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Exploring rare-earth Kitaev magnets by
massive-scale computational analysis
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Seong-Hoon Jang 1 & Yukitoshi Motome 2

The Kitaev honeycomb model plays a pivotal role in the quest for quantum spin liquids, in which
fractional quasiparticles would provide applications in decoherence-free topological quantum
computing. The key ingredient is the bond-dependent Ising-type interactions, dubbed the Kitaev
interactions, which require strong entanglement between spin and orbital degrees of freedom. Here
we investigate the identification and design of rare-earth materials displaying robust Kitaev
interactions. We scrutinize all possible 4f electron configurations, which require up to 6+million
intermediate states in the perturbation processes, by developing a parallel computational program
designed for massive-scale calculations. Our analysis reveals a predominant interplay between the
isotropic Heisenberg J and anisotropic Kitaev K interactions across all realizations of the Kramers
doublets. Remarkably, instances featuring 4f3 and 4f11 configurations showcase the prevalence of K
over J, presenting unexpected prospects for exploring the Kitaev quantum spin liquids in compounds,
including Nd3+ and Er3+, respectively.

In the realm of quantum spin liquids (QSLs), quantum fluctuations prevent
localized magnetic moments from establishing conventional magnetic
order, wherein excitednonlocal quasiparticles hold promise for applications
in decoherence-free topological quantum computing1–7. The Kitaev model,
exhibiting exchange frustration between localized magnetic moments
residing on a honeycomb lattice, is one viable model for the QSL since it is
exactly solvable through the introduction of Majorana fermions3. The
Hamiltonian is givenbyHKitaev ¼

P
μ

P
hi;i0iμKS

μ
i S

μ
i0 , whereK represents the

coupling constant for the bond-dependent Ising-type interactions on three-
typeμ (x,y, and z) bondson thehoneycomb lattice,whileSμi (S

μ
i0 ) signifies the

μ component of the spin-1/2 operator at site i (its nearest-neighbor site i0 on
the μ bond). The realization ofKitaev-type interactions has been achieved in
spin-orbit coupled Mott insulators, where the interplay of electron corre-
lation and spin-orbit coupling (SOC) is pivotal8,9. This is notably evident in
the spin-orbital entangled Kramers doublet Γ7, described by jeff = 1/2
pseudospins, which typically originates from the low-spin d5 electron con-
figuration under the octahedral crystal field (OCF). Indeed, the presence of
dominant Kitaev interactions has been unveiled for several quasi-two-
dimensional honeycomb compounds, such asA2IrO3 (A=Na, Li),α-RuCl3,
and other relatedmaterials9–21. In these compounds, the Kitaev interactions
stem from second-order perturbation processes with respect to the electron
hopping mediated by ligands in edge-sharing MX6 octahedra, where M
represents a transitionmetal cation, andX denotes a ligand ion (see Fig. 1a).

Besides the d-electron transition metal compounds, rare-earth mate-
rials with f electrons meet the requirements for the Kitaev interactions:

cooperation of electron correlation and SOC. There exist rare-earth quasi-
two-dimensional honeycomb materials, which would be deemed as intri-
guing platforms for realizing the Kitaev model, e.g, Na2PrO3

22,23, SmI3
24,

DyCl3
25, ErX3 (X=Cl, Br, I)26,27, andYbCl3

28. Notably, the expectation is that
antiferromagnetic (AFM) Kitaev interactions would manifest in the 4f1

electron configuration in A2PrO3 including Na2PrO3, in contrast to the
ferromagnetic (FM)ones that typicallydominate ind-electron systems20,29,30.
Nonetheless, the design and discovery of f-electron materials with strong
Kitaev-type interactions remain elusive. This is mainly because the for-
mulation of low-energy effective models for 4f-electron systems remains a
formidable challenge, as it requires significant computational efforts for
second-order perturbation calculations (see Fig. 1b). Indeed, the number of
the intermediate states in the perturbation processes becomes 182,182 and
6,012,006 for 4f3 (4f11) and 4f5 (4f9), respectively, in stark contrast to only 30
for the low-spin d5 electron configurations (see Fig. 1c).

