
ARTICLE

Projections of northern hemisphere extratropical
climate underestimate internal variability and
associated uncertainty
Christopher H. O’Reilly 1✉, Daniel J. Befort2, Antje Weisheimer 3,4, Tim Woollings2, Andrew Ballinger 5 &

Gabriele Hegerl 5

Internal climate variability will play a major role in determining change on regional scales

under global warming. In the extratropics, large-scale atmospheric circulation is responsible

for much of observed regional climate variability, from seasonal to multidecadal timescales.

However, the extratropical circulation variability on multidecadal timescales is systematically

weaker in coupled climate models. Here we show that projections of future extratropical

climate from coupled model simulations significantly underestimate the projected uncertainty

range originating from large-scale atmospheric circulation variability. Using observational

datasets and large ensembles of coupled climate models, we produce synthetic ensemble

projections constrained to have variability consistent with the large-scale atmospheric cir-

culation in observations. Compared to the raw model projections, the synthetic

observationally-constrained projections exhibit an increased uncertainty in projected 21st

century temperature and precipitation changes across much of the Northern extratropics.

This increased uncertainty is also associated with an increase of the projected occurrence of

future extreme seasons.
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Internal variability has a strong influence on decadal-to-
multidecadal climate variability and trends, particularly on
regional scales in the extratropics1–3. The dominance of

internal variability explains why regional temperatures have
exhibited markedly different trends on decadal timescales, despite
persistent global warming due to increasing greenhouse gas
concentrations since the pre-industrial period (e.g. Eurasian
winter cooling4). The dominant source of internal variability for
continental climate in the extratropics is large-scale atmospheric
circulation. For example, the extratropical warming over land
during the Northern Hemisphere winter over the later part of the
twentieth century was enhanced substantially by anomalies in the
large-scale atmospheric circulation and their associated impact on
surface-air temperature5–7. Internal variability in the large-scale
atmospheric circulation is expected to make a similarly large
contribution to the climate we will experience in the future8. Over
the coming decades, trends in extratropical temperature and
precipitation are expected to be dominated by internal variability,
particularly over North America and Eurasia2,9. Therefore, to
provide useful projections of extratropical climate over the
twenty-first century, it is crucial that models accurately represent
the contribution from the internal variability associated with
large-scale atmospheric circulation10.

Recent studies, however, have highlighted some disparities
between the observed large-scale circulation variability and that
seen in current climate models. In particular, over the North
Atlantic sector during winter, there have been significant multi-
decadal fluctuations in the leading mode of large-scale atmo-
spheric circulation variability, the North Atlantic
Oscillation7,11,12, and related behaviour in the strength of the
North Atlantic jetstream13,14. Several studies have argued that the
weak multidecadal atmospheric circulation variability reflects the
apparently relatively weak response of the atmospheric circula-
tion to variability in North Atlantic sea surface temperatures
(SSTs)15–20. It has also been suggested that the response of
stratospheric polar vortex to Atlantic SSTs and the subsequent
influence on the extratropical large-scale circulation in the tro-
posphere is poorly represented in climate models, which may
contribute to the weak atmospheric circulation variability21.
There is also substantial multidecadal variability in the large-scale
circulation during the summer season in the North Atlantic
sector, which has exhibited a clear influence on the variability of
European summer climate22–24 and—similarly to the winter
season—seems to be too weakly represented in coupled climate
models25.

While there has been much attention given to the mechanisms
of multidecadal variability in the atmospheric large-scale circu-
lation, relatively little attention has been given to the implications
for future projections26. The apparent disparities between the
large-scale circulation variability in observations and models are
discussed in the recent IPCC Sixth Assessment Report27 (Chap-
ter 3); however, the implications for future projections are not
clearly considered. In this study, we use a novel method to pro-
duce climate projections using observationally constrained esti-
mates of large-scale circulation variability.

Results
Multidecadal circulation variability in observations and mod-
els. We begin our investigation by examining the multidecadal
variability of sea-level pressure (SLP) in observational data sets.
SLP is a useful proxy for the atmospheric circulation because
outside of the tropics the large-scale flow is effectively in geos-
trophic balance, such that SLP provides a direct measure of the
near-surface winds. Large-scale SLP anomalies are also typically
associated with wind anomalies higher in the troposphere17,28, so

analysis of the SLP fields implicitly reflects variability throughout
the troposphere. For example, the only atmospheric observations
that are used to constrain the 20th Century Reanalysis are surface
pressure observations. Despite this, the 20th Century Reanalysis
closely matches the variability of the upper-tropospheric extra-
tropical circulation seen in more comprehensive reanalysis pro-
ducts that assimilate upper-atmosphere observations29. An
advantage of analysing SLP here is that there is a long and
extensive observational record30, with data from ship observa-
tions over the ocean and long station records over land31.

