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Cell–cell interactions are highly complex and can strongly 
impact cell behavior in biological contexts, often with medi-
cal ramifications. A quintessential example is that between 

malignant cells and diverse nonmalignant cell types within the 
tumor microenvironment (TME)1,2. Numerous studies over the past 
two decades have revealed interactions between cells in the TME 
that promote diverse functions, including angiogenesis3, metastasis4 
and immunosuppression5. Nonmalignant cells can differ markedly 
among patients and tumor types6, and certain nonmalignant cell 
populations are used as clinical biomarkers7 and therapeutic tar-
gets8. These studies motivate the direct measurement of cell types 
within tissues.

Two layers of information are critical for understanding tumor 
composition: (1) the proportion of each cell type and (2) the lev-
els of gene expression in each cell type. The rise of single-cell RNA 
sequencing (scRNA-seq) technologies has recently enabled direct, 
genome-wide measurement of the transcriptome in individual 
cells within the TME and characterization of their heterogeneity. 
However, the cost of scRNA-seq and requirements for high-quality 
tissue limit the number of patient samples that can be assayed9. 
Moreover, scRNA-seq is susceptible to technical biases in cell cap-
ture9, which confound the recovery of cell type composition.

As an alternative, cell type abundance can be inferred from bulk 
RNA-seq data using regression on a reference expression matrix 
constructed from a set of arbitrarily defined marker genes10–14. 
Pioneering methods for cell type deconvolution have demonstrated 
that it is possible to infer the abundance of multiple cell types in 
the TME. However, existing deconvolution methods make restric-
tive assumptions about the difference in distribution between the  

reference and bulk sample. These assumptions are often violated 
by both technical (for example, different platforms used for refer-
ence and bulk sequencing) and biological (for example, heteroge-
neity in gene expression within constituent cell types) differences 
between bulk and reference data. Critically, cell type deconvolution 
methods have not fully supported prediction of gene expression in 
a heterogeneous population of tumor cells. Thus, existing methods 
fail to address these key questions: how do malignant cells affect the 
composition of nonmalignant cells in the TME? Which genes are 
correlated with these interactions? To answer these questions, we 
need a model that can accurately represent cell type fraction and 
cell-type-specific expression profiles in each bulk sample, and can 
accommodate differences between the single-cell reference and bulk.

Here, we present BayesPrism, a Bayesian model that jointly infers 
the posterior distribution of cell type fractions and gene expression 
from bulk RNA-seq data using an scRNA-seq reference as prior 
information. By explicitly modeling and marginalizing out the dif-
ferences in gene expression between single-cell reference and bulk 
data, BayesPrism substantially outperforms leading methods in the 
inference of cell type fractions in both tumor and nontumor set-
tings. We demonstrate the utility of our approach on a large dataset 
of 1,412 bulk RNA-seq and 85 scRNA-seq samples in glioblastoma 
(GBM), head and neck squamous cell carcinoma (HNSCC) and 
skin cutaneous melanoma (SKCM). Our work introduces a power-
ful new tool for integrative analysis of bulk and scRNA-seq data.

Results
Bayesian inference of cell type fraction and gene expression. 
BayesPrism uses an scRNA-seq reference to infer two statistics from 
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each bulk RNA-seq sample: (1) the proportion of reads derived 
from each cell type, which we assume is proportional to the fraction 
of that cell type; and (2) the expression level of genes in each cell 
type (Fig. 1a,b, Extended Data Fig. 1 and Supplementary Note 1). 
The most challenging aspect of cellular deconvolution is accounting 
for various sources of uncertainty, including technical and biologi-
cal batch variation, in gene expression between bulk and scRNA-seq 
reference data. To account for these uncertainties, BayesPrism 
adopts a Bayesian strategy that models prior distribution using 
scRNA-seq, and infers a joint posterior distribution of cell type pro-
portion and gene expression in each cell type and bulk sample con-
ditional on each observed bulk. As a result, the uncertainty in each 
estimate can be marginalized out from the joint posterior.

BayesPrism accommodates multiple gene expression subtypes 
of the same cell type (hereafter referred to as ‘cell states’). Internally, 
BayesPrism treats cell types and states in the same manner, and 
returns the posterior sum over different cell states defined by the 
scRNA-seq dataset to represent the fraction and expression of each 
cell type. This strategy is useful in modeling heterogeneous cell types, 
including both malignant and nonmalignant cell types in the TME.

BayesPrism is implemented in an efficient algorithm (Methods 
and Supplementary Note 2) consisting of four major steps:

	(1)	 BayesPrism first infers a joint posterior distribution of the cell 
state proportion and gene expression, μn and Un, respectively, 
conditional on the observed single-cell reference φ (obtained 
by summing over the count matrix of each cell state followed by 
normalization by total count), and read counts of bulk expres-
sion Xn of the nth bulk sample—that is, p(μn, Un | φ, Xn)—using 
Gibbs sampling.

	(2)	 For each bulk sample n, BayesPrism estimates (step 2a) the 
gene expression matrix of each cell state, Un, and (step 2b) the 
proportion of each cell state, μn, by marginalization of the joint 
posterior and reporting the posterior mean. Explicit modeling 
of the cell-type-specific expression value in each bulk makes 
BayesPrism robust to technical batch effects and biological 
variation between the scRNA-seq reference and bulk (Supple-
mentary Note 3).

	(3)	 For each bulk sample n, BayesPrism estimates the gene expres-
sion matrix of each cell type, Zn, and the proportion of each cell 
type, θ0n, by summing the posteriors over cell states (estimated 
in step 2) within each cell type.

	(4)	 Optionally, BayesPrism updates the reference matrix φ by pool-
ing information across bulk samples from Z to improve esti-
mates of cell type fractions. The updated reference matrix, ψ, 
represents the multinomial distribution parameters describing 
the distribution of Z. Two strategies are used to infer ψ de-
pending on whether the cell type is malignant—that is, of high 
heterogeneity—or not (Methods). BayesPrism then uses the 
updated prior distribution parameterized by ψ to re-estimate 
the marginal posterior of cell type fraction for each bulk sam-
ple—that is, p(θfn| ψ, Xn). Sharing information across bulk sam-
ples often provides higher accuracy regarding problems with  
batch effects.

BayesPrism improves the accuracy of cell type deconvolution. 
We benchmarked the robustness of cell type deconvolution against 
a simulated batch effect between the scRNA-seq reference and bulk 
datasets. We constructed pseudo-bulk RNA-seq data that differed 
from the reference scRNA-seq dataset by a log-normally distributed 
multiplicative noise term (Methods and Supplementary Table 1). 
We compared Pearson correlation and mean squared error (MSE) 
between the ground truth and cell type proportions estimated using 
five different deconvolution methods10–14. BayesPrism was nearly 
invariant to simulated noise and outperformed existing methods by 
up to an order of magnitude as noise increased (Extended Data Fig. 2;  

see Supplementary Note 3 for mathematical arguments outlining 
why BayesPrism is invariant to linear noise).