To address this issue, we develop a highly parallel computational
program capable of exhaustively performing second-order perturbation
calculations on a massive scale. The program comprises three key steps.
First, the eigenvectors ∣4f n

�
and the eigenvalues E4f n for all the many-

electron states with 4fn electron configurations are prepared. In this step, the
Coulomb interactionHint between 4f electrons is taken into account, along
with the subsequent SOC HSOC, based on the Russell-Saunders coupling
scheme31. Second, upon using these many-electron states, the initial and
final 4fn-4fn states for neighboring sites (the tensor products ∣4f n

�� ∣4f n
�

of 4fn state pairs) and all the possible 4fn−1-4fn+1 intermediate states (the
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tensor products ∣4f n�1�� ∣4f nþ1� of 4fn−1 and 4fn+1 state pairs) are auto-
matically generated. Third, effectivemagnetic couplings are estimatedbased
on the second-order perturbation expansion with respect to the 4f electron
hopingsHhop. It is worth noting that the program can be flexibly extended
beyond the second-order perturbation; it is capable of computing higher-
order contributions, including multiple-spin interactions. We emphasize
that even the second-order perturbation calculations are impracticable
without efficient parallel computation (Fig. 1a) since the number of the
intermediate states exceeds 6+million for the 4f5 and4f9 cases (Fig. 1b). This
parallelization is achievedby implementing theMessagePassing Interface in
the C++ programming language.

In this study, we employ the program for the design of rare-earth
Kitaev-typematerials. For the 4fn-4fn states with n = 1, 3, 5, 9, 11, and 13, we
assume a perfect OCF HOCF within the edge-sharing RX6 octahedra (R =
rare-earth ions), along withHint andHSOC. This results in the formation of
spin-orbital entangled Kramers doublet for all n, depending on the crystal
field parameters. In the perturbation, we take into account the indirect 4f-p-
4f electronhoppingsHhop via porbitals of ligandXwith the use of the Slater-
Koster transfer integrals tpfπ and tpfσ

32, and the p-4f energy difference Δp-f in
the intermediate states. Our analysis reveals that in all cases the low-energy
Hamiltonian can be effectively described by two predominant exchange
interactions between the pseudospins for the Kramers doublet: the bond-
independent isotropic Heisenberg interaction denoted as J [given in
HHeisenberg ¼

P
hi;i0iJSi � Si0 , where Si ¼ ðSxi ; Syi ; Szi Þ

T
] and the bond-

dependent anisotropic Kitaev interaction K. In most instances, both J and
K exhibitAFMbehavior.Notably, in the casesof 4f3 (as exemplified inNd3+)
and the electron-hole counterpart 4f11 (Er3+), we find that K largely dom-
inates over J, which realizes situations close to the pure Kitaev model. This
finding opens up unexpected opportunities for investigating the Kitaev
QSLs in 4f-electron systems. Furthermore, beyond the scope of the Kitaev
model, our computational programcan also be applied to awide range of 4f-
electron magnets, which would contribute to future exploration of exotic
rare-earth magnetism.

Results
Ground-state Kramers doublets
Let us begin with the analysis of the crystal field splitting of the ground-
state multiplets given by the Russell-Saunders coupling scheme, focusing
on the 4fn electron configurations with odd n20. In 4f1 electron config-
uration (Fig. 2a), the Coulomb interaction Hint is irrelevant, leaving 14-
fold 2F manifold. This is split by HSOC into the 2F5/2 sextet and the 2F7/2
octet. The ground-state 2F5/2 sextet is further split by HOCF into the Γ7
doublet and Γ8 quartet. Since the Γ7 doublet has lower energy than the Γ8
quartet, the 4f1 case gives the Γ7 Kramers doublet in the ground state. In
the 4f3 electron configuration (Fig. 2b), Hint gives 52-fold

4I manifold in
the ground state, which is split by HSOC into four multiplets 4I9/2,

4I11/2,
4I13/2, and

4I15/2. The lowest-energy
4I9/2 dectet is further split by HOCF

into the Γ6 doublet and two Γ8 quartets. The ground state depends on the
crystal field parameters B40 and B60 (see Methods), and the Γ6 Kramers
doublet is selected when B40 is predominant. In the 4f5 electron config-
uration (Fig. 2c), the lowest-energy 6H5/2 sextet selected by Hint and
HSOC is split by HOCF into the Γ7 doublet and the Γ8 quartet, and the
ground state is given by the lower-energy Γ7 Kramers doublet, similar to
the 4f1 case. In the 4f9 electron configuration (Fig. 2d), the lowest-energy
6H15/2 sexdectet selected by Hint and HSOC is split by HOCF into the Γ6
doublet, the Γ7 doublet, and the three Γ8 quartets. The ground state is
either the Γ6 doublet or the Γ7 doublet depending on the crystal field
parameters. In the 4f11 electron configuration (Fig. 2e), the ground state is
given by the Γ7 doublet when B60 is predominant. Finally, in the 4f13

electron configuration (Fig. 2f), the ground state is given by the Γ6
doublet, irrespective of the crystal field parameters. Thus, all 4fn cases
considered here can offer the Kramers doublet in the ground state of an
isolated ion.