Figure 1a, b shows the multidecadal variability of the winter
and summer SLP in observations (shown here for the HadSLP2
data set), over the historical period 1901–2005 (see ‘Methods’).
Multidecadal variability is defined here as the standard deviation
of the 20-year running means, normalised by the interannual
standard deviation. The results are not sensitive to the length of
the moving average timescale, and similar behaviour is found for
decadal (i.e. 10-year) and 30-year running means (Supplementary
Figs. 1 and 3). There are large areas with substantial multidecadal
variability in winter SLP over the North Atlantic sector,
significantly more than would be expected from a simple white-
noise process as shown by the black contours in Fig. 1a, b (this
pattern is consistent across multiple observational data sets;
Supplementary Figs. 1–3). There are also areas with substantial
multidecadal variability for the summer season. The regions with
high levels of summer multidecadal variability centred over
Northern Europe and North America are particularly consistent
across multiple observational data sets (Supplementary Figs. 1–3).

The analysis of multidecadal SLP variability was repeated for a
large ensemble of 246 historical simulations from 54 different
coupled climate models in the Coupled Model Intercomparison
Project (CMIP) 5 and 6 archive32,33. The CMIP ensemble displays
relatively weak multidecadal variability everywhere (Fig. 1e, f),
with the multidecadal variability from the observations falling in
the top 5% of the CMIP distribution and higher over large areas
around the North Atlantic sector in both winter and summer
(similar results are found in the separate CMIP5 and CMIP6
ensembles, Supplementary Fig. 4). Internal variability can be
difficult to separate from the forced responses in the multi-model
CMIP ensemble as different models have different forced
responses that require large single-model ensembles to
determine34. Therefore, in the analysis that follows we use data
from the Max Planck Institute for Meteorology Grand
Ensemble35 (MPI-GE), which is a large ensemble of coupled
climate model simulations consisting of 99 members (see
‘Methods’). The MPI-GE demonstrates similarly weak multi-
decadal SLP variability as the CMIP ensemble in both winter and
summer (Fig. 1g, h). Taken at face value, the CMIP ensemble and
MPI-GE both seem to be inconsistent with the observed
multidecadal SLP variability, exhibiting a similar deficiency with
low variability over the North Atlantic compared with observa-
tions (Fig. 1a, b and Supplementary Fig. 1–3).

To examine the nature of the multidecadal SLP variability seen
over the North Atlantic sector in observations, we performed an
empirical orthogonal function (EOF) analysis using the regions
shown in Fig. 1 (see ‘Methods’). Decomposing the interannual SLP
data into the leading EOFs reveals that, in winter, the leading
mode of variability (EOF1)—often referred to as the North
Atlantic Oscillation36—exhibits substantial multidecadal variabil-
ity in all of the observational data sets (Supplementary Fig. 5), as
highlighted in previous studies7,13,37,38. However, there is also
substantial multidecadal variability in next two modes, EOF2 and
EOF3. The contribution of the leading EOFs to the multidecadal
SLP variability seen in the observations is assessed by replacing the
principal component (PC) timeseries of the leading EOFs with
random white-noise timeseries with the same standard deviation
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and repeating this process 10,000 times. The observed multi-
decadal wintertime SLP variability in the North Atlantic sector can
be largely attributed to the first three EOFs (Fig. 1c), while higher-
order EOFs make no clear contribution (Supplementary Fig. 6).
During the summer season, the two leading EOFs of SLP
variability in the North Atlantic sector both exhibit substantial
multidecadal variability (Supplementary Figs. 5 and 7), with EOF3
making relatively small contribution to the observed multidecadal
variability. Similar to the winter season, the overall observed
multidecadal summer SLP variability in the North Atlantic sector
can be largely attributed to the first three EOFs (Fig. 1d and
Supplementary Fig. 6). In contrast to the observational data sets,
in the CMIP ensemble and MPI-GE the variability of the leading
EOF modes are not significantly different from random white-
noise processes (Supplementary Fig. 5), consistent with maps of
multidecadal SLP variability (Fig. 1e–h).

