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Differential effects of climate change on average
and peak demand for heating and cooling across
the contiguous USA
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While most electricity systems are designed to handle peak demand during summer months,

long-term energy pathways consistent with deep decarbonization generally electrify building

heating, thus increasing electricity demand during winter. A key question is how climate

variability and change will affect peak heating and cooling demand in an electrified future. We

conduct a spatially explicit analysis of trends in temperature-based proxies of electricity

demand over the past 70 years. Average annual demand for heating (cooling) decreases

(increases) over most of the contiguous US. However, while climate change drives robust

increases in peak cooling demand, trends in peak heating demand are generally smaller and

less robust. Because the distribution of temperature exhibits a long left tail, severe cold snaps

dominate the extremes of thermal demand. As building heating electrifies, system operators

must account for these events to ensure reliability.
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Extreme weather events pose an operational risk to infra-
structure systems and the humans who depend on them and
are a major cause of power outages and energy price spikes

across the United States1–3. Hot (cold) temperatures create a
demand for cooling (heating), which in turn drive demand for
energy. For example, Winter Storm Uri, which caused cascading
failures through interconnected and interdependent infra-
structure systems as well as loss of human life in Texas in 2021,
was caused not only by supply-side failures of the energy system4

but also by unanticipated surges in demand for heating2. Simi-
larly in August 2020, an extreme heat wave in California caused
surging demand for cooling, leading the grid operator to institute
rolling blackouts5.

This problem is not limited to the electricity sector. Severe
winter weather in New England can lead to scarcity-driven spikes
in wholesale prices of electricity and natural gas3. At present, peak
electric load events across the contiguous United States (CONUS)
occur during the summer months and when high temperatures
lead to demand for electricity to power air-conditioning. A large
fraction of energy demand for heating during the winter is met by
gas or oil furnaces6. However, modeled pathways to deep dec-
arbonization typically require electrification of sectors including
building heating7, which may lead to peak demands for electricity
during winter cold spells8. Because winter temperatures are
typically farther from a thermal comfort level than summer
temperatures, electrification of space-heating will change the
seasonality of electricity demand, with large portions of the
United States projected to become winter peaking systems8,9.
Thus, a key question is how climate variability and change will
affect peak demands for heating and cooling in an electrified
future.

Theory and climate models offer important insights on this
question. In general, anthropogenic climate change drives robust
increases in surface temperatures globally10. If this were to lead to
a shift in the distribution of temperatures without a change in the
variability, then demand for heating would decrease and demand
for cooling would increase. However, warming trends are
accompanied by changes in the severity and duration of extreme
weather events such as heat waves11, which are particularly
important to understand in order to maintain a reliable power
grid and provide space cooling to alleviate dangerous level of heat
within urban settings12. Overall, shifts in the average temperature
are better understood than shifts in the extremes, particularly cold
extremes. While broad scientific consensus points to increasing
frequency and magnitude of heat waves13, long-term changes in
frequency of mid-latitude winter extreme temperatures or cold
snaps are uncertain potentially driven by Arctic Amplification
and remain an active area of research14,15.

In this paper, we present a retrospective analysis of trends in
heating and cooling demand using temperature-based proxies of
energy demand for the last 72 years (1950–2021) over the
CONUS using climate reanalysis data16. Throughout this paper,
the cooling or heating demand refers to the inferred cooling or
heating demand computed solely using temperature-based
proxies. We have not considered the non-linearities in peak
demand that occur, particularly at extreme temperatures due to
humidity (cooling), installed heating system capacity and tech-
nology, building occupancy, demographics, housing stock and
price elasticity. The lack of place-specific data for these con-
siderations and the dependence on legacy building stock envelope
would preclude nation-wide comparisons if one attempts to
account for these non-linearities. We quantify both changes to
annual average energy demand and to annual maximum (peak)
energy demands, which are key design parameters for energy and
electricity systems17,18. Moreover, peak load supply is generally
more expensive compared to ordinary supply plants and

