were registered for clinical trials 
later on. We also noted several drugs that were predicted by both 
signature-based and network-based approaches and thus war-
ranted further examination (Supplementary Table 9). Ribavirin 
was predicted by four out of six studies17,60,69,71, thereby provid-
ing a mechanistic basis for its predicted efficacy. Methotrexate,  
which is indicated for rheumatoid arthritis, was also predicted by 
three studies17,68,69.

It is worth noting that several predicted compounds are cur-
rently used to treat critically ill COVID-19 patients. An example 
is dexamethasone (predicted by one signature-based60 and two 
network-based studies17,69), which was supported by the RECOVERY 
trial87. Hydrocortisone (predicted by three studies17,68,69) has also 
demonstrated efficacy for critically ill patients88. Dexamethasone 
and hydrocortisone are corticosteroids that act by modulating an 
overactive immune response, which is typically observed in severely 
ill COVID-19 patients.

Notably, drugs reaching advanced phases in clinical trials were 
not selected based on in silico predictions, but were repurposed 
based on clinical experience with the previous SARS or MERS out-
breaks89 and selected based on known effects in alleviating disease 
symptoms. Furthermore, the predictions were not followed-up by 
experimental validation in the majority of the studies reviewed. This 
translational gap between computational efforts for drug repurpos-
ing and clinical application is a major and widely recognized bottle-
neck in drug repurposing and medicine in general. Results from 
systematic validation efforts will also be important for identifying 
the algorithms and datasets that are specifically suitable for drug 
repurposing in the COVID-19 context. Given the urgency of identi-
fying effective therapies in a pandemic, close collaboration between 
clinicians, experimental biologists and computational biologists is 
expected to address this gap.
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A unified drug repurposing strategy. Although overlaps between 
computationally predicted drug repurposing and clinical trials exist, 
there are no indications that clinical trials were conducted based on 
computational predictions, despite their promising potential. For 
future pandemics, computational tools should be able to deliver 
promising sets of candidates, which could then be validated in trials 
or screenings. Therefore, a unified strategy is necessary. In the fol-
lowing, we identify important issues and discuss potential solutions 
to make computational drug repurposing more effective.

Availability of standardized data. Newly developed methods often 
rely on the same data types (Fig. 3a). The fast generation of differ-
ent kinds of data in future disease outbreaks is a key initial step. 
Notable examples are the interaction data from Gordon et al.11 and 
the publication of the 3CLpro90 structure, which were both used 
by many subsequent studies. However, experimental replication 
of datasets obtained from different laboratories and the integra-
tion of different data types are crucial to increase robustness and 
require improvement.

Tool accessibility. Despite the large variety of computational tools and 
software, it has so far been of limited practical use to clinical research-
ers during the COVID-19 pandemic (Fig. 3b). For virus-targeting 
therapies, docking pipelines remain stable and a large amount of 
software has been developed; however, their corresponding outputs 
showed wide variability depending on the algorithm used, lower-
ing comparability (standardization problem). For host-targeting 
therapies, the in silico pipelines are more methodologically diverse 
and several strategies were developed to target specific biological 
contexts. However, the general availability of computational tools 
and software in the context of the COVID-19 pandemic has been 
highly limited. Tool accessibility allows researchers to run custom 
analyses using the developed algorithms (for example, on newly  
available data). This will help non-computational scientists to use 
these tools and continue with validation routines, avoiding many 

preprint manuscripts that are never validated and consequently 
accelerating research.

Consolidation of predictions. Results from different approaches were 
not entirely integrated. In structure-based repurposing approaches, 
candidate drugs obtained from different docking tools or homology 
modeling methods could be consolidated to provide an ensemble 
of repurposable drugs (Fig. 3b). For host-targeting therapies, one 
study used rank aggregation to integrate results from different algo-
rithms69. Another study derived the final predictions by combin-
ing the output of their model with results from gene set enrichment 
and expert knowledge68. While it should be noted that the drugs in 
clinical trials were used to develop the methods, these two stud-
ies predicted the highest proportion of overlaps with drugs being 
tested in clinical trials. The latter shows the potential of ensemble 
approaches, which are well known to output more robust results91,92. 
Consolidation of multiple approaches could significantly increase 
confidence for repurposing candidates and guide clinical research-
ers through the drug selection process. This requires a streamlined 
solution, considering tool accessibility and standardization, as 
in a standardized database that stores drug candidate predictions 
enabling meta-analyses.