Generating synthetic observationally constrained projections.
The discrepancies between the observed multidecadal SLP
variability and that seen in climate models are substantial—but
what are the implications for the climate projections made using
these models? To investigate this, we have generated synthetic
temperature and precipitation projections that are consistent with
the observed large-scale circulation variability (the key steps are
outlined in the following; for full details, see ‘Methods’). These
projections are based on the MPI-GE climate model simulations,
performed from 1901 to 2100 for various forcing scenarios35.

First, the signature of SLP variability was subtracted from
temperature and precipitation fields in the raw 99-member MPI-
GE ensemble (MPI-GE-raw hereafter) using linear regression.
Only the first three EOFs of SLP were used, as these were found to
make the dominant contributions to the multidecadal SLP
variability (i.e. Fig. 1). A random member is selected from
MPI-GE-raw and the temperature/precipitation variability asso-
ciated with the first three EOFs of SLP are removed. This
variability is then replaced with the same patterns of temperature/
precipitation anomalies but multiplied by a random surrogate PC
timeseries that is constructed to have the same spectral
characteristics as the observations (Supplementary Fig. 7). The
surrogate PC timeseries, therefore, tend to have more power on
multidecadal timescales (Supplementary Fig. 5), though the
overall standard deviation is unchanged on average, across the
ensemble. This process was repeated 10,000 times to produce a
synthetic observationally constrained 10,000-member ensemble
(MPI-GE-obs hereafter). To include the influence of observa-
tional uncertainty, the surrogate PC timeseries were calculated
from four different observational data sets, with each contributing
equally to produce the 10,000 members in MPI-GE-obs. In the
analysis that follows, we compare the raw 99-member ensemble,
MPI-GE-raw, with the synthetic 10,000-member observationally
constrained ensemble, MPI-GE-obs.

A key assumption in producing MPI-GE-obs is that the future
large-scale circulation variability will have the same character-
istics as the large-scale circulation variability that we have
observed in the past. This is highly uncertain, of course, but our

Fig. 1 Multidecadal large-scale circulation variability in observations and models. a The multidecadal variability of winter (DJF) sea-level pressure in the
HadSLP2 observational data set over the period 1901–2005, where the SLP variability has been normalised by the interannual variability at each grid point.
The multidecadal component is calculated using 20-year running mean. c The average multidecadal variability of winter sea-level pressure in a synthetic
data set in which the first three EOFs of interannual SLP variability over the North Atlantic sector in the HadSLP2 data set are replaced with random white-
noise timeseries (the average of 10,000 random realisations is shown). e The ensemble mean of the multidecadal large-scale circulation variability in CMIP
model realisations (from both CMIP5 and CMIP6) over the period 1901–2005 (the multidecadal SLP variability was calculated in each model realisation
individually, prior to taking the ensemble mean). g As in e but for the 99-member MPI-GE simulations over the period 1901–2005. b, d, f, h are as in a, c, e,
g, respectively, but for the boreal summer season (JJA). The black contours in a–d show where the multidecadal variability is significantly different from
that expected from a white-noise process (at the 95% level, estimated using a Monte Carlo test with 10,000 realisations). The black hatching in e–h show
where the multidecadal variance in the HadSLP2 observations for the respective seasons exceeds the 95th percentile of each of the ensemble distributions.
The blue boxes show the regions used to calculate the SLP EOF calculations.
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aim here is to estimate what we might expect the variability of the
large-scale atmospheric circulation to contribute in projections of
future climate. We also prescribe there to be no forced large-scale
circulation changes in MPI-GE-obs (at least in ones that project
onto the leading EOF patterns). To some extent, this is justified
by the modest forced changes in the large-scale circulation that
we see in MPI-GE-raw but, usefully, this approach allows us to
interpret any differences in the median projections as being
driven by forced changes in large-scale circulation in MPI-GE-
raw. The forced changes are shown to be very modest in the
results that follow; however, there is the potential that the forced
future circulation changes are underestimated by the model39,40.