contributes disproportionately to consumer costs. We focus on
understanding historical trends and their system reliability
implications for near-term operations and investment, given that
in the long term deeply uncertain technological and socio-
economic factors will drive system performance19. The primary
focus of the study, to examine the changing capacity requirements
and load factors, within the context of all heating and cooling
demand met increasingly by electricity, has clear implications for
future grid cost structures. We identify a north-south divide in
the emergent patterns of the heating, cooling, and total thermal
demand trends, especially for the ratio of average to peak
demands and the relative importance of the peak cooling and
peak heating demand. To aggregate findings to decision-relevant
scales, we estimate trends for major electric grid systems and
present findings for Florida and the Midcontinent Independent
System Operator (MISO), which serve as the archetypes of the
grid in the north and south.

Results and discussion
Trends in annual mean inferred thermal demand. Mean heat-
ing and cooling demand contribute to the total demand for
energy and have direct implications for carbon emissions and
energy economics. A first question is how the average annual
demand for heating and cooling has changed over the past
70 years. To answer this question, we consider the average annual
demand for cooling and heating inferred from hourly tempera-
ture data from the ERA-5 reanalysis dataset16. Specifically, we
define the inferred demand for heating and cooling following
Doss-Gollin et al.2, at each grid cell and for each hour, as the
difference between the hourly temperature and a threshold
temperature of 65 F; see Methods for additional details. These can
be interpreted as the number of degrees a building must be cooled
or heated to reach a thermal comfort level. We also define the
total thermal demand as the sum of the cooling and heating
demand. Mean inferred cooling, heating and total thermal
demand across the CONUS is displayed in Fig. S1.

Figure 1 shows robust increases in annual demand for cooling
and robust decreases in demand for heating across the CONUS.
This is consistent with first-order expectations from climate
change, which is expected to increase the temperature and length
of summers and to shorten the length and severity of winters20.
The dark red regions, especially in central Colorado, show the
largest increases in demand for cooling, with the trend being
>1%/year, and the dark blue regions, especially in the southern
Florida, show the largest decreases in demand for heating, with
the trend being below −1%/year. This is also consistent with
expectations about regional climate change in southern Florida21

and in Colorado with higher elevations generally recording higher
warming rates22 and could be driven by changes in the snow
telemetry stations23. Similar trends in annual mean inferred
demand across CONUS in terms of raw magnitude are shown in
Fig. S2.

These competing shifts lead to different trends in total thermal
demand by region. Across most of CONUS, total thermal
demand shows robust negative trends because winters are longer
and farther from a thermal comfort level than summers.
However, in southern states where summers are particularly
long and hot, the increased demand for cooling outweighs the
decreased demand for heating; these trends are significant in
some parts of Florida, Arizona, Texas, and Southern California.
Field significance tests (see Methods) reject the hypothesis of no
trend for all three demand types.

While analysis at the scale of reanalysis grid cells is useful for
understanding the spatial patterns of trends, it is not directly
relevant to the operation of the electric grid. Electric Grids,
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Independent System Operators, and Regional Transmission
Operators are socio-political entities over which grid planning
and operations are coordinated. Such entities have boundaries of
operation and serve dedicated population centers and regions. As
such, ensuring adequate supply and reliability of electricity is a
key concern for these entities. Moreover, electric grids are
designed for the peak load and increasing electric generation
capacity is capital intensive and requires analysis of forecasts and
trends in projected demand17. To answer this question, we
aggregate the thermal trends over space, weighing each grid cell
by its 2020 population24.

Figure 2 shows the aggregated trends in the total thermal
demand for the Florida Electric Grid and the Midcontinent
Independent Systems Operator (MISO), which are representative
of the hot and cold regions of the CONUS, respectively. The
Florida grid (Fig. 2a) covers most of the state of Florida, with the
exception of the panhandle and is the southernmost sub-grid
within the CONUS. Like other southern regions, average inferred
cooling demand is greater than the average inferred heating
demand, and so the net trend is towards increasing total thermal
demand (Fig. 2c). Florida is the only grid entity within the
CONUS (see Methods for a list of all entities examined) where
the total thermal load has a statistically significant increasing
trend.