Table 1 explicitly enumerates all the accessible ground-state Kramers
doublets characterized by the pseudospin jeff = 1/2. In this table, each jeff = 1/2
state is described with j and jz representations; j (jz) is the (secondary) total
angular momentum quantum number. For the pseudospin jeff = 1/2 degree

Fig. 1 | Challenge in the derivation of effective exchange interactions by second-
order perturbation calculations for 4f-electron systems. a Schematic of the Kitaev
model realized in an edge-sharing network of RX6 octahedra. Three-type μ (x, y, and
z) bonds on the honeycomb lattice are distinguished. The hopping paths R-X-R on a
z bond are represented by the purple lines. b Schematic of the calculations. We
successfully cover the second-order perturbation calculations on a massive scale by
employing a parallelization scheme spanning all the possible intermediate states
∣4f n�1�� ∣4f nþ1�, given the initial and final states ∣4f n

�� ∣4f n
�
. The sequence of

perturbation processes is schematically depicted for the case of n=5: 1 represents the

initial state ∣4f 5
�� ∣4f 5

�
, 2 denotes an f-electron hopping from one ∣4f 5

�
to the

other ∣4f 5
�
, 3 represents an intermediate state ∣4f 4

�� ∣4f 6
�
, 4 denotes an f-electron

hopping from ∣4f 6
�
to ∣4f 4

�
, and 5 represents the final state ∣4f 5

�� ∣4f 5
�
that is the

same as the initial state. c The number of the intermediate states,Nint, for the 4f
n-4fn

states: Nint = 182 for n = 1 and n = 13, Nint = 182,182 for n = 3 and n = 11, and
Nint = 6,012,006 for n = 5 and n = 9. The low-spin d5 case withNint = 30 is shown for
comparison. The initial/final and the intermediate states are schematically depicted
for each electron configuration.
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of freedom, one can introduce the operator S ¼ ðSx; Sy; SzÞT defined by

Sμ ¼ S
þh ∣jμ∣þi þh ∣jμ∣�i
�h ∣jμ∣þi �h ∣jμ∣�i

� �
¼ 1

2
σμ; ð1Þ

where j = (jx, jy, jz) and σ = (σx, σy, σz) are the vectors of the total angular
momentum operators and the Pauli matrices, respectively, and S is a real
scalar.

Effective exchange couplings
Subsequently, the program proceeds to determine the second-quantized
representations with multiple f-orbital bases for ∣4f n

�� ∣4f n
�
by the

aforementioned Kramers doublets, which is commonly used for the initial
and final states of the perturbation. Additionally, it constructs the

representations for all conceivable intermediate states ∣4f n�1�� ∣4f nþ1�.
The energy difference between the initial/final states and the intermediate
states is determinedby twokeyparameters in theHamiltonianHint, namely,
the onsite Coulomb interaction U and the Hund’s-rule coupling JH, as well
as another inHSOC, namely, the SOC coefficient λ. For obtaining the values
ofU and λ, the Herbst-Wilkins table33 and the Freeman-Watson table34 are
consulted, respectively. The parameter JH is adjusted to achieve the align-
ment of energy differences between different multiplets according to the
Dieke diagram35; see Supplementary Note 1.