To assess whether BayesPrism improved deconvolution perfor-
mance in a more realistic setting, we next generated pseudo-bulk 
data by combining reads from single cells in three different set-
tings: (1) peripheral blood mononuclear cells (PBMCs) and mouse 
brain cortex samples from different healthy subjects and sequenced 
by different scRNA-seq platforms, representing technical batch 
effects with small amounts of biological variation (Extended Data  
Fig. 3); (2) leave-one-out tests in datasets of three human can-
cer types generated by the same sequencing platforms represent-
ing biological variation with small amounts of technical noise 
(Extended Data Fig. 4a–d); and (3) GBM datasets generated from 
different cohorts using different sequencing platforms represent-
ing a mixture of both effects: full-length SMART-seq2 data consist-
ing of 28 patients as a surrogate for bulk RNA-seq (GBM28) and 
3′ end-enriched tag clusters obtained using a microwell-based plat-
form from eight patients as the reference (refGBM8) (Fig. 1c,d).

BayesPrism significantly outperformed all existing methods in 
all three settings in 63 of 64 tests (P < 0.05; Supplementary Notes 
4 and 5). In the GBM dataset (the third setting), BayesPrism was 
particularly more efficient than CIBERSORTx in estimating the 
proportion of malignant cells, in which gene expression was a poor 
match for the reference data and consistent with our expectation 
that the Bayesian method will provide the highest performance 
advantage in the presence of substantial gene expression variation 
between the bulk and reference data (Fig. 1c and Supplementary 
Fig. 1). Separate analyses also found that BayesPrism was robust to 
cell types missing from the scRNA-seq reference, as well as to the 
number of cells and scRNA-seq reference samples (Supplementary 
Note 6).

As a final performance benchmark, we deconvolved real bulk 
RNA-seq data using a ground truth obtained by orthogonal strate-
gies. We obtained bulk RNA-seq data from 12 whole-blood samples 
analyzed in parallel using flow cytometry12. Using PBMC scRNA-seq 
data as a reference, BayesPrism obtained more accurate estimates of 
five cell types in the bulk sample than other deconvolution methods 
(P < 5.46 × 10–4 on MSE, P < 0.03 on correlation coefficients) (Fig. 1e,f).  
Taken together, these benchmarks demonstrate that BayesPrism 
improved deconvolution performance in realistic settings.

BayesPrism estimates gene expression in unobserved patients. We 
asked whether BayesPrism would accurately recover gene expres-
sion in heterogeneous cell types. We first focused on the recovery 
of gene expression in malignant cells where cross-patient hetero-
geneity makes prediction of gene expression a challenging prob-
lem. We estimated cell types and gene expression in SMART-seq2 
pseudo-bulk data from 28 GBMs. We used a microwell-based 
scRNA-seq reference from eight GBMs, which tested the accuracy 
of BayesPrism in the presence of both biological and technical vari-
ation between the bulk and scRNA-seq reference data. Gene expres-
sion estimates for malignant cells in the pseudo-bulk samples (ψmal) 
were highly similar to the known ground truth (Fig. 1g, right).

Next, we asked how the accuracy of gene expression estimates 
would be affected by the proportion of malignant cells. We sampled 
random proportions of each cell type, drawing malignant cells from 
a single patient. The correlation between BayesPrism gene expres-
sion estimates and known ground truth was >0.95 for tumors, 
with >50% purity (Fig. 1h). Moreover, different samples simulated 
from the same patient produced estimates highly concordant with 
each other (Extended Data Fig. 5), suggesting that gene expression 
deconvolved by BayesPrism can accurately recover the underlying 
structure of gene expression in malignant cells from bulk samples. 
Gene expression estimates were substantially more accurate using 
BayesPrism than either CIBERSORTx or bulk tumor with no 
deconvolution (Fig. 1h and Extended Data Fig. 6).
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Fig. 1 | BayesPrism algorithm flow and performance validation. a, Algorithmist flow of the deconvolution module of BayesPrism. b, Variables and their 
dimensions shown in a. c–f, Boxplots showing the cell-type-level Pearson’s correlation coefficient (c,e) and MSE (d,f) for deconvolution of GBM28 
pseudo-bulks using refGBM8 (c,d), and bulk RNA-seq human whole blood samples with ground truth measured by flow cytometry (e,f). Boxes mark 
the 25th percentile (bottom), median (central bar) and 75th percentile (top). Whiskers represent extreme values within 1.5-fold of interquartile 
range. One-sided P values are shown for cell type fractions inferred by BayesPrism (updated θ using marker-free mode) and those by the second-best 
methods ranked by median value. T-test was used for MSE, and z-test was performed on Fisher’s z-transformed cell-type-level correlation coefficients 
(Methods). c,d, Statistics were computed for 1,350 pseudo-bulk RNA-seq samples simulated using scRNA-seq from 27 patients with GBM having more 
than ten malignant cells for all methods, except CIBERSORTx. For CIBERSORTx and its comparison with BayesPrism, statistics were computed using 
270 downsampled pseudo-bulks across 27 patients. e,f, Statistics were computed using 12 bulk RNA-seq samples from independent healthy adults. 
g, Uniform manifold approximation and projection (UMAP) visualization showing expression of individual cells in GBM28. The expression profiles of 
nonmalignant cells before (gray) and after information pooling (black) were projected onto the UMAP manifold of scRNA-seq (left). Malignant cells in 
patients with more than ten malignant cells (n = 27) are visualized on the zoomed-in UMAP (right) and are colored by patient. The inferred expression 
profile, shown as △, and the averaged expression profile from scRNA-seq for each patient, shown as ○, are projected onto the UMAP manifold. h, Scatter 
plot showing Pearson’s correlation between average expression of malignant cells in pseudo-bulk and that estimated by BayesPrism (red) and CIBERSORTx 
group mode (orange) or the undeconvolved simulated bulk (blue), as a function of the fraction of malignant cells in a subsampled set (n = 270).
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Next, we expanded our analysis to a second cancer type, SKCM, 
and examined whether BayesPrism would recover expression dif-
ferences characteristic of the AXL and MITF malignant cell states. 
We compared BayesPrism expression estimates with AXL and 
MITF marker genes reported previously in the literature15 using 
the leave-one-out benchmark design described above. BayesPrism 
reproduced both the AXL and MITF subtypes with accuracy simi-
lar to the original scRNA-seq data (Extended Data Fig. 4i). Thus, 
BayesPrism accurately recovered sample-specific features of gene 
expression in heterogeneous cell types.