An opposite trend is apparent for the region served by MISO
(Fig. 2b). Because of its northern location, MISO has an inferred
heating demand much larger than the inferred cooling demand
(Fig. 2d). Consequently, the increasing background temperature
leads the decreasing heating demand to dominate the total
thermal demand, resulting in a net decrease in total thermal
demand. This trend is representative for other grid entities
serving northern regions (Fig. S3–S5). This indicates that a

scenario with total electrification of space heating would see
decreasing demand on average across the Northern CONUS.

Trends in annual peak inferred thermal demand. Although the
annual mean thermal demand is a useful metric for under-
standing the long-term trends in thermal demand, an equally
important metric is the peak thermal demand. Designing a sys-
tem for peak demand is important for ensuring reliability of the
electrical17 and other energy systems3 Peak electrical demands
are already projected to increase as other sectors of the economy
(e.g., transportation) electrify25. To analyze the presence of
temperature-driven trends in the inferred peak demand we
examine the time series of the annual maximum (instead of
annual mean considered in the previous section) 72-h inferred
thermal demand from the same datasets. The effect of extreme
temperature events on energy demand is a function of the event’s
length and intensity with short term spikes interrupting plant
operations and spiking prices while long duration events also
causing breakdown of critical infrastructure services. Similar
analysis was also carried out for peak inferred demand events for
durations ranging from 6 h to 336 h (14 days).

Consistent with a background increase in temperature,
increases (decreases) in peak demand for cooling (heating) are
observed across large swaths of CONUS (Fig. 3a, b). Across large
swaths of the CONUS, the peak inferred cooling demand
intensity (duration 72 h) has increased, whereas the peak inferred
heating demand intensity has decreased. The peak total thermal
load also shows decreasing trends throughout the CONUS, except
for the southernmost regions (Fig. 3c). Furthermore, we find no
systematic shift or change in the seasonality and day-of-year
occurrence of peak inferred heating and cooling demand events.

 Cooling Demand − Annual Meana  Heating Demand − Annual Meanb

 Total Thermal Demand − Annual Meanc

−1.0 −0.5 0.0 0.5 1.0Scaled Slope (%/yr)

Fig. 1 Demand for cooling (heating) is increasing (decreasing) across the contiguous United States (CONUS), with net decreases in all but the hottest
climates. Trends (see Methods for details) in annual mean demand for (a) cooling, (b) heating, and (c) total thermal demand across the CONUS at each
grid cell (0.5o × 0.5o lat-lon) from ERA516. The shaded colors denote the estimated trend per year (%/year). The dotted regions are locations where the
trend in the mean inferred demand is statistically significant at the 5% level.
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Field significance tests were also run and the hypothesis of no
trend was rejected for all three demand types. Similar trends in
intensity of peak inferred demand across CONUS in terms of raw
magnitude are shown in Fig. S6.

The peak inferred cooling demand intensity for events with a
duration of 72 h (Fig. 3a) shows increasing trends across most of
the CONUS. The median trend is 0.16%/yr, whereas the range
extends from −0.25%/year to 1.77%/year. The estimated slope of
the trend is largest in central Colorado, with an annual increase
>1%/year. Almost all of the western United States, New England,
New York, Florida, Louisiana, Pennsylvania and large portions of
Texas, Virginia, and North Carolina have increasing cooling
demand intensity trends that are statistically significant. This is in
contrast to interior regions of the Midwest and the Plains, which
exhibit smaller trends, and the Dakotas, which even exhibit a
small decreasing trend in the peak cooling demand. Similar
trends, including the large increases within Colorado and
decreases within the Dakotas, are seen in peak events when
other event durations are considered (Fig. S7).

Almost the entire CONUS has had decreasing trends in the
peak inferred heating demand intensity for events with a duration
of 72 h (Fig. 3b). The median trend is −0.1%/year, with the range
being (−0.41, 0.03) %/yr. Unlike the peak cooling demand
intensity, there are no areas with large increases and the trends
are significant mostly in Southern California and the southwest

and southeast portions of the CONUS, which are regions where
the heating demand during the winter is low and does not
dominate grid operations. The nature of the trends in peak
heating event intensity is fairly constant across multiple durations
(Fig. S8).