Given the representations and the excitation energies described above,
J and K are calculated by employing the parallelization scheme for pertur-
bation calculations spanning the intermediate states. For the hopping
parameters, we adopt the Slater-Koster transfer integrals32, while changing
the ratio ∣tpfπ/tpfσ∣ between 0 and 1; we take tpfπ/tpfσ < 0. The results are

Fig. 2 | Schematic representation of multiplet splittings for 4fn electron config-
urations with odd integers n (except for n = 7). a 4f1, b 4f3, c 4f5, d 4f9, e 4f11, and
f 4f13 cases are represented. In each configuration, the ground-state multiplet 2Sþ1 L,
initially determined by the Coulomb interaction Hint (left), undergoes splitting by
the spin-orbit coupling HSOC, resulting in the ground-state multiplet 2Sþ1 LJ (mid-
dle). Subsequently, 2Sþ1 LJ is further split by the octahedral crystal fieldHOCF, leading
to the formation of ground-state Kramers doublets Γ7 (in red) or Γ6 (in blue) or

quartets Γ6 (in thick green). In the cases of 4f3 in (b), 4f9 in (d), and 4f11 in (e), the
ground state is contingent upon the parameters B40 and B60 governing HOCF; we
present two extreme cases of B40 = 0 (left) and B60 = 0 (right). The 4f7 case is not
shown as the orbital is quenched. The correspondingwave functions for the Kramers
doublets are also depicted, with red and blue denoting spin-up and spin-down
density profiles, respectively.
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summarized in Fig. 3 for all 4fn cases. In the 4f1 Γ7 case (Fig. 3a), which
includes 182 4f0-4f2 intermediate states, our results emphasize the dom-
inance of the AFM K over compatibly the subdominant AFM J in the wide
range of 0 < ∣tpfπ/tpfσ∣ ≤ 0.8. This behavior aligns with the findings based on
the first-principles calculations in refs. 30,31. The magnitudes of K and J
bothmonotonically increasewith ∣tpfπ/tpfσ∣, which is a general trend seenalso
for most of the other cases below. In the 4f3 Γ6 case with 182,182 4f2-4f4

intermediate states (Fig. 3b), the intriguing scenario arises inwhich theAFM
K overwhelmingly outweighs non-negligible AFM J; this is particularly
pronounced at ∣tpfπ/tpfσ∣ ≃ 1.0, where J almost vanishes. We also emphasize
thatK is one order ofmagnitude larger than that in the 4f1 case.Note that the
coupling constantsK and J are given in unit of t4pf σΔ

�2
p�f eV

−1; wewill discuss
the actual values later. In the 4f5 Γ7 case with 6,012,006 4f4-4f6 intermediate
states (Fig. 3c), the AFM K becomes predominant compared to the sub-
dominant AFM J in the entire region of ∣tpfπ/tpfσ∣. In the 4f9 case (Fig. 3d),
there are two cases, Γ6 and Γ7, depending on the crystal field parameters,

both of which include 6,012,006 4f8-4f10 intermediate states. In the Γ6 case,K
turns to be FM, while J remains AFM and predominant compared to K.
Meanwhile, in the Γ7 case, both K and J are AFM, while J is again pre-
dominant. In the case of 4f11 Γ7 (Fig. 3e), the trendsmirror the electron-hole
counterpart, the 4f3 Γ6 case; theAFMKbecomes far predominant compared
to the AFM J, while J does not decrease for large ∣tpfπ/tpfσ∣. We note that the
magnitude ofK is also large comparable to the 4f3 case. Finally, in the 4f13 Γ6
case (Fig. 3f), the result is quite different from the electron-hole counterpart,
the 4f1 case; K is notably suppressed compared to the predominant AFM J.
This is, however, consistent with the prior findings in ref. 36. It should be
noted that the off-diagonal terms, referred to as Γ and Γ′, were found to be
zero across all the cases since we omit the direct 4f-4f electron hoppings in
the present analyses.

The results in Fig. 3 highlight that, in the majority of instances, aside
fromthe4f9 and4f13 cases, theAFMKprevails over the subdominantAFM J.
This suggests a heightened propensity for robust Kitaev interactions within

Table 1 | Ground-state multiplets and possible Kramers doublets for 4fn electron configurations with odd integers n (except
for n = 7)