Impact on projected climate in the Northern extratropics. To
analyse the influence the observationally constrained large-scale
circulation variability on future climate projections, we examine
the changes in surface-air temperature and precipitation for the
mid-century period (2041–2060) with respect to a present-day
baseline period (1995–2014) in MPI-GE-raw and MPI-GE-obs.
The median projected changes under the Representative Con-
centration Pathway (RCP) 4.5 scenario for the boreal winter
season consist of widespread warming across the extratropical
regions and is almost identical in MPI-GE-raw and MPI-GE-obs,
demonstrating that changes in the large-scale atmospheric cir-
culation are not responsible for the distribution of average tem-
perature changes (Fig. 2a, b). There are, however, substantial
differences in interquartile range (i.e. 25–75%) of the projected
changes, with MPI-GE-obs exhibiting a larger range over most of
Europe and North America (Fig. 2c, d). The difference in the
interquartile range between MPI-GE-obs and MPI-GE-raw is
plotted in Fig. 3a and shows that the interquartile range increases
by over 50% across Northern Europe, North America and
Mediterranean regions, almost doubling in some regions.
Therefore, for many extratropical regions, the MPI-GE-raw
ensemble underestimates the contribution of large-scale atmo-
spheric circulation to the uncertainty in climate projections for
the mid-twenty-first century.

Distributions of the projected regional change of temperature
and precipitation for the winter and summer seasons are
summarised in Fig. 4. For winter precipitation, the MPI-GE-obs
shows substantial increases in the interquartile range compared
with MPI-GE-raw, most notably over Northern Europe and
Mediterranean regions (Figs. 3b and 4b). For the Mediterranean
region, there is more than a doubling of the likely range, with
more substantial drying becoming much more likely in MPI-GE-
obs. The broadening of the distributions is also clear in the tails of

the distributions, where mid-century changes in the winter
temperature and precipitation that would be deemed highly
unlikely are now well within the range of likely outcomes in the
presence of observationally constrained large-scale circulation
variability (i.e. MPI-GE-obs).

The differences between the projections for changes in summer
climate are relatively muted compared to the winter season. The
reason for this is that the SLP EOFs exhibit a stronger
relationship with temperature and precipitation anomalies in
the summer season compared to the winter season (Supplemen-
tary Figs. 8–10). Nonetheless, there are still significant increases
in the interquartile range of the projected summertime precipita-
tion changes over Northern Europe (Figs. 3d and 4d). There are
also significant changes in the distribution of projected
temperatures over the East North America region (Figs. 3c
and 4c).

From the analysis of the MPI-GE-obs projections, it is clear
that, with large-scale circulation variability that is consistent with
that seen in the observations, there is substantially more
uncertainty in climate projections for many regions in the
extratropics. We have shown this for the mid-century period
2041–2060 but analysis of other 20-year periods demonstrate
similar increases in the spread of the distributions throughout the
twenty-first century (Supplementary Figs. 11 and 12). Here we
have presented results for 20-year future climate periods because
these are commonly considered in climate assessment reports41;
however, the uncertainty of the regional climate projections are
similarly found to increase substantially in the Northern
extratropics for 10-, 30- and 40-year future periods (Supplemen-
tary Figs. 13–18). Therefore, over any meaningful climatological
averaging period in the future we expect there to be a substantial
contribution from internal variability that is underestimated in
regional climate model projections.

Impact on future extreme seasons. As well as influencing the
distribution of future regional climate change, it is also possible
that the characteristics of the large-scale circulation variability
considered here can influence extreme events on seasonal time-
scales. By design, the distributions of seasonal mean anomalies
measured across the MPI-GE-raw and MPI-GE-obs ensembles
have equal variance (see ‘Methods’). However, the characteristics
of when particular extreme seasons occur in individual model
realisations can be quite different. Here we define an extreme
season as the highest or lowest seasonal mean value over the
baseline climate period, 1995–2014, representing a 1/20 year
event based on a present-day climate period, which one could also

Fig. 2 Projection of mid-century climate change for boreal winter. a Median projection of the winter (DJF) surface-air temperature change in the period
2041–2060, with respect to the 1995–2014 baseline period, in the 99-member MPI-GE-raw ensemble (under the RCP 4.5 emissions scenario). b As is a
but for the median of the synthetic 10,000-member MPI-GE-obs ensemble. c Interquartile range (i.e. 25–75% range) of the 2041–2060 winter surface-air
temperature change in the 99-member MPI-GE-raw ensemble. d As is c but for the interquartile range of the synthetic 10,000-member MPI-GE-obs
ensemble.
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Fig. 3 Change in projection uncertainty for mid-century climate change. a The change in the 2041–2060 winter (DJF) surface-air temperature
interquartile range in the MPI-GE-obs ensemble, with respect to the interquartile range in the MPI-GE-raw ensemble. b as in a but for the winter
precipitation. c as in a but for the summer surface-air temperature. d as in a but for the summer precipitation. The black hatching indicates regions where
the difference in the interquartile range between MPI-GE-obs and MPI-GE-raw is not statistically significant (at the 95% level, based on a Monte Carlo
resampling, see ‘Methods’ for further details).