Trends in peak inferred thermal load intensity for events for a
72 h duration (Fig. 3c) have a median and range of −0.1 %/year
and (−0.37, 0.20) %/year, respectively. The statistically significant
trends are concentrated in the southern parts of the Western
United States, from Appalachia to Florida and in the upper
Northeast of the country. Almost all of the CONUS shows an
overall decrease in the peak thermal load intensity driven by the
decrease in the peak heating demand intensity (Fig. 3b), which is
typically larger than the peak cooling demand intensity.
Exceptions are the southernmost parts of Florida, Texas, Arizona,
and California, where there is an increase driven by the peak
cooling demand intensity that exceeds the peak heating demand
intensity. Trends for other event durations have similar spatial
patterns (Fig. S9).

The secular trends that were present in the mean heating,
cooling, and total thermal demand (Fig. 2) are less prominent in
the peak events for both Florida and MISO (Fig. 4). Instead, the
peak heating demand is marked by substantial inter-annual and
decadal variability (Fig. 4). Florida has an increasing peak cooling
demand trend and a recent decline in the peak heating demand
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Fig. 2 While demand for heating (cooling) is decreasing (increasing) across the contiguous United States (CONUS), the net effect is a decrease in
total thermal demand in cold regions and a net increase in total thermal demand in hot regions. Two archetypes of grid operators serving hot (a) Florida
and cold (b) MISO regions are shown. c Annual mean inferred demand in terms of degrees Fahrenheit for Florida. d Annual mean inferred demand in terms
of degrees Fahrenheit for MISO. Red lines show decreasing demand for heating, blue lines show increasing demand for cooling, and black lines show
increasing (decreasing) total thermal demand for Florida (MISO). The dashed lines denote the 10-year moving average.
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intensity. Such trends are not evident for MISO. Similar plots of
the peak inferred demand intensity for other grid sub-regions are
attached in the supplement (Fig. S10–S12).

The peak event intensity for total thermal load for Florida
(Fig. 4a), is typically associated with the peak cooling demand, but
dramatically higher peak heating demands occur in several years
corresponding to cold outbreaks. The peak cooling demand events
dominate post 2010. Thus, for grid operators in the Southern
United States, a challenge is the variability in the peak heating

demand, which far exceeds the variability in the peak cooling
demand. For MISO (Fig. 4b), the peak total thermal demand
events are exclusively the peak heating demands, exhibiting
increasing inter-annual variability post 1980. Consequently, a
seasonal prediction for the winter to anticipate either a high or a
low heating demand peak is crucial for timing system maintenance
and upgrades and allocating adequate capacity. For example, the
planned outages for plant maintenance coincided during the Texas
freeze of Feb 20212,4, in anticipation of a future summer peak.

 Cooling Demand − Annual Peaka  Heating Demand − Annual Peakb

 Total Thermal Demand − Annual Peakc

−1.0 −0.5 0.0 0.5 1.0Scaled Slope (%/yr)

Fig. 3 Trends in the intensity of peak inferred cooling, heating, and total thermal demand across the CONUS are more variable than the trends in the
mean demands but are most coherent for cooling demand in the Western and Northeastern portions of the CONUS, where cooling demands have been
increasing. Trends in the intensity of peak inferred demand events of duration 72 h for (a) cooling demand, (b) heating demand, and (c) total thermal
demand at the reanalysis grid-cell level (0.5o × 0.5o lat-lon) across the CONUS. The shaded colors denote the estimated trend per year (%/yr). The dotted
regions are locations where the trend in demand is statistically significant at the 5% level. Peak events correspond to the annual maximum events (see
Methods for further details).
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Fig. 4 The magnitude of inter-annual variability in the intensity of peak heating events is much larger than that of peak cooling events, as shown for
both Florida and the Midwest (MISO). Peak Inferred Demand Intensity for events of duration 72 h in population adjusted degrees Fahrenheit averaged
over 72 h for (a) Florida, and (b) MISO. The red and blue colors correspond to heating and cooling demand, respectively. The black dots correspond to
peak events for the total thermal load.
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Trends in thermal load factors. An additional measure of grid
operation viability is the load factor26, which is a measure of the
efficiency of electricity usage. The load factor is defined as the
ratio of average load to peak load over a specific time interval. It
measures the average utilization of the installed capacity of
electric infrastructure systems. While the overall grid economics
are determined by numerous factors, including governmental
policies, the peak loads and load factors are indicators of the
overall supply-side economics of the grid.