Combinatorial treatment development. Computationally identifying 
synergistic drug combinations is an underexplored domain which 
could provide highly valuable information to augment clinical 
decision-making, since they have been demonstrated to be more 
effective than finding monotherapies91,92 (Fig. 3c). So far, target-
ing of viral and host proteins has been performed independently. 
There is a lack of methods aiming to find complementary drug 
groups while considering side effects. Combining drugs from both 
virus- and host-targeting categories is a promising strategy that 
acts by blocking the viral and host molecular machinery required 
for SARS-CoV-2 entry into cells and disrupting the host pathways 
involved in disease progression in combination with inhibitors for 
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Fig. 3 | Proposed elements of a unified drug repurposing strategy. a, Availability of standardized data. b, Accessible workflows for computational 
predictions. c, Combination of predictions from different methods. d, Feedback from clinical experts of drug candidate sets and screening parameters.  
e, Validation of predicted drugs with different approaches.
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viral replication. While thousands of compounds can be evaluated 
in vitro90, combinatorial validations are considerably more challeng-
ing. Predicted combinatorial treatments could drastically reduce the 
search space for subsequent in vitro validation. Existing screening 
databases such as the NIH OpenData portal93 or the ReFRAME 
library94 have been sparsely used, but their potential has not been 
exhausted. By extending them with in silico predictions, they 
could link in silico and in vitro research, and help identify promis-
ing combinatorial treatments. Furthermore, screening results help 
verify computational predictions. Especially for docking simula-
tions, model predictions and parameters can be easily released in 
a standardized format, which can be evaluated by experimental 
researchers. For host-targeting therapies, the study of Zhou et al.68 
is an example of a combinatorial approach. Furthermore, several 
trials are registered for combination therapy that include candidate 
drugs from both categories; of these, ten drugs were included in the 
predictions from the reviewed studies (Supplementary Table 10). 
However, these drugs are either in the recruitment phase or limited 
results were reported; thus, data regarding their effectiveness has 
been inconclusive.

Expert knowledge. Limited understanding of the complex biologi-
cal mechanisms underlying COVID-19 has required expert knowl-
edge or manual curation in certain stages of the workflow, either 
at protein or pathway selection or at filtering of drug predictions 
(Fig. 3d). Expert vetting is mainly intended to uncover inconsistent 
or contradictory results while still allowing the identification of 
new predictions and can be crucial for filtering candidate drug lists 
for possible adverse side effects. To illustrate this, the antimalarial 
drug (hydroxy)chloroquine raised concerns regarding its potential 
toxicity. Chlorhexidine was found by a docking-based study40 as a 
potential drug targeting SARS-CoV-2 proteins; however, chlorhexi-
dine is a widely used disinfectant whose mechanism of action is not 
SARS-CoV-2-specific and it is approved for topical or dental appli-
cation only95. Consequently, the use of expert knowledge for careful 
evaluation of potential repurposable drugs would have been helpful 
to allocate limited experimental and computational resources on 
safe and effective drugs that have greater potential for widespread 
application. Close collaboration between computational and clinical 
researchers is therefore crucial, because computational approaches 
are still limited in side effect data and annotations for drug actions 
on the targets.

Validation strategies. Drug repurposing studies usually validate the 
computational models by constructing their own ‘ground truth’; 
these can include data from in vitro screening of predicted com-
pounds, in vivo experiments using animal models, ongoing clinical 
trials, electronic health records, literature mining or expert knowl-
edge96 (Fig. 3e). Thus, there is considerable heterogeneity in the 
sources of these standards, but efforts are ongoing to address this. 
For instance, newly released databases, such as the NIH’s OpenData 
portal93, collect and continuously update SARS-CoV-2 in vitro 
screening data for thousands of compounds and other SARS-CoV-
2-related assays. We encourage future studies to utilize such 
resources for further validation or filtering of in silico predictions. 
However, except for one study,69 no direct follow-up experimental 
validation has been performed in the drug repurposing efforts for 
COVID-19. In the reviewed studies, validation was implemented 
through several strategies. Some studies performed signature 
matching of drug profiles or gene set enrichment analysis17 to pro-
vide evidence of the potential effectiveness69,72. Others evaluated the 
performance of their pipelines using the drugs undergoing clinical 
trials for COVID-1917,69 or experimental results from in vitro drug 
screening69. However, an extensive list of candidate drugs remains 
experimentally invalidated; thus, systematic validation of candidate 
drugs would be required to provide a landscape of the accuracy of 

methods. Since this is infeasible in practice, combining the predic-
tions with expert knowledge becomes even more important.

The proposed strategy in this work has the potential to address 
the gaps of previous studies and is intended to serve as a guideline 
on computational drug repurposing to accelerate research, promote 
standardization, and react faster and more precisely in the case of 
future pandemics.
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