We asked whether BayesPrism expression estimates would 
recover gene expression in nonmalignant cell types. Gene expres-
sion estimates for macrophages, T cells and oligodendrocytes (ψenv) 
better matched the known ground truth than the scRNA-seq prior 
in the 27 GBM pseudo-bulk samples (Fig. 1g, left and Extended Data 
Fig. 7). To assess whether we could recover heterogeneity between 
patients for nonmalignant cells, we subclustered macrophages 
in scRNA-seq data and sampled a random proportion of macro-
phages from one cluster to generate each pseudo-bulk sample that 
was otherwise similar to those obtained for malignant cells above 
(Supplementary Note 4). BayesPrism accurately recovered subtle 
variation in gene expression, which allowed the recovery of macro-
phage cell states between simulated pseudo-bulk samples (Extended 
Data Fig. 8). We conclude that BayesPrism can recover the average 
gene expression patterns of each cell type from bulk RNA-seq data.

Survival impact of infiltrating immune cell types and states. We 
analyzed the proportion of cell types in 1,142 samples from The 
Cancer Genome Atlas (TCGA) from three tumor types: GBM, 
HNSCC and SKCM16–18. To maintain the highest possible accu-
racy, we used a scRNA-seq reference from the same tumor type in 
each deconvolution task19–21. Using these reference datasets pro-
vided estimates of six cell types for GBM, ten for HNSCC and eight 
for SKCM (Fig. 2a). Estimates of tumor purity closely resembled 
those obtained using copy number variations by ABSOLUTE22 and 
marker gene expression by ESTIMATE23 (Extended Data Fig. 9 
and Supplementary Fig. 2). Likewise, estimates for the fraction of 
lymphocytes were correlated with those obtained by counting lym-
phocyte patches in hematoxylin and eosin sections in the SKCM 
dataset24 (Extended Data Fig. 10). Finally, across large cohorts of 
tumors, nonmalignant cell types had a rich correlation structure 
with one another that mirrored several previously described obser-
vations in the literature (Supplementary Note 7). These benchmarks 
support the accuracy of BayesPrism in estimation of cell type frac-
tions in bulk tumor samples.

We asked whether nonmalignant cell types are correlated with 
patient survival. Samples contributed to TCGA have substantial 
differences in treatments, genetic drivers and other confounders 
(Supplementary Table 2). We excluded samples from each tumor 
type having genetic or clinical covariates (for example, IDH mutant 
GBMs, metastatic HNSCC and nonmetastatic SKCM) with a large, 
well-documented effect on prognosis. We examined the asso-
ciation between cell type abundance and survival using two Cox 
proportional-hazards models by (1) stratifying samples into high 
and low cell type abundance using the median value, and (2) treating 
cell type abundance as a continuously valued variable (Methods).

Our analyses revealed several significant associations between 
immune cell types and clinical outcomes. In SKCM, where CD4+ and 
CD8+ cells were annotated separately in the reference scRNA-seq 
dataset, we found that CD8+ T cells had a stronger correlation with 
survival (HR = 0.498[0.356,0.698]; Fig. 2b and Supplementary  
Fig. 3), consistent with previous reports25. The proportion of T cells 
was also associated with better clinical outcomes in HNSCC, but 
the effect was significant using only the model that treated cell 
type abundance as a continuous variable (P = 0.001, Wald test). 
BayesPrism also revealed significant positive survival associations 

with B cells and mast cells in HNSCC (HR = 0.694[0.509,0.948] and 
HR = 0.668[0.49,0.912], respectively).

The prognostic value of macrophages is more controversial 
than that of other immune cell types. Macrophage estimates by 
BayesPrism were positively associated with survival in SKCM 
(HR = 0.648[0.464,0.906]; P = 0.01, log-rank test; Fig. 2c). In con-
trast some recent studies, mostly examining other patient cohorts, 
have noted either no significant association or the opposite trend26. 
Intriguingly, albeit not statistically significant, we noted that 
high macrophage infiltration carried a poor prognosis in GBM 
(HR = 1.18[0.795,1.76]) and no survival association in HNSCC 
(HR = 1.02[0.749,1.38]). We hypothesized that differences in mac-
rophage cell state may contribute to the differences we observed in 
survival associations. To test this, we used BayesPrism to estimate 
macrophage-specific gene expression in samples with >5% macro-
phage content. We compared macrophage expression with marker 
genes characteristic of two macrophage subpopulations27, M1 and 
M2, that are believed to have different roles in the TME (Methods). 
Macrophages from GBM had the highest M2 score and the low-
est M1 score, whereas those from SKCM had the lowest M2 score 
and an M1 score comparably high to that from HNSCC (Fig. 2d). 
Furthermore, macrophage polarization had an extremely strong 
association with survival in SKCM (Fig. 2e). In GBM the trend 
was in a consistent direction (HR = 0.648[0.464,0.906]), although 
the log-rank test did not show statistical significance (P = 0.3; 
Supplementary Fig. 3). Taken together, these findings highlight the 
importance of both macrophage content and macrophage cell state 
in shaping clinical outcomes across different malignancies.

Gene expression patterns correlated with TME cell types. 
Prioritizing genes that lie either upstream or downstream of inter-
actions between malignant cells and the TME would be useful for 
a variety of applications. We developed an approach that uses the 
correlation between gene expression in malignant cells and the frac-
tion of nonmalignant cell types (hereafter referred to as the ‘query 
cell type’) across large numbers of bulk samples to identify candi-
date interacting genes. We found that BayesPrism reduced spuri-
ous correlations caused by gene expression in the query cell type 
(Supplementary Note 8). However, missing cell states from the 
scRNA-seq reference, a scenario often encountered in a highly het-
erogeneous TME, could result in transcripts that are highly expressed 
in a missing nonmalignant cell state to be partially assigned to 
malignant cells if the scRNA-seq of the malignant cells also shows 
moderate expression of those genes. This issue may cause potential 
false-positive correlations between the estimated expression level 
of that gene and the fraction of the query cell type containing the 
missing cell states. To further reduce potential false-positive associ-
ations, we implemented two additional filters (Supplementary Note 
9). First, we devised a likelihood ratio test to test the null hypothesis 
that gene expression in the query cell type alone explains the varia-
tion in query cell fraction. Second, we enriched for genes intrin-
sic to malignant cells by selecting those expressed at significantly 
higher levels in at least one malignant cell state compared to all non-
malignant cell types based on the scRNA-seq reference. These filters 
yielded a conservative set of candidate genes in which malignant 
cell expression correlated with nonmalignant cell fraction.