4fn 2S+1LJ possible Kramers doublet S

4f1 (Ce3+) 2F5/2 Γ7: ∣jeff ¼ ± 1
2

� ¼ iffiffi
6

p �
ffiffiffi
5

p
∣j ¼ 5

2 ; j
z ¼ ∓ 3

2

�þ ∣j ¼ 5
2 ; j

z ¼ ± 5
2

�� �
−3/5

4f3 (Nd3+) 4I9/2 Γ6: ∣jeff ¼ ± 1
2

� ¼ i
12

ffiffiffi
6

p
∣j ¼ 9

2 ; j
z ¼ ∓ 7

2

�þ 2
ffiffiffiffiffiffi
21

p
∣j ¼ 9

2 ; j
z ¼ ± 1

2

�þ 3
ffiffiffi
6

p
∣j ¼ 9

2 ; j
z ¼ ± 9

2

�� �
3/11

4f5 (Sm3+) 6H5/2 Γ7: ∣jeff ¼ ± 1
2

� ¼ iffiffi
6

p �
ffiffiffi
5

p
∣j ¼ 5

2 ; j
z ¼ ∓ 3

2

�þ ∣j ¼ 5
2 ; j

z ¼ ± 5
2

�� �
−3/5

4f9 (Dy3+) 6H15/2 Γ6 : ∣jeff ¼ ± 1
2

� ¼ i
24 ±

ffiffiffiffiffiffiffiffi
195

p
∣j ¼ 15

2 ; jz ¼ ∓ 15
2

�
± 3

ffiffiffi
7

p
∣j ¼ 15

2 ; jz ¼ ∓ 7
2

��
± 3

ffiffiffiffiffiffi
33

p
∣j ¼ 15

2 ; jz ¼ ± 1
2

�
±

ffiffiffiffiffiffi
21

p
∣j ¼ 15

2 ; jz ¼ ± 9
2

��
Γ7 : ∣jeff ¼ ± 1

2

� ¼ i
24 ±

ffiffiffiffiffiffi
33

p
∣j ¼ 15

2 ; jz ¼ ∓ 11
2

�
± 3

ffiffiffiffiffiffi
13

p
∣j ¼ 15

2 ; jz ¼ ∓ 3
2

��
∓
ffiffiffiffiffiffiffiffi
195

p
∣j ¼ 15

2 ; jz ¼ ± 5
2

�
∓
ffiffiffiffiffiffiffiffi
231

p
∣j ¼ 15

2 ; jz ¼ ± 13
2

��
−1/5
3/17

4f11 (Er3+) 4I15/2 Γ7 : ∣jeff ¼ ± 1
2

� ¼ i
24 ±

ffiffiffiffiffiffi
33

p
∣j ¼ 15

2 ; jz ¼ ∓ 11
2

�
± 3

ffiffiffiffiffiffi
13

p
∣j ¼ 15

2 ; jz ¼ ∓ 3
2

��
∓
ffiffiffiffiffiffiffiffi
195

p
∣j ¼ 15

2 ; jz ¼ ± 5
2

�
∓
ffiffiffiffiffiffiffiffi
231

p
∣j ¼ 15

2 ; jz ¼ ± 13
2

�� 3/17

4f13 (Yb3+) 2F7/2 Γ6: ∣jeff ¼ ± 1
2

� ¼ i
6 ∓

ffiffiffiffiffiffi
15

p
∣j ¼ 7

2 ; j
z ¼ ∓ 7

2

�
∓
ffiffiffiffiffiffi
21

p
∣j ¼ 7

2 ; j
z ¼ ± 1

2

�� �
−3/7

Theground-statemultiplets 2Sþ1LJ aregivenby theRussell-Saunders couplingscheme, and theKramersdoublet Γ7 or Γ6 is further selectedby theOCFHOCF. In the4f
9 case, the groundstate canbeeither Γ6

or Γ7 dependingon the crystal field parameters. See alsoFig. 2. Theexemplary ion is alsopresented for eachcase. For eachKramers doublet, the jeff= 1/2pseudospin state,where j (jz) is the (secondary) total
angular momentum quantum number, and the coefficient S in Eq. (1) are explicitly shown.

Fig. 3 | Two coupling constants, isotropic Heisenberg interaction J and aniso-
tropic Kitaev interaction K, derived by the second-order perturbation for 4fn-4fn

electron configurations with odd integers n (except for n = 7). a 4f1 Γ7, b 4f3 Γ6,

c 4f5 Γ7, d 4f9 Γ6 and Γ7, e 4f
11 Γ7, and f 4f13 Γ6 cases are represented. The data are

plotted for ∣tpfπ/tpfσ∣; we take tpfπ/tpfσ < 0.
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diverse 4f-electron systems. This is more clearly demonstrated by plotting
the ratio of ∣K/J∣ in Fig. 4. Except for the 4f9 and 4f13 cases (and the 4f1 case for
large ∣tpfπ/tpfσ∣), ∣K/J∣ is greater than 1, indicating the predominant Kitaev
interactions. Interestingly, besides the 4f1 case, ∣K/J∣ consistently exhibits
monotonic increases with ∣tpfπ/tpfσ∣. It is noteworthy that the substantial
predominance of AFMK over AFM J is particularly viable, especially in the
cases of 4f3 Γ6 and 4f