CGI NEU

CEU

MED

NAS

CNA ENA

NEU (Northern Europe)
CEU (Central Europe)
MED (Mediterranean)
ENA (East North America)
CNA (Central North America)
NAS (North Asia)
CGI (Canada/Greenland/Iceland)

IPCC SREX regions

Fig. 4 Projected regional changes and the role of large-scale atmospheric circulation variability. Distributions of projected regional changes for the
2041–2060 mean from a 1995–2014 baseline period for: a Winter surface-air temperature, b winter precipitation, c summer surface-air temperature and d
summer precipitation. The thin horizontal lines show the 5–95% range, the rectangular boxes show the interquartile range (i.e. 25–75%) and the vertical
lines show the median change. Distributions are shown for the MPI-GE-raw ensemble (in blue) and the MPI-GE-obs ensemble (in red). The black boxes
show where the interquartile range of the 2041–2060 projection in the MPI-GE-obs ensemble is significantly different from the respective interquartile
range in the MPI-GE-raw ensemble (at the 95% level, based on a Monte Carlo resampling, see ‘Methods’ for further details).

COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-021-00268-7 ARTICLE

COMMUNICATIONS EARTH & ENVIRONMENT |           (2021) 2:194 | https://doi.org/10.1038/s43247-021-00268-7 | www.nature.com/commsenv 5

www.nature.com/commsenv
www.nature.com/commsenv


estimate in the observational record. The number of extreme
seasons in a future climate period is then calculated in each
ensemble member.

The occurrence rate of extreme seasons for European winters
are shown in Fig. 5 for the mid-century period, 2041–2060. The
occurrence of a greater number of extreme seasons within the 20-
year window is larger in MPI-GE-obs than in MPI-GE-raw in a
number of instances, particularly in the tails of the distribution,
whereas the occurrence of relatively few events tends to be higher
in MPI-GE-raw. The change in occurrence rate is most
pronounced over Northern Europe, with a >10% probability of
exceeding 8 seasons with extreme high temperatures in the MPI-
GE-obs data set, whereas the probability of an equally extreme
realisation occurring in MPI-GE-raw is about 1% (Fig. 5a).
Similarly, increases in the numbers of extremely wet winters over
the mid-century period are found to be significantly more likely
in MPI-GE-obs (Fig. 5b, f). Another notable feature is that the
occurrence of having a number of extremely dry Mediterranean
winters over the mid-century period in the future is significantly
higher in MPI-GE-obs (Fig. 5l). In the summer and the other
extratropical regions, there are less clear differences in the
occurrence of extreme seasons (see Supplementary Information).
The higher probability of a large number of extreme winter
seasons occurring in a future period is related to the relatively

large variability on multidecadal timescales in the MPI-GE-obs,
which is absent in MPI-GE-raw. An explanation for this is that
the influence of low-frequency variability in the large-scale
circulation can set a relatively high background anomaly over a
20-year period, meaning that the year-to-year variability super-
imposed onto this can produce clusters of extreme seasons. In
MPI-GE-raw, however, there is relatively little low-frequency
variability so the occurrence of future extreme seasons in a given
year is largely independent of the surrounding years.

Discussion and wider implications
The analysis presented here demonstrates that factoring the
influence of the observed variability of the large-scale atmospheric
circulation into future climate projections substantially increases
the uncertainty arising from internal variability. The current
generation of coupled climate models, which are used to produce
future climate projections, are therefore likely to underestimate
the contribution of internal variability in the extratropics. There
are some significant differences in the projections of the MPI-GE-
obs and MPI-GE-raw ensembles in the summer season around
the North Atlantic sector but the influence of the observed large-
scale atmospheric circulation on future projections is largest