We first asked whether we could recover known positive regula-
tors of macrophage infiltration in IDH-wild-type GBM28,29. Genes 
previously reported to have interactions all had statistically signifi-
cant positive correlations with macrophage infiltration, including 
POSTN, ITGB1 and LOX (Fig. 3a). We also identified numerous 
other correlations with a stronger magnitude. Putative candidate 
interacting genes include GNG10, CRYBB1, FAM177B, CP, GLRX 
and PI3, genes involved in the complement pathway (C1S, CFB, 
CD59 and C1R) and cytokine receptors and ligands (CCL2, IL1R1 
and IL6). To validate new correlations discovered using BayesPrism, 
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we attempted to reproduce them using an independent bulk 
RNA-seq dataset composed of 148 laser-capture, microdissected 
regions from 34 GBMs from IVY GAP30. We asked whether tumor 
regions in which malignant cells expressed high levels of candidate 
genes had higher macrophage infiltration. We used BayesPrism to 
quantify the fraction of macrophages by deconvolving all 148 IVY 
GAP samples. Each bulk RNA-seq sample was collected adjacent to 
sections analyzed by in situ hybridization (ISH) for cancer stem cell 
markers30. Despite limited sample size per marker in the IVY GAP 
dataset, we observed higher macrophage content in ISH-positive 
sections of PI3 and POSTN, the only two genes passing our fil-
ters that were analyzed by at least ten ISH experiments (Fig. 3b,c, 
Supplementary Table 3a and Methods). Thus, BayesPrism identified 
correlations using TCGA that could be reproduced by intratumoral 
heterogeneity.

We next extended our analysis to identify candidate interactions 
in GBM, SKCM and HNSCC (Supplementary Fig. 4). To summa-
rize the biological processes associated with cell–cell interactions, 
we performed gene set enrichment analysis31 using correlation 
coefficients between candidate interacting genes and fractions 
of nonmalignant cell types (Fig. 3d). Our analyses revealed sev-
eral interaction patterns. First, many of the biological processes 
correlated with the fraction of nonmalignant cell types were dis-
covered independently in all three tumor types. For example, 
interferon-gamma/alpha response was positively correlated with 

macrophages in all three tumor types (Fig. 3e). Because macro-
phages secrete interferon-gamma and -alpha upon activation, our 
finding probably reflects the gene expression response in malig-
nant cells to macrophage infiltration. Second, biological processes 
were associated with different cell types in different cancer types. 
Mesenchymal activation or epithelial–mesenchymal transition 
(EMT) can play a wide variety of roles in the tumor depending on 
other factors in the TME32. Mesenchymal activation was positively 
associated with both macrophages in GBM and with endothelial 
cells and fibroblasts in SKCM, and negatively with lymphocytes 
in HNSCC (Fig. 3d,f). Third, some biological processes were 
exclusively associated with a single tumor type but with multiple 
cell types in that tumor. For example, keratinization was nega-
tively associated with multiple nonmalignant cells in HNSCC, 
except for mast cells which had a positive association (Fig. 3g). 
One interpretation is that keratinization by malignant cells affects 
tumor stiffness to exclude certain cell types from the TME. These 
results highlight how BayesPrism can be used to study interactions 
between biological processes in malignant and nonmalignant cell 
infiltration.

BayesPrism identifies malignant cell-intrinsic gene programs. 
Evolutionary pressure pushes malignant cells to optimize for differ-
ent tasks that are essential for their survival, which is done by regu-
lating sets of coexpressed genes known as gene programs33. These 
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Fig. 2 | Association between prognosis and either cell type fraction or cell state of nonmalignant cells in three TCGA tumor types. a, Violin plots 
showing distribution of cell type fraction in each tumor type. Median fractions are denoted by white dots and upper/lower quartiles by bars. Oligo., 
oligodendrocytes. b,c, Kaplan–Meier plots showing survival associations with infiltration of T cells (b) and macrophages (c) in SKCM. Δmedian, median 
survival time in the high group/median survival time in the low group. d, Scatter plot showing correlation between BayesPrism expression estimates in 
macrophages and M1 and M2 macrophage subtype scores across three tumor types. Boxes mark the 25th percentile (bottom), median (central bar) and 
75th percentile (top); whiskers represent extreme values within 1.5-fold of interquartile range. Statistical significance was determined by one-way analysis 
of variance (P < numeric limit and degrees of freedom = 2 for both M1 and M2 scores; M1, F = 203.44; M2, F = 63.226), followed by reporting of Tukey’s 
honestly significant difference-adjusted P values. n(GBM) = 127, n(HNSCC) = 26 and n(SKCM) = 225 independent TCGA bulk tumor samples. e, Kaplan–
Meier plots showing survival associations with the M1/M2 polarization state of macrophages in SKCM. b,c,e, P values were derived from log-rank test, HR 
was defined by high/low and 95th percentile confidence intervals are shown in square brackets. Transparent colors denote 95% confidence bands.
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gene programs provide expression signatures that are characteristic 
of the heterogeneity between different patients. Existing clustering 
methods often identify gene programs that reflect differential infil-
tration of nonmalignant cell types rather than gene expression in 
malignant cells.

We developed a module in BayesPrism to infer a linear combi-
nation of gene programs that best explain expression heterogene-
ity in bulk RNA-seq data after factoring out gene expression from 
nonmalignant cell types (Fig. 4a, Methods and Supplementary Note 
1). We validated our approach on pseudo-bulk data generated by 
aggregating scRNA-seq reads across 28 GBMs. BayesPrism recov-
ered gene programs similar to those recently obtained by factoriza-
tion of 6,863 single malignant cells from the same dataset34 (Fig. 4b). 
The weights of each gene program learned by BayesPrism were cor-
related with the fraction of cells in each tumor assigned to each of 
the four major subtypes (Fig. 4c,d). Thus, in this case, BayesPrism 

learned gene programs from pseudo-bulk data similar to those 
obtained from single cells.