11 Γ7. In both scenarios, it is observed that ∣K/J∣ > 4 for
∣tpfπ/tpfσ∣ ≳ 0.6, which includes the realistic range of the parameters37. In
addition, the magnitude of K is considerably larger than in the other cases.
To emphasize these prominent properties,we show the estimates of J,K, and
∣K/J∣ in Table 2, assuming the typical values of the parameters as tpfσ = 0.35
eV, tpfπ/tpfσ = −0.737, and Δp-f = 1 eV. Notably, for the 4f3 Γ6 and 4f11 Γ7
configurations, it is demonstrated that K = 1.21 meV and 1.27 meV,
respectively, which are one order of magnitude larger than the other cases,
and furthermore, K/J = 6.89 and 5.21, signifying the substantial AFM K
prevalence over the AFM J.

Candidate materials
Let us finally discuss candidate materials for the 4f1, 4f3, 4f5, and 4f11 cases
where K dominates J in our calculations. First, for 4f1, the authors and their
collaborators previously identified A2PrO3 (A = alkali metals) as potential
Kitaev-type magnets with the conventional assumption in the Russell-
Saunders coupling schemewhereby the ordering of energy scales is given as
Hint >HSOC ≫HOCF

29,30. However, the tetravalent Pr4+ ion is recently
recognized to reside in the intermediate coupling regimeHSOC ∼HOCF

38–40.
We have verified that in this regime the AFM K is reduced to be

subdominant, while the AFM J prevails41. Second, for 4f3, Nd3+-based
materials are considered promising, although honeycomb lattice com-
poundswithNd3+ have not yet been identified to the best of our knowledge.
This observation suggests avenues for additional materials design in the
exploration of Nd3+-based Kitaev-type magnets. Third, for 4f5, SmI3 has
recently undergone experimental scrutiny as a potential host for the Kitaev
QSL, given its absence of long-range spin magnetic order down to 0.1 K24.
Further experiments are awaited to identify the relevant magnetic interac-
tions. Finally, for 4f11, Er3+-based van derWaalsmagnets ErX3 (X=Cl, Br, I)
were studied26,27. Thesematerials have similar lattice structures to that of the
prime candidate for the Kitaev QSL, α-RuCl3, and were shown to exhibit
noncollinear vortex-type magnetic orders. A recent experiment for ErBr3
discussed the relevance of long-range dipolar interactions42. However, note
that similar vortex-likemagnetic orders were also found in extensions of the
Kitaevmdoel30,43,44. It would be intriguing to revisit the Er3+-basedmaterials
by using ab initio approaches.

Discussion
Our comprehensive approach, leveraging a parallel computational program
capable of massive-scale second-order perturbation calculations, has pro-
vided insights into the nature of exchange interactions in rare-earth quasi-
two-dimensional honeycomb lattices. The observed dominance of the
anisotropic Kitaev interaction over the isotropic Heisenberg interaction in
certain cases, particularly for 4f3 and 4f11 configurations, opens new avenues
for investigating the Kitaev-type QSL. In particular, our results highlight
Nd3+ and Er3+-based magnets as plausible candidates for the Kitaev QSL.
The developed computational program extends its utility beyond theKitaev
model, which would address a wide range of exchange interactions in 4f-
electron systems. Particularly when used in conjunction with ab initio cal-
culations, which allow for an in-depth numerical analysis of parameters for
crystal fields and electron hoppings, the program will more accurately
describe spin systems in 4f-electron systems, including the effects of not only
direct 4f-4f direct hopping but also charge-transfer processes and cyclic
exchanges14,45, which will be explored in subsequent researches. We also
note that, althoughwedemonstrated the simplest cases ofOCF in this study,
the program is applicable to any perturbation problem for various types of
crystal fields with lower symmetry. This work not only contributes to
advancing our understanding of rare-earth Kitaev-type materials but also
lays the groundwork for future exploration of exotic magnetism in this
intriguing field of research.