Fig. 5 Changes in the projected occurrence of extreme seasons for European winter. The probability of exceeding a number of extreme seasons over the
period 2041–2060, where extreme seasons are defined as the highest/lowest seasonal mean value over the baseline period 1995–2014. The panels show
probability of exceeding a number of extreme seasons in the Northern Europe, Central Europe and Mediterranean regions for: a, e, i high temperatures; c, g,
k low temperatures; b, f, j high precipitation; d, h, l low precipitation. Blue lines show the probability of exceeding a given number of extreme seasons in the
99-member MPI-GE-raw ensemble, while the red lines show the same for the MPI-GE-obs ensemble. The shaded regions around the MPI-GE-obs
ensemble shows the 5–95% range of the MPI-GE-obs when only 99-members are resampled at random (10,000 times). Large dots show where the
probabilities in the MPI-GE-raw and MPI-GE-obs ensembles are significantly different at the 95% level and the small dots show significance at the 90%
level (based on a Monte Carlo resampling, see ‘Methods’ for further details).
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during the winter season, influencing most regions in the
Northern extratropics.

It is important to note, however, that the synthetic ensemble
method used here likely misses some feedback mechanisms that
will contribute to extratropical climate variability. One example is
the increase in the uncertainty in Mediterranean precipitation in
the winter season (i.e. Fig. 4b). Studies show that a wintertime
precipitation deficit in the Mediterranean makes European heat
waves more likely during the following summer42,43; however,
feedbacks relating to this are not captured in the synthetic MPI-
GE-obs ensemble, in which winter and summer variability are
effectively decoupled. Another example of a missing feedback is
that North Atlantic multidecadal SST variability has been shown
to be driven in part by low-frequency variability of the wintertime
large-scale atmospheric circulation20,44–48. In observational ana-
lysis, the multidecadal SST variability in the North Atlantic has
been implicated for low-frequency climate variability during the
summer season23,49,50, including the occurrence of heat
waves25,51; these possible feedbacks are also not captured in the
synthetic MPI-GE-obs ensemble. Each of these feedbacks would
be expected to further increase the uncertainty in summer climate
projections over the North Atlantic sector.

The observed large-scale circulation variability that is used to
produce the MPI-GE-obs projections is subject to substantial
sampling uncertainty, particularly at the lower frequencies, due to
the relatively short observational period. While there is clearly
substantial variability on timescales of decades and longer, the
precise magnitude of this variability is uncertain. However, there
is evidence from early instrumental and proxy reconstructions
that the large-scale circulation over the North Atlantic sector
exhibits distinct variability on multidecadal timescales52–54, in
periods independent from the observational period considered
here. Therefore, while the precise degree to which internal
variability is underestimated is fairly uncertain, it seems clear that
future climate projections using the current coupled climate
models significantly underestimate the internal variability of the
large-scale atmospheric circulation.

For future twenty-first century periods, the underestimation of
the uncertainty due to large-scale atmospheric circulation is
comparable with the structural uncertainty in the forced
response55,56. An example of where this underestimation could be
important is the recent literature considering the differing
impacts of 1.5 and 2 °C of global warming57; the underestimation
of internal variability in the extratropics implies that regional
differences between 1.5 and 2 °C warming are likely to be
somewhat overconfident. Furthermore, the increased uncertainty
also raises questions about the treatment of internal variability in
regional model projections58. The EURO-CORDEX ensemble59,
for example, use a relatively small subset of global coupled climate
model simulations that, as has shown here, themselves under-
estimate the contribution of internal variability and this will be
compounded in projections made using regional model ensem-
bles. The increased projection uncertainty may also be important
to factor into future risk assessment and decision making
exercises.

Methods
Data sets. We analyse data from the MPI-GE, which is a 99-member ensemble
comprising of a historical forcing simulation (over the period 1850–2005) and the
same members then follow the RCP 4.5 scenario forcing (from 2006 to 2100)35.
Here we use monthly averaged SLP, surface-air temperature (TAS) and pre-
cipitation output from MPI-GE.

We also analyse data from CMIP532 and CMIP633 ensembles. We use monthly
averaged data from the historical forcing simulations over the common historical
period (1901–2005), with 82 ensemble members from CMIP5 and 164 ensemble
members from CMIP6.

We use four gridded observational SLP data sets:

● HadSLP2: A gridded observational data set provided on a 5° × 5° grid from
1850 to 201930. HadSLP2 uses an optimal interpolation procedure using
marine and land observations to reconstruct a gridded SLP field.