The utilization of installed system capacity is a key criterion in
energy economics and infrastructure management27. Infrastruc-
ture utilization is often measured by a load factor defined as the
annual mean demand divided by the peak demand for the same
year. In this section, we look at only how climate affects
utilization rates. Demand fluctuations for other reasons for
example, population and efficiency of technology, are amplified
by thermal load considerations. The installed capacity should be
determined by the expected peak demand. In the current context,
we consider the peak thermal demand as the design criteria,
assuming that it is the dominant additive determinant of the peak
load on the system, and consider the utilization factor through
the ratio of the mean thermal load to the peak thermal load.

Large portions of the southern United States show an
increasing trend in thermal load factors, though trends are
statistically significant only in the southernmost regions. The
trends in the infrastructure utilization rates (load factors) for
thermal demand are shown in Fig. 5. The median and range of
the trends are 0.01 %/yr and (−0.17, 0.42) %/yr, respectively. For
example, within the Florida grid sub-region (Fig. 6a), thermal
load factors show an increasing trend with large decadal
variability, mirroring our earlier observation of the peak heating
trend. A silver lining is that while the peak thermal load in Florida
(Fig. 4a) is increasing, the mean thermal load is increasing faster,
translating into higher load factors or greater utilization of the
needed capacity. A much milder trend (decreasing mainly in the
1950s) is evident for MISO (Fig. 6b). There is high inter-annual
variability in the load factor for both MISO and Florida, largely
due to dramatic year-to-year changes in the peak heating load, re-
emphasizing the importance of accurate seasonal forecasts for the

peak heating load or winter cold outbreaks. Similar trends in
thermal load factors across CONUS in terms of raw magnitude
are shown in Fig. S13.

The northern parts of the CONUS and parts of the Western
mountain regions have decreasing load factor trends (significant
in parts of California, and the Great Lakes region) (Fig. 5). The
mean thermal load is decreasing faster than the peak in these
areas. Few areas, including parts of Southern California and
Arizona, are driven by different dynamics, where the decreasing
load factors are driven by slower increases in the mean thermal
demand than the peak. These trends are similar for other event
durations (Fig. S14). Further, plots of the load factors for other
grid sub-regions are attached in the supplement (Figs. S15–S17).

Similarly, these predominant trends in Florida and MISO are
also visualized in load duration curves28 that represent the
relative frequency of demand exceedance (Fig. S18). The load
duration curves for other grid sub-regions are attached in the
supplement (Figs. S19–S21). Overall, the ongoing process of
electrification of space-heating is poised to increase the actual
electric peak load across large parts of the country8. Once
completed, however, the infrastructure built to meet the peak
load may see lower utilization rates in the northern parts of the
United States driven by decreases in the mean heating demand
(Fig. 1), which are larger than the decreases in peak demand
(Fig. 3). Lower infrastructure utilization rates are associated with
higher average operating costs that are then passed on to
consumers.

Conclusions
As expected under a global warming regime, there have been
significant changes in the thermal loads experienced by electric
grid operators across the CONUS. Overall, the average winter
heating demand is decreasing, whereas the average summer
cooling demand is increasing. The dynamics are less consistent
in the case of peak load events, where the peak heating load is
relatively unchanged across large swaths of the CONUS while
the peak cooling load is increasing in the population dense
regions.