We note that computational speed could be significantly enhanced by

separating cyimσ and ci0m0σ inHhop
46, given that the site indices i and i0 pertain

exclusively to subspaceswith 4fn+1 and 4fn−1 configurations, respectively [see
equations (12) and (13)]. This strategy would reduce the size of the per-
turbation calculations from 2 14

n�1ð Þ 14
nþ1ð Þ (considering ∣4f n�1�� ∣4f nþ1�) to

14 14
n�1ð Þþ 14

nþ1ð Þð Þ (considering ∣4f n�1� and ∣4f nþ1� separately). For example, at
n = 6, this approach would decrease the size from 6,012,066 to 76,076,
demonstrating a substantial reduction that warrants testing in future
studies.

Methods
Coulomb interactions
The Hamiltonian Hint describing the Coulomb interactions between f
electrons is given by

Hint ¼
P
i

P
m1;m2 ;m3 ;m4

P
σ1;σ2

δm1þm2;m3þm4

P
k¼0;2;4;6

FkCðkÞðm1;m4ÞCðkÞðm2;m3Þcyim1σ1
cyim2σ2

cim3σ2
cim4σ1

;
ð2Þ

where Fk and C(k) denote the Slater-Condon parameters and the Guant
coefficients, respectively (k=0, 2, 4, 6); δ is theKronecker delta; cyimσ and cimσ

represent creation and annihilation operators of an electron at site i in the
spherical harmonics basis, respectively (m and σ = ±1 denote the magnetic
and spin quantum numbers, respectively). Here, the Slater-Condon

Fig. 4 | Ratio between the Kitaev and Heisenberg interactions, ∣K/J∣, for different
4fn cases.We exclude the data when ∣K∣ or ∣J∣ are extremely small: jKj < 10�5t4pf σΔ

�2
p�f

eV−1 and jJj < 10�5t4pf σΔ
�2
p�f eV

−1.

Table 2 | Plausible estimates of the isotropic Heisenberg
interaction J, anisotropic Kitaev interaction K, and their ratio
∣K/J∣ for various Kramers doublets in 4f-electron systems

J (meV) K (meV) ∣K/J∣

4f1 Γ7 0.121 0.172 1.42

4f3 Γ6 0.176 1.21 6.89

4f5 Γ7 0.131 0.328 2.50

4f9 Γ6 1.22 −0.521 0.425

4f9 Γ7 0.954 0.156 0.164

4f11 Γ7 0.244 1.27 5.21

4f13 Γ6 1.87 0.00566 0.00303

We take tpfσ = 0.35 eV, tpfπ/tpfσ = −0.738, and Δp-f = 1 eV.
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parameters are related with the onsite Coulomb interaction U and the
Hund’s-rule coupling JH as47,48

U ¼ F0; ð3Þ

JH ¼ 1
6435

286F2 þ 195F4 þ 250F6
� �

: ð4Þ

Hint is diagonalized using the lowering operators of orbital and spin angular
momenta, L− and S−, respectively, both of which commute withHint:

L� ¼
X
i

X
m1 ;m2

X
σ

δm1;m2þ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘þmþ 1Þð‘�mÞ

p
cyim1σ

cim2σ
; ð5Þ

where ℓ is the orbital quantum number taken as ℓ = 3 for the f-orbital
manifold, and

S� ¼
X
i

X
m

X
σ1 ;σ2

δσ1 ;σ2þ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
þ σ2

2
þ 1

� �
1
2
� σ2

2

� �s
cyimσ1

cimσ2
: ð6Þ

A leading eigenvector of the ground-state multiplet 2S1þ1L1 with L1 (S1)
being the largest L (S) for 4fn electron configuration is given as

cyi;‘;þ1 � � � cyi;‘�nþ1;þ1|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n

∣0i, where ∣0i denotes the vacuum state. Given this

leading eigenvector, all the eigenvectors expanded within the 2S1þ1L1
subspace can be derived by successively applying either L− or S− to the
leading eigenvector. Then, the leading eigenvector for themultiplet 2S1þ1L2,
where L2 is the second-largest L, is constructed as a vector orthogonal to the
eigenvector within the 2S1þ1L1 subspace with the expectation values of Lz

and Sz being L2 and S1, respectively:

Lz ¼
X
i

X
m

X
σ

mcyimσcimσ ; ð7Þ

Sz ¼
X
i

X
m

X
σ

σ

2
cyimσcimσ : ð8Þ

Similarly, all the eigenvectors within the 2S1þ1L2 subspace can be derived by
successively applying eitherL−orS− to the leading eigenvector.This process,
involving the application of either L− or S− to the leading eigenvector with
orthogonality, is repeated for the remaining subspaces as well. Finally, we
assess the numerical validity of the derived eigenvectors by examining their
orthogonality and verifying the absence of nonzero off-diagonal elements
inHint.