● TREN: The Trenberth SLP data set60 (TREN) is provided on a 5° × 5° grid
from 1899 to 2019. The TREN data set is a gridded analysis produced from
a variety of historical SLP analysis maps. It is only provided on a grid north
of 20°N and has missing values where the data was deemed unreliable.
Seasonal mean anomalies were only used where no more than one
constituent month was missing.

● 20CR: The 20th Century Reanalysis v2 (20CR) is a reanalysis data set that is
provided on a 2° × 2° grid from 1871 to 201229. 20CR was produced by
assimilating observations of surface pressure and SLP.

● CERA-20C: The ECMWF coupled climate reanalyses of the twentieth
century, provided at 125 km horizontal resolution from 1901 to 201029.
CERA-20C was produced by assimilating observations of surface pressure,
SLP and surface winds, along with ocean observations, into the coupled
ECMWF model.

The observations and model data were compared (e.g. in Fig. 1) over the
common historical period 1901–2005, which is covered by all observational data
sets and historical forcing simulations.

All data sets were regridded to a common 2.5° × 2.5° resolution prior to further
analysis.

EOF decomposition of observations and models. The large-scale circulation
variability was decomposed using EOFs over the North Atlantic sector. The precise
region during the winter (20°N–70°N, 90°W–40°E) was chosen as this has been
commonly used to define the winter (DJF) North Atlantic Oscillation (shown by
blue boxes in Fig. 1). For the summer season (JJA), a slightly smaller region was
used (40°N–70°N, 90°W–30°E), corresponding the a region often used to define the
summer North Atlantic Oscillation22,61 (shown by blue boxes in Fig. 1), which
omits data at lower latitudes due to some recorded discrepancies in a band across
North Africa and Asia62. The EOF patterns are by definition the three modes that
explain the most variance of the area-weighted SLP the North Atlantic sector. The
EOF patterns were calculated from the HadSLP2 data set over the common his-
torical period (1901–2005). To calculate the corresponding PC timeseries in the
other observational data sets, the SLP anomalies from each of the other data sets
were projected onto the EOF patterns calculated from the HadSLP2 data set. The
PC timeseries of the EOF variability in the model data sets (i.e. CMIP5, CMIP6 and
MPI-GE) was calculated individually for each ensemble member. First, SLP
anomalies were defined by removing the mean over the common historical period
(1901–2005) and the SLP anomalies were projected onto the EOF patterns cal-
culated from the HadSLP2 observational data set. The resulting PC timeseries from
the model (covering the period 1901–2100) were normalised over the common
historical period (1901–2005) to be comparable with the observational data sets
(e.g. Supplementary Fig. 5). The projection approach described here was used to
ensure that the PC timeseries correspond to the same patterns in all the obser-
vational and model data sets (though tests calculating the EOF patterns from the
different observational and model data sets leads to results that are qualitatively
unchanged).

Generating synthetic ensembles with observationally constrained large-scale
atmospheric circulation variability. To generate the synthetic observationally
constrained ensembles (MPI-GE-obs), we first decompose the raw ensemble
variables, Xraw (corresponding to the MPI-GE-raw ensemble in the main text),
using the first three PC timeseries, as follows:

Xrawðx; y; tÞ ¼ ∑
3

n¼1
arawn ðtÞYnðx; yÞ þ Xresidualðx; y; tÞ ð1Þ

where arawn ðtÞ are the PC timeseries calculated from the SLP data (see previous
subsection of ‘Methods’) and Yn(x, y) are maps of the linear regression coefficients
calculated between the (normalised) PC timeseries and Xraw over the historical
period (1901–2005). The first three EOFs account for 74% of the variance in winter
and 66% of the variance in summer (in the HadSLP2 data set), over their respective
regions. Xresidual(x, y, t) denotes the variability that is not explained by the first three
EOFs. The decomposition is performed for all 99 members individually.

The synthetic observationally constrained ensemble variables, Xobs, are
produced as follows:

Xobsðx; y; tÞ ¼ ∑
3

n¼1
aobsn ðtÞYnðx; yÞ þ Xresidualðx; y; tÞ ð2Þ

where Yn(x, y) and Xresidual(x, y, t) are selected from 1 of the 99 MPI-GE-raw
members at random. The timeseries, aobsn ðtÞ, are randomly generated surrogate PC
timeseries calculated from the corresponding observational PC timeseries. This
process was repeated 10,000 times to generate the MPI-GE-obs data set.