We applied embedding learning to GBM, HNSCC and SKCM. 
BayesPrism revealed several programs in GBM that were similar 
to those in previous studies34,35, including program 3 (classical and 
AC-like), program 4 (mesenchymal) and program 5 (proneural, OPC 
and NPC-like) (Fig. 4e). In HNSCC, program 1 was enriched for the 
partial EMT program identified by the single-cell study19 (Fig. 4f) 
and had a negative association with survival (P = 0.017, Wald test). 
In SKCM, we identified multiple survival-associated gene programs 
that were enriched or depleted for AXL and MITF gene programs 
(reported previously using TCGA bulk data), as well as a T cell exclu-
sion program (identified in a recent scRNA-seq study; Fig. 4g–j). 
Gene set enrichment analysis, using either the inferred expression 
profile of each program or differentially expressed genes between 
bulk samples associated with each program (Supplementary Tables 4  
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Fig. 3 | Correlation between malignant cell gene expression and nonmalignant cell fraction. a, Rank-ordered plot showing Spearman rank correlation 
between gene expression in malignant cells inferred by BayesPrism and macrophage fraction in the TCGA-GBM dataset. The top ten positive and negative 
outlier genes are marked in red; purple circles highlight experimentally validated regulators of macrophage infiltration in GBM, or genes whose expression 
correlates with macrophage infiltration in IVY GAP. b,c, Boxplots showing BayesPrism-inferred percentage of macrophage infiltration for regions with 
low (ISH control) or high (ISH high) expression of two target genes, PI3 (b) and POSTN (c). Colors indicate anatomic structures associated with ISH 
experiments. Boxes mark the 25th percentile (bottom), median (central bar) and 75th percentile (top); whiskers represent extreme values within 1.5-fold 
of interquartile range. Statistical significance was determined by two-sided t-test. Sample size of PI3 was n = 3 for ISH control and n = 12 for ISH high; 
sample size of POSTN was n = 3 for ISH control and n = 10 for ISH high, with n representing the number of independent patients. Uncorrected P values are 
reported. d, Barplot showing normalized gene set enrichment score of genes ranked by correlation with macrophage cell fraction in GBM, as computed in 
a. Only the top 20 semantically nonredundant most enriched biological processes were selected for visualization. Padj, multiple testing-corrected P values 
were determined using the Benjamini–Hochberg method. e–g, Cartoons summarizing three patterns of relationship between biological processes and 
infiltration of nonmalignant cell types: IFN-α/γ (e), mesenchymal activation/EMT (f) and keratinization (g). Red arrows and blue flat-headed arrows 
denote positive and negative correlations, respectively. Shapes represent the tumor types of nonmalignant cells. Macro., macrophage; endo., endothelial 
cell; peri., pericyte.

Nature Cancer | VOL 3 | April 2022 | 505–517 | www.nature.com/natcancer510

http://www.nature.com/natcancer


Technical ReportNature Cancer

a

MGH151

MGH128

MGH121

MGH113

MGH100

MGH129

MGH104

MGH143

MGH66

MGH101

MGH115

MGH105

MGH106

MGH152

BT771

BT830

BT920

BT1187

BT1160

MGH110

MGH136

MGH122

BT85

BT749

BT786

MGH125

MGH102

MGH124

0.22 0.02 0.73 0.04

0.32 0.14 0.37 0.17

0.62 0.02 0.21 0.14

0.60 0 0.16 0.24

0.46 0.06 0.29 0.19

0.72 0.08 0.07 0.13

0.73 0.07 0.04 0.16

0.68 0.03 0.01 0.28

0.90 0.02 0.03 0.05

0.90 0.05 0 0.05

0.81 0.13 0.01 0.04

0.90 0.07 0.02 0.01

0.91 0.06 0.01 0.02

0.04 0.56 0.33 0.07

0.10 0.67 0.13 0.09

0.04 0.95 0 0.02

0.01 0.49 0.05 0.44

0.11 0.31 0 0.58

0 0 0.22 0.77

0.06 0.02 0.05 0.87

0.05 0.02 0.28 0.64

0.08 0.10 0.41 0.41

0.01 0 0.06 0.94

0 0.03 0.02 0.95

0.03 0.16 0.01 0.80

0 0.01 0.95 0.04

0.02 0.01 0.87 0.11

0.06 0.01 0.69 0.25

Inferred weights 
of malignant programs

0

0.2

0.4

0.6

0.8

1.0

AC-lik
e

M
ES-lik

e

NPC-lik
e

OPC-lik
e

MGH151

MGH128

MGH121

MGH113

MGH100

MGH129

MGH104

MGH143

MGH66

MGH101

MGH115

MGH105

MGH106

MGH152

BT771

BT830

BT920

BT1187

BT1160

MGH110

MGH136

MGH122

BT85

BT749

BT786

MGH125

MGH102

MGH124

0.46 0.01 0.39 0.14

0.09 0.38 0.52 0.01

0.54 0.19 0.19 0.08

0.52 0.18 0.13 0.17

0.33 0.26 0.31 0.10

0.64 0.17 0.17 0.02

0.70 0.29 0 0

0.79 0.09 0.11 0.01

0.65 0.22 0.10 0.03

0.65 0.33 0 0.01

0.52 0.45 0.02 0.01

0.46 0.44 0.07 0.03

0.32 0.60 0.08 0

0.22 0.42 0.34 0.03

0.09 0.62 0.22 0.07

0.31 0.69 0 0

0.10 0.65 0.22 0.03

0.12 0.75 0.12 0

0 0.01 0.78 0.20

0.02 0.10 0.49 0.39

0.07 0.05 0.38 0.50

0.01 0.12 0.46 0.41

0.01 0.01 0.33 0.65

0 0.03 0.33 0.64

0.01 0.03 0.17 0.79

0.05 0 0.87 0.08

0.03 0.03 0.75 0.19

0.05 0.06 0.64 0.24

Percentage of cells in each subtype 

OPC-like

NPC-like

MES-like

AC-like

–0.07 –0.57 0.17 0.51

–0.55 –0.59 0.38 0.19

0.49 0.43 –0.56 –0.58

0.68 –0.01 –0.53 –0.36

b c

–0.6 0

Pro
gr

am
 1

Pro
gr

am
 2

Pro
gr

am
 3

Pro
gr

am
 4

Pro
gr

am
 1

Pro
gr

am
 2

Pro
gr

am
 3

Pro
gr

am
 4

0.6

d

Gene set enrichement score

×

G
en

es

Inferredψ from step 4

Nonmalignant 1, 2, 3

Nonmalignant 10.1

0.10

0.10

0.100.10

0.50 0.80

0

0

0

0 0

0 0

0

0

0

0.70

0.20

0.50 0.40

0.30

0

0.20

0.97

0.03

0.1 0.4

0.5 0.1

0.2

0.1

0.1

0

0

Nonmalignant 2

Nonmalignant 3

Malignant program 1

Malignant program K

No. of bulk samples

Program 1, ..., K

In
fe

rr
ed

S
te

ps
 3

/4
: θ

Better prognosis
(by two models)

Worse prognosis 
(by two models)

Survival-associated pathways

Spearman’s correlation

–0.4 –0.2 0 0.2 0.4

e f g

h i

Worse prognosis 
(by the continuous model)