Spin-orbit coupling
The HamiltonianHSOC describing the effect of the SOC is given by

HSOC ¼
X
i

HSOC;i; ð9Þ

where

HSOC;i ¼ λ
2

P‘
m¼�‘

P
σ
mσcyimσcimσ

þ λ
2

P‘�1

m¼�‘

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘þmþ 1

p ffiffiffiffiffiffiffiffiffiffiffiffi
‘�m

p
ðcyimþ1�cimþ þ cyimþcimþ1�Þ;

ð10Þ

where λ > 0 is the SOC coefficient.
HSOC is diagonalized using the lowering operator of total angular

momentum, J−, which commutes with HSOC: J
− = L− + S−. A leading

eigenvector of the 2Sþ1 LJ1 with J1 being the largest J (= L+ S) is given as the

eigenvector with the expectation value of Jz (= Lz + Sz) being J1. All the
eigenvectors within the 2Sþ1 LJ1 subspace can be derived by successively
applying either J− to the leading eigenvector. Then, the leading eigenvector
of the 2Sþ1 LJ2 , where J2 is the second-largest J2 (= L+ S− 1), is constructed
as a vector orthogonal to the eigenvector within the 2Sþ1 LJ2 subspace with
the expectation values of Jz being J2. This process, involving the application
of J− to the leading eigenvector with orthogonality, is repeated for the
remaining subspaces as well. Finally, we assess the numerical validity of the
derived eigenvectors by examining their orthogonality and verifying the
absence of nonzero off-diagonal elements in HSOC. We also confirm that
this approach using L− and S− for Hint and J− for HSOC yields the same
eigenvectors and eigenvalues for the 4f2 electron configuration as those
obtained using the Wigner 3-j symbols30.

Octahedral crystal field
The HamiltonianHOCF describing the octahedral crystal field is given by

HOCF ¼ B40O4 þ B60O6; ð11Þ

whereO4 =O40+ 5O44 andO6 =O60− 21O64.Ors (s=−r,−r+ 1,⋯, r) are
the rank-r Stevens operators49, and B40 and B60 are the coefficients.

Electron hopping
TheHamiltonianHhop describing the kinetic energy of electronhopping via
indirect 4f-p-4f hopping processes is given by

Hhop ¼
X
μ

X
hi;i0iμ

H μð Þ
hop;ii0 ; ð12Þ

whereH μð Þ
hop;ii0 denotes the electronhopping betweennearest-neighbor sites i

and i0 on the μ bond (μ = x, y, and z) as

H μð Þ
hop;ii0 ¼

X
m;m0

X
σ¼±

X
o;p

tim;op;σ ti0m0;op;σ

Δp�f
cyimσci0m0σ þ h:c:

 !
: ð13Þ

tiu,op,σ is the transfer integral for spin σ between 4f orbital u at site i and p
orbital p (= x, y, and z) at one of two ligand sites o (= 1 and 2) shared by two
RX6 octahedra for the sites i and i0, and Δp-f is the energy difference between
p and 4f orbitals. For tim,op,σ and ti0m0 ;op;σ , we refer to ref. 33.

Perturbation expansion
The effective Hamiltonian for a pair of jeff = 1/2 pseudospins for nearest-
neighbor sites i and i0 on a μ bond is calculated by

h
μð Þ
ii0 ¼

X
a;b;c;d¼±

X
n

c; dh ∣HðμÞ
hop;ii0 ∣ni nh ∣H μð Þ

hop;ii0 ∣a; bi
E0 � En

∣c; di a; bh ∣: ð14Þ

where ∣a; bi and ∣c; di are the initial and final two-site states with 4fn-4fn

electron configurations described in Table 1 at each site, and ∣ni is the
intermediate states with 4fn+1-4fn−1 electron configurations; E0 is the energy
for the initial and final states, while En is for the intermediate state ∣ni.

Data availability
The data that support the findings of this study are available at https://
github.com/JerryGarcia1995/SQPerturbation/blob/main/results_raw_
data.zip.

Code availability
The code that supports the findings of this study is available at https://
github.com/JerryGarcia1995/SQPerturbation.
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