The key difference between the MPI-GE-raw and MPI-GE-obs ensembles,
therefore, are the surrogate PC timeseries, aobsn ðtÞ. To generate the surrogate each
timeseries, we use the method of Theiler et al.63. First, the corresponding PC
timeseries from one of the observational SLP data sets is selected and the discrete
Fourier transform is computed. A random phase is added to each of the
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components, and the inverse Fourier transform is taken to return a random
timeseries with similar spectral characteristics to the observed PC timeseries. It is
important to note that the surrogate method acts to constrain the timeseries across
all timescales. The process is repeated to produce 10,000 sets of aobsn ðtÞ, consisting
of 2500 sets of surrogate PC timeseries from each of the observational SLPs data
sets (i.e. HadSLP2, TREN, 20CR and CERA-20C). Power spectra from the
observational PC timeseries, surrogate PC timeseries (i.e. aobsn ðtÞ) and the raw
model PC timeseries (i.e. arawn ðtÞ) are shown in Supplementary Fig. 7. Synthetic
ensemble data, Xobs(x, y, t), is calculated for precipitation and surface-air
temperature using the surrogate PC timeseries (i.e. aobsn ðtÞ) to produce the MPI-GE-
obs ensemble.

In addition to MPI-GE-obs, we also tested a synthetic ensemble that was
produced in a similar way but with the first three EOFs were replaced using EOF
patterns of temperature/precipitation anomalies calculated from observations
(MPI-GE-obsTELE—see Supplementary Methods and Supplementary Fig. 19). The
conclusions drawn from this ensemble are not qualitatively different, so here we
only present results from MPI-GE-obs in the main text.

One key assumption in the generation of MPI-GE-obs is that the temperature
and precipitation anomalies associated with the leading EOFs are unchanged
between the historical period and the future. This is not entirely obvious, as it has
been documented that interannual variability exhibits some robust changes in
future climate model simulations64, which is also evident in some areas in the MPI-
GE-raw ensemble (Supplementary Fig. 20). We tested the sensitivity to calculating
the temperature/precipitation anomalies associated with the leading EOFs over the
historical period by using a more complex approach in which the temperature/
precipitation anomalies were calculated over a future mid-century period
(2031–2070) in each respective ensemble member in MPI-GE-raw. These values for
Yn were used in the calculations of Xobs in Eq. (2) above for all years in the future
period. The results of the test (shown in Supplementary Fig. 21) are very similar to
those shown in Fig. 3, indicating that the results are insensitive to changes in the
patterns of temperature and precipitation anomalies associated with the leading
SLP EOFs.

Significance testing. To test the statistical significance of the difference between the
99-member MPI-GE-raw ensemble and the synthetic 10,000-member MPI-GE-obs
ensemble, we used a Monte Carlo sampling technique. From the full MPI-GE-obs
ensemble, 99 members were selected without replacement; the required statistic (e.g. the
interquartile range) was then calculated from this subsample and recorded. This sub-
sampling was repeated 10,000 times to estimate the uncertainty associated with only
having 99 ensemble members. The statistic calculated from the MPI-GE-raw ensemble
was compared with the distribution of the 10,000 random samples to ascertain the
probability that MPI-GE-raw could have been selected from MPI-GE-obs.

Data availability
The coupled model data and observational data used in the study are all publicly
available data sets. The MPI Grand Ensemble is available from a dedicated project page
on ESGF (https://esgf-data.dkrz.de/projects/mpi-ge/). The CMIP5 and CMIP6 data are
available on ESGF (https://esgf-node.llnl.gov/projects/esgf-llnl/). The HadSLP2 data set is
available from the UK Met Office (https://www.metoffice.gov.uk/hadobs/hadslp2/). The
CERA-20C data set is available from the Copernicus Climate Data Store (https://
cds.climate.copernicus.eu/). The 20th Century Reanalysis is available from the NOAA
website (https://psl.noaa.gov/data/20thC_Rean/). The Trenberth gridded SLP data set is
available from the NCAR Research Data Archive (https://rda.ucar.edu/datasets/ds010.1/).

Code availability
The custom code used to create the MPI-GE-obs projections and the figure data has been
uploaded to an open-access Zenodo repository65 (https://doi.org/10.5281/
zenodo.52115300).
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