GBM

NPC-like2

NPC-like1

OPC-like

MES-like2

MES-like1

AC-like

–0.08 0.11 –0.38 –0.38 0.66

0.10 –0.27 0.10 –0.55 0.74

0.21 –0.12 –0.04 –0.58 0.47

0.30 –0.69 –0.23 0.71 –0.42

0.46 –0.32 –0.23 0.72 –0.72

0.50 0.09 0.55 –0.37 –0.63

T cell

 Oligodendrocytes

Endothelial

Macrophage

Pericyte

0.12 0.26 –0.18 –0.07 –0.15

–0.04 0.38 –0.43 0.02 0.1

–0.22 –0.03 0.39 0.22 –0.18

0.32 0.01 –0.37 0.45 –0.4

0.07 –0.33 –0.21 0.49 –0.13

Pro
gr

am
 1

Pro
gr

am
 2

Pro
gr

am
 3

Pro
gr

am
 4

Pro
gr

am
 5

HNSCC

Hypoxia

Stress

Epi. diff. 2

Epi. diff. 1

Partial EMT

Cell cycle

0.23 –0.38 –0.19 0.20

–0.10 –0.49 –0.11 0.51

–0.25 –0.59 0.48 0.44

–0.41 –0.54 –0.32 0.80

0.67 –0.68 0.12 0.04

0.22 –0.03 0.42 –0.69

Fibroblast

Endothelial

B cell

Mast

Myofibroblast

T cell

Myocyte

Macrophage

Dendritic

0.32 0.07 –0.23 –0.41

0.03 0.32 0.01 –0.61

–0.35 0.28 –0.09 0.08

–0.12 0.04 –0.22 0.28

–0.08 0.17 0.01 –0.10

–0.15 0.22 0.09 –0.23

0.09 –0.07 0.04 –0.12

–0.03 –0.09 0.19 –0.13

–0.02 0.02 0.13 –0.17

Pro
gr

am
 1

Pro
gr

am
 2

Pro
gr

am
 3

Pro
gr

am
 4

–0.5 0 0.5

Gene set enrichment score

SKCM

Endothelial

Fibroblast

CD4
+

 T

B cell

NK

Macrophage

CD8
+

 T

–0.26 0.30 –0.02 –0.45 –0.12 0.38 –0.01

–0.34 0.27 –0.14 –0.22 –0.24 0.19 0.10

0.09 –0.05 0.22 –0.31 –0.06 0.22 –0.05

0.07 0.03 0.25 –0.32 0.09 0.19 –0.16

–0.02 0.05 0.40 –0.02 –0.05 –0.02 0.15

–0.03 0.02 0.53 –0.07 –0.31 –0.16 0

0.12 –0.01 0.47 –0.27 –0.18 –0.03 0

Pro
gr

am
 1

Pro
gr

am
 2

Pro
gr

am
 3

Pro
gr

am
 4

Pro
gr

am
 5

Pro
gr

am
 6

Pro
gr

am
 7

T cell exclusion repressed

T cell exclusion induced

0.22 0.47 0.32 0.06 –0.42 –0.61 0.15

–0.44 –0.63 0.06 0.39 0.40 0.35 –0.03

E2F targets
MYC targets

EMT

INF-α response
INF-γ response

0.28 –0.60 –0.03 0.08 0.18 0.59 –0.45
–0.34 –0.71 –0.12 0.44 0.21 0.45 –0.09

–0.16 0.40 –0.19 –0.06 –0.45 0.35 0.34

0.21 –0.12 0.78 –0.13 –0.43 –0.45 –0.16
0.29 –0.02 0.67 –0.22 –0.44 –0.35 –0.14

Strata

High (top 50%)

Low (bottom 50%)

+

+

0

0.25

0.50

0.75

1.00

0 2,500 5,000 7,500 10,000

Time (days)

S
ur

vi
va

l p
ro

ba
bi

lit
y

175 61 18 6 3

182 35 11 3 0–

–

0 2,500 5,000 7,500 10,000

Time (days)

S
tr

at
a

Number at risk

SKCM: program 2
∆median = 53

P = 0.0043
HR = 0.62[0.446,0.864]

0

0.25

0.50

0.75

1.00

0 2,500 5,000 7,500 10,000

Time (days)

S
ur

vi
va

l p
ro

ba
bi

lit
y

176 50 16 4 0

181 46 13 5 3–

–

0 2,500 5,000 7,500 10,000

Time (days)

S
tr

at
a

Number at risk

SKCM: program 3
∆median = 302.5

P = 0.0046
HR = 0.618[0.441,0.865]

j

0

0.25

0.50

0.75

1.00

0 2,500 5,000 7,500 10,000

Time (days)

S
ur

vi
va

l p
ro

ba
bi

lit
y

178 35 7 0 0

179 61 22 9 3–

–

0 2,500 5,000 7,500 10,000

Time (days)

S
tr

at
a

Number at risk

SKCM: program 4
∆median = –523

P = 0.0057
HR = 1.6(1.14,2.24)

MITF program0.41 –0.10 –0.13 0.30 0.37 –0.69 0.12

–0.26 0.47 0.17 0.24 –0.68 0.21 0.34 AXL program

Cell cycle DNA replication0.33 –0.60 0.03 0.20 0.09 0.56 –0.46

++++++++++++++++++++
++++++++++

+++++++++++++++++++++++++++++++++++++++++++++
+++ ++++++++++++++++

+++
+

+ +++
+ + + + +

+++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++

++++++++++++
+++++++++++++ ++++

+
++

++

++
+

+

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++++++

++++++++++++++++

+ +
+++ + +

+ +

++++++++++++++++++++++++++++++++++
++++++++++

+++++++
++++++++++++ +++++++++++++++++

+ ++++ ++ ++

+ +

++++++++++++++++++++++++++++++++++++++++++
+++++++++++++++++++++++

+++++++++++++++++++++++++
++

+
++

+++

+ ++

++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++++

++
++++++++++++++ +++++++++++++++

+++
+ ++++ + +

+ + + +

Fig. 4 | BayesPrism redefines GBM molecular subtypes after excluding expression in nonmalignant cells. a, Cartoon illustrating mathematical setup of 
the embedding learning formulated as a matrix factorization problem. b, Heatmap showing gene set enrichment score for each gene program of malignant 
cells in GBM28 pseudo-bulk inferred by BayesPrism. Marker genes in each cluster reported by Neftel et al.34 were used as the gene sets. c, Heatmap 
showing inferred weights of each gene program of malignant cells in GBM28. d, Heatmap showing fraction of malignant cells assigned to each cluster in 
GBM28. e–g, Top, Spearman’s rank correlation between normalized weights of gene programs and the fraction of nonmalignant cells in three TCGA tumor 
types: GBM (e), HNSCC (f) and SKCM (g); bottom, gene set enrichment score for selected gene sets. Colored dots indicate whether the normalized 
weight of a particular gene program was significantly associated with survival (P < 0.05), by (1) log-rank test in which the weights were stratified at 
median (green and purple dots) and (2) Cox proportional-hazards models in which weights were modeled either as a continuous variable (green and 
purple dots) or by the continuous variable model only (orange dot). h–j, Kaplan–Meier plots of gene programs significantly associated with patient survival 
by two models: SKCM programs 2 (h), 3 (i) and 4 (j). P values were computed using the log-rank test; hazard ratio was defined by high/low, and the 95th 
percentile confidence interval is shown in square brackets. Transparent colors denote 95% confidence bands. Epi. diff., epithelial differentiation.