There are divergent trends in the hypothetical capacity utili-
zation over the historical record that impact regional energy
economics. The average heating demand is decreasing faster than
the peak heating demand, leading to decreasing load factors in the
northern regions of the CONUS, where the heating load dom-
inates the grid. In the southernmost regions of the CONUS,
where cooling loads dominate, the average cooling demand is
increasing faster than the peak cooling demand, leading to
increasing load factors. If these divergent trends in capacity uti-
lization are manifest, due to widespread electrification of heating,
and continue into the future, they will effectively result in pro-
gressively increasing costs needed to maintain reliable power
systems in northern regions of the CONUS and decreasing costs
needed to maintain reliable power systems in southernmost areas
of the CONUS. In fact, this analysis is a precursor to evaluating
results from climate model simulations of future climate condi-
tions. The results presented in this paper apply to temperature
induced changes (which in turn are linked to climatic changes) in
cooling or heating requirements. They do not account for
dependence on humidity, housing stock, occupancy, or state of
deployment of specific heating and cooling technologies. Extra-
polation of these results outside the CONUS regions, in particular
cities in the global South, is complicated by the rapid adoption of
air-conditioning and a corresponding increase in electric demand,
in contrast to the CONUS, where the air-conditioning levels have
stabilized29.

 Thermal Load Factor

−1.0 −0.5 0.0 0.5 1.0Scaled Slope (%/yr)

Fig. 5 Trends in the thermal load factors across the CONUS are
heterogeneous, with a spatially coherent pattern of positive trends in the
Southeastern US. Trends in load factors for total thermal demand at the
grid-cell level (0.5o × 0.5o lat-lon) across the CONUS. The peak event
demand intensity is computed for events with a duration of 72 h. The
shaded colors denote the estimated trend per year (%/year). The dotted
regions are locations where the trend in the load factors is statistically
significant at the 5% level.
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Lastly, our results show that peak heating demand during
winter is characterized by very high inter-annual variability. This
variability is difficult to manage without procuring massive
reserve capacity during winter and/or improving our ability to
predict such winter peak events with sufficient lead times to
adjust normal system operations, such as by postponing regular
seasonal maintenance. We recently witnessed some of the sig-
nificant electric grid problems that can occur due to poor
anticipation of a severe cold outbreak in Texas in 2021 during
winter storm Uri2.

Methods
Temperature. The 2-meter surface temperature data are taken
from ERA-5 reanalysis data product16. The spatial grid size of the
data is set at 0.5o lat × 0.5o lon and contains 3267 grid points
within the contiguous United States (Fig. S22A). The data are at
an hourly time-step and span 72 years (1950–2021).

Population. The population data are taken from the Gridded
Population of the World, Version 4 (GPWv4)24. The population
for the year 2020 is used in this study. The data files were pro-
duced as global rasters at 30 arc-second (1 km at the equator)
resolution but aggregated to the spatial resolution of the reana-
lysis dataset.

Electric grid sub-regions. The CONUS is divided into three
major grids-—Western Interconnection, Eastern Interconnec-
tion, and Electric Reliability Council of Texas. These three
interconnections are further divided into Regional Transmission
Organizations, Independent System Operators, and additional
sub-regions. We use the Environmental Protection Agency’s
(EPA) Emissions & Generation Resource Integrated Database
(eGRID) maps for the shape-files of the various grid sub-
regions30. The eGRID sub-regions are regional entities of EPA’s
Clean Air Markets Division and roughly correspond to the grid
sub-regions. We make the following changes in the shape-files to
have the eGRID sub-regions better reflect the grid subregions.
The eGRID sub-regions of New York City, Long Island, and New
York State are merged to better reflect the New York Indepen-
dent System Operator (NYISO), which covers the entire state of
New York. The spatial extent of the grid sub-regions is shown in
Fig. S22B. The list of the grid entities analyzed in this study are
(A) Arizona/New Mexico, (B) CAISO, (C) ERCOT, (D) Florida,

(E) Wisconsin (Rural), (F) Midwest (MISO), (G) ISO New
England, (H) Northwest, (I) NYISO, (J) PJM (West), (K)
Michigan, (L) PJM (East), (M) Colorado, (N) Kansas, (O)
Oklahoma, (P) Arkansas/Louisiana, (Q) Missouri, (R) Southeast,
(S) Tennesse Valley, (T) Carolinas (Fig. S22B).

Inferred heating, cooling and total thermal demand at the local
level. The local inferred demand is computed for each grid-cell
where the ERA-5 temperature data are available. The residential
heating and cooling demand are functions of the temperature
deviation from a temperature most suited for human comfort8.
The total thermal demand is defined as the sum of both the
heating and cooling demand (total temperature dependent
inferred demand).

Using 65 F (18.33 oC, 291.5 K) as the ambient temperature
threshold, the deviation of observed temperature from this
threshold is taken as the proxy inferred heating and cooling
demand. Our overall conclusions are not sensitive to the ambient
temperature threshold. Different thresholds (e.g., 68 F) also lead
to similar macro level trends. The ERA-5 data are available at an
hourly resolution and the inferred heating and cooling demand
was computed as

HDi;t ¼ maxð65� Ti;t; 0Þ ð1Þ

CDi;t ¼ maxðTi;t � 65; 0Þ ð2Þ

TTDi;t ¼ Ti;t � 65
�� �� ð3Þ

where, HDi;t , CDi;t , TTDi;t and Ti;t are the inferred heating
demand, inferred cooling demand, inferred total thermal
demand, and observed temperature at hour t and location i.

Population distribution weighted inferred demand at the
regional level. All the ERA-5 temperature locations (grid-cells)
within the electric grid sub-region of interest are identified and
the inferred thermal demand is computed for each grid-cell using
the method described above. The grid-cell level inferred demand
is then multiplied by the regional population fraction associated
with that location (grid-cell) and summed across all locations
(grid-cells) within the electric grid sub-region of interest. The
population weighted inferred heating, cooling, and total thermal
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Fig. 6 Trends in the annual thermal load factors are contrasting for Florida (increasing) and Midwest (MISO; slightly decreasing), though both regions
exhibit substantial inter-annual and inter-decadal variability. Annual Load factors for total thermal load for (a) Florida, (b) MISO. The load factors are
defined as the annual mean load divided by the annual peak load. Peak demand load is computed for events of a duration of 72 h. The dashed red line
denotes the 10-year moving average.

COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-023-01048-1 ARTICLE

COMMUNICATIONS EARTH & ENVIRONMENT |           (2023) 4:402 | https://doi.org/10.1038/s43247-023-01048-1 | www.nature.com/commsenv 7

www.nature.com/commsenv
www.nature.com/commsenv


demand are defined as,

HDt ¼ ∑
N

i¼1
max 65� Ti;t ; 0

� �
´ f i ð4Þ

CDt ¼ ∑
N

i¼1
max Ti;t � 65; 0

� �
´ f i ð5Þ

TTDt ¼ ∑
N

i¼1
Ti;t � 65
�� �� ´ f i ð6Þ

Where, HDt , CDt , and TTDt are the population adjusted inferred
heating, cooling and total thermal demand for hour t. Ti;t is the
observed temperature for location i at hour t. N is the total
number of ERA-5 temperature grid-cells within the grid sub-
region of interest. f i is the population fraction associated with the
grid-cell i. The 2020 population was used to assess the popula-
tion fractions f i. Thus, the trends computed are sensitive to
temperature only, and not to population changing over time.

Peak inferred demand. We use the annual maxima of the ther-
mal load over a particular duration (e.g., a moving window of
72 h) as the criteria to define peak events31. This relates directly to
the generation capacity needed for grid operations as an addition
to other loads. The annual maximum peak intensity of heating,
cooling or total thermal demand for an event of duration 72 h is
computed as

Iy ¼ maxt ∑
mþ71

t¼
IDt½y�

� �
1<m< ðn� 72Þ; y ¼ 1¼ k ð7Þ

where, Iy is the peak demand intensity for year y for events of
duration 72 h, IDt is the inferred demand for hour t. n is the total
number of hours t in year y, and k is the total number of years.