Nature Cancer | VOL 3 | April 2022 | 505–517 | www.nature.com/natcancer 511

http://www.nature.com/natcancer


Technical Report Nature Cancer

and 5), provided mechanistic insights into how each program affects 
clinical outcomes (Supplementary Note 10).

The mesenchymal program in HNSCC and the neural subtype 
in GBM were both previously proposed to be artifacts caused by 
the presence of fibroblasts or normal brain tissue, respectively, in 
bulk RNA-seq data19,35. In agreement with this proposal, BayesPrism 
did not identify any gene programs that were similar to either the 
mesenchymal subtype in HNSCC or the neural subtype in GBM. 
Thus, we conclude that the embedding learning module reduced 
the influence of nonmalignant cell types, resulting in gene programs 
intrinsic to malignant cells.

Spatial heterogeneity of gene programs and cell types in GBM. 
We hypothesized that the relationship between the activation of 
gene programs in malignant cells and the proportion of nonmalig-
nant cell types in the microenvironment displays substantial intra-
tumoral spatial heterogeneity. We deconvolved 122 bulk RNA-seq 
samples microdissected into five structures by IVY GAP30: leading 
edge (LE), infiltrating tumor (IT), cellular tumor (CT), microvascu-
lar proliferation (MVP) and pseudo-palisading cells around necro-
sis (PAN) (Fig. 5a and Supplementary Table 3b). Notably, the TME 
of these distinct structures is known to differ in several respects, 
including blood supply, oxygen level and immune stress, all of 
which probably affect both cell type composition and malignant cell 
state. Deconvolution was conducted using a reference consisting of 
the microwell GBM scRNA-seq dataset21. Because two structures 
(LE and IT) contain large amounts of normal brain tissue, we added 
primary neurons from a separate source36. The addition of neurons 
into the reference was useful in evaluation of the relative quantity 
of normal brain tissue in each sample. We caution that batch effects 
between cell types in the reference dataset will tend to systematically 
overestimate neurons, although the relative rank across samples 
will be preserved allowing a qualitative comparison among the five 
structures (Supplementary Note 11).

We examined which cell types and gene programs (identified 
using TCGA, above) were enriched in the anatomical structures 
investigated by IVY GAP (Fig. 5b,c). As expected based on the 
nature of corresponding anatomical structures, MVP regions were 
highly enriched for endothelial cells and pericytes while LE and IT 
were enriched for oligodendrocytes and neurons. Notably, PAN 
regions were enriched for macrophages and T cells. Extending our 
analysis to gene programs, we found that LE and IT were enriched 
for programs 1 and 2, CT for program 3, PAN regions for program 4 
and MVP for programs 4 and 5.

To help interpret enrichments in the programs obtained by 
BayesPrism, we next examined gene set enrichment scores in 
malignant cells (inferred using BayesPrism) within each IVY GAP 
structure for a subset of biological processes that showed evidence 
of substantial variation in TCGA-GBM (above; Fig. 5d). We found 
that CT and MVP were highly proliferative, consistent with their 
enrichment for programs 3 and 5, which were enriched for cell 
proliferation terms. MVP and PAN were both enriched for tissue 
remodeling and immune interactions (program 4), while MVP was 
more angiogenic and PAN more inflammatory. Both IT and LE 
were highly respiratory, LE being the most respiratory and the least 
proliferative, explaining their enrichment for program 1. IT was also 
enriched for a subset of proinflammatory immune processes, most 
notably interferon response. Taken together, our analysis shows how 
BayesPrism was able to link pathways and gene programs with spa-
tial anatomical structures using the IVY GAP dataset.

Discussion
A large body of literature now provides examples of how nonmalig-
nant cells influence malignant cell function, confirming more than a 
century of speculation about the critical role of the TME1. However, 
our knowledge remains largely anecdotal and is based mostly on 

work in animal models rather than human subjects. scRNA-seq has 
recently made it possible to measure not only cell types present in 
the tumor but also their gene expression states, in a systematic man-
ner37. Although scRNA-seq provides the correct data modality, cur-
rent studies do not have a sufficiently large sample size to address 
these questions. In parallel, thousands of bulk RNA-seq datasets are 
now available that provide weak information about the entire cel-
lular milieu in a variety of malignancies. Here we leveraged both 
genomic resources by developing a rigorous statistical model to 
integrate single-cell and bulk RNA-seq data, providing a new lens 
into this major challenge in oncology.

Our integrative analysis also provides insights into disease pro-
gression. Taking GBM as an example, our joint analysis of TCGA 
cohorts and spatially dissected data prompted us to propose a 
model that links malignant cell states and nonmalignant cell infil-
tration to tumor progression (Fig. 5e). As malignant cells grow rap-
idly they deplete nutrients and may also encounter immune stress, 
leading to necrosis (Fig. 5e, top right). Consistent with this phase, 
we observed an enrichment of immune cells and mesenchymal 
program 4, which showed stronger mesenchymal activation and 
lower respiratory activity in PAN regions (Fig. 5b,c). Malignant 
cells may activate these tissue-remodeling pathways to promote 
M2 macrophage polarization and angiogenesis. As microvascular 
structure develops, malignant cells proliferate rapidly (Fig. 5e, bot-
tom right), supported by the high cell cycle score in malignant cells 
near MVP (Fig. 5d). Proliferating cells invade adjacent normal brain 
tissues, where oxygen supply is ample. As they do so, their major 
task changes from rapid proliferation to respiration to generate the 
stores of ATP necessary to synthesize essential molecular machin-
ery (Fig. 5e, bottom left). This finding is based on enrichment of 
respiration pathways in the LE and IT structures (Fig. 5d). Finally, 
having accumulated sufficient cellular machinery and as the local 
oxygen level decreases, malignant cells then resume rapid prolif-
eration. Our model also suggests that the classical-like program 3 
may reflect an earlier stage of cancer growth where blood supply is 
ample. This proposal explains why classical tumors recur as mesen-
chymal tumors in longitudinal studies more frequently than in the 
other direction35. Taken together, this model illustrates how GBM 
cells optimize over multiple tasks to reshape and respond to changes 
in the local microenvironment.