The annual cycle for identifying peak inferred cooling demand
events is set as January-December, whereas the annual cycle for
identifying peak inferred heating and total thermal demand events
is set as September-August. This ensures seasonal continuity since
the peak inferred heating demand events occur most frequently
during the boreal winter (December–January–February). A
consequence of this transformation is that peak inferred cooling
demand data extends from 1950–2021 (72 year), whereas the peak
inferred heating and total thermal demand data spans only
1951–2021 (71 years). Options for computing the inferred heating
and cooling demand that incorporate non-linearities in response
to the peak demand in addition to the threshold-based non-
linearities exist in the literature32–34. Overall such methods
generalize poorly spatially across the CONUS due to multiple
factors, and we use the metric described above to focus on
temperature driving changes.

Trend analysis for direction. The Mann–Kendall (MK) trend
test is used to check for the presence of a monotonic trend in the
time series data and is a non-parametric rank based test making it
applicable to any data irrespective of the underlying generative
probability distribution35. The two-sided MK test is used to check
for the presence of either a monotonic increasing or decreasing
trend in the data. The MK test statistic (Zs) for a time series x1,
x2,…xn is computed as:-

S ¼ ∑
n�1

i¼1
∑
n

j¼iþ1
sgnðxj � x1Þ ð8Þ

Where, sgn is the sign operator taking values −1,0,1 for the

negative, zero and positive values respectively.

Zs ¼
S�1
σ if S > 0

0 if S ¼ 0
Sþ1
σ if S < 0

8><
>: ð9Þ

The null hypothesis of this test is rejected at significance level α
if Zs

�� ��<Zcrit where Zcrit is the value of the standard normal
distribution with a probability of exceedance of α/2. The
significance level selected for this study is 5%. Refer35 for
additional details on computation of σs and effect of the sample
size n.

Trend analysis for slope. Thiel-Sen slope (bS), a rank based test
statistic, is computed as a robust estimate of the monotonic trend.
The estimate, a median of the pairwise slopes between elements of
the series, is based on a non-parametric test and can be applied to
all distributions. The validity of this test does not depend on the
normality of the residuals and is not strongly affected by outliers,
unlike ordinary least square regression35.

The estimate is computed using each pair of observations in a
pariwise manner, resulting in n × (n− 1)/2 individual computa-
tions. For each data pair the slope between the two points is
computed. The median of all such values is the required slope.
The significance test for the slope is identical to the procedure
above.

bs ¼ median
ðyj � yiÞ
ðxj � xiÞ

ð10Þ

The Mann–Kendall trend test and Thiel-Sen’s slope estimation
were conducted using the trend package36.

Field significance test. The field significance test is used to check
whether the total number of tests that show a significant result
could have happened by chance, given that a large number of
tests were conducted. The null hypothesis of this test is that the
fraction of grid cells exhibiting a monotonic linear trend at α%
level of significance can be attributed to random chance and
spatial correlation between the grid cells37,38. The test is con-
ducted using a bootstrap that resamples the entire field by time,
thus addressing the potential spatial correlation in the data.

For each bootstrap sample, the significance test described
earlier is run at all the grid points. The total number of grid
points that turn up significant are noted. This procedure is
repeated for 1000 bootstrap samples. The (1− α)th percentile of
the number of grid points significant for the 1000 bootstrapped
samples is compared against the data. If the number of significant
grid-points in the data is greater than the (1 – α)th percentile from
the bootstrapped copies, the null hypothesis of the field
significance test at the α% level of significance is rejected38.

Data availability
The ERA-5 temperature data, population data, and grid sub-region shapefiles can be
accessed publicly with the details of the data sources provided in the Methods section. All
code and data used in this study is made publicly available at https://zenodo.org/record/
8395835.

Code availability
The code used in this study is made publicly available in a GitHub repository and can be
accessed from https://github.com/yashamonkar/CONUS-Inferred-Heating-Cooling.
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