BayesPrism fills several critical needs in the genomics toolbox. 
BayesPrism more accurately deconvolves bulk RNA-seq into the 
proportion of cell types than previous approaches, thanks in part 
to the Bayesian statistical model that models differences between 
bulk and scRNA-seq data. Most importantly, BayesPrism jointly 
models cell types and their sample-specific average expression, 
which is crucial for the analyses reported here. It is important to 
note that the gene expression and cell type fractions estimated by 
BayesPrism represent a mathematically optimal solution given the 
information from the scRNA-seq reference. In practice the accuracy 
of BayesPrism can be affected by missing cell states in the reference 
matrix, which is a general issue for all deconvolution algorithms. The 
expression of missing cell states in a heterogeneous TME can some-
times deviate from the prior distribution modeled by BayesPrism, 
resulting in partial assignment of transcripts from missing cell states 
to cell states belonging to other cell types. Caution needs to be taken 
when performing correlation analysis between the posterior esti-
mates of gene expression and cell type fraction, potentially using 
similar filters to those introduced here. Nevertheless, we speculate 
that deconvolution of tumor samples will become more accurate 
as we collect single-cell data from more patients, each presumably 
covering nuances in the transcriptional state. Thus, we envision that 
BayesPrism will provide a new type of lens for integration of the 
ever-growing amount of scRNA-seq data with existing large cohorts 
of bulk RNA-seq data, allowing insights into tumor–microenviron-
ment interactions.
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Fig. 5 | BayesPrism reveals spatial heterogeneity in GBMs. a, Cartoon depicting the spatial relationship between anatomic structures present in IVY 
GAP samples. b,c, Violin plots showing the distribution of cell type fractions (b) and weights of each gene program learned from TCGA-GBM (c) in the 
inferred expression of malignant cells of each anatomic structure over 122 IVY GAP samples. Median fractions are denoted by white dots and upper/
lower quartiles by bars. Asterisks denote significant differences between CT and other anatomic structures, based on a linear mixed model. P values were 
computed by two-sided t-test using a linear mixed model without correction for multiple testing. Values of test statistics are given in Source data. d, 
Heatmap showing gene set enrichment score of each anatomic structure for biological processes selected from the correlation analysis shown in Fig. 3d 
and Supplementary Fig. 4a. e, Model depicting interaction between gene programs in malignant and nonmalignant cells in the GBM microenvironment.
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Methods
Overview of BayesPrism. A complete mathematical description and justification 
of BayesPrism is included in Supplementary Note 1. Here we provide a summary 
of BayesPrism and its use in this manuscript. The R package of BayesPrism can be 
downloaded at https://github.com/Danko-Lab/BayesPrism.git; the BayesPrism web 
portal can be accessed at https://dreg.dnasequence.org.

BayesPrism is comprised of two functional modules: (1) a module that infers 
the cell type fraction and gene expression of each cell type in each bulk RNA-seq 
sample (Fig. 1a), and (2) a module designed to identify commonly occurring 
malignant gene programs after removal of gene expression in nonmalignant cells 
infiltrating the tumor (Fig. 4a). The second module depends on the output of the 
deconvolution module.

Definition of cell types and cell states. BayesPrism models gene expression of each 
cell type using a multinomial distribution. However, depending on the granularity 
of the cell type labels provided by the user, gene expression can be heterogeneous 
within each cell type and hence show overdispersion from the multinomial 
distribution. This can be particularly the case for malignant and nonmalignant 
cells, such as M1/M2 macrophages, in the TME, or for differences in cell cycle or 
copy number variation in malignant cells. To better accommodate heterogeneity in 
cell states we use the concept of cell states (or cell subtypes), which can be obtained 
by further subclustering within each heterogeneous cell type. BayesPrism computes 
the posterior sum over the cell states to obtain the statistics for each cell type.

The following notation will be used upon describing the raw input:
Shared between bulk and scRNA-seq:

•	 G, number of genes
Bulk:

•	 N, number of bulk samples
•	 Xng, raw count of the gth gene in the nth bulk sample
•	 Rn, total reads of the nth bulk sample over G genes

scRNA-seq:
•	 S, number of cell states
•	 T, number of cell types
•	 C, number of cells
•	 Sc, the cell state of the cth cell
•	 Tc, the cell type of the cth cell
•	 Wcg, raw count (UMI) of the gth gene in the cth cell
•	 Rc, total reads (UMIs) of the cth cell across G genes

Constructing the scRNA-seq reference φ. We assume that the raw count of each cell 
conditional on the cell state follows the multinomial distribution, where φ ∈ R

S×G 
encodes the event probabilities of the gth gene in the sth cell state.

Wc·|Sc ∼ multinomial(φsc · Rc),

where

G∑

g=1
φscg = 1, for ∀Sc ∈ {1, ..., S} (1)

Hence, the maximum likelihood estimate of φsg  is obtained by summing read 
count for cells from the sth cell state and then renormalizing such that the sum 
across genes is 1:

φ̂sg =

∑
c∈{c:Sc=s} Wcg

∑
g∈{1,...,G}

∑
c∈{c:Sc=s} Wcg

(2)

To avoid zero entries in φ̂sg , we add a pseudo-count to all genes such that after 
renormalization to 1, the zero entries are equal to the user-defined pseudo.min (set 
to 10–8 by default). This is done by the norm.to.one function.

Inferring cell state fraction and gene expression. The following notation will be used 
to describe this step:
•	 μns, estimates of fraction of reads from the sth cell state and the nth bulk sample
•	 Rns, total reads assigned to the sth cell state in the nth bulk sample
•	 Unsg, number of reads assigned to the gth gene of sth cell state in the nth bulk 

sample
•	 α, the hyperparameter of Dirichlet distribution, set to a small value (10–8) to 

represent a symmetric noninformative and weak prior by default.
We assume that reads from the nth bulk sample are generated from the 

following process:

μn· ∼ Dirichlet(α) (3)

Rn· ∼ multinomial(μn., Rn) (4)

Uns· ∼ multinomial(φs·, Rns) (5)

Xng =

S∑

s=1
Unsg (6)

Using Gibbs sampling, we sample from the joint posterior distribution 
(Supplementary Note 1 shows the full derivation).

P(Un, μn|Xn,φ;α), (7)

and simultaneously their marginals:

P(Un|Xn,φ;α) (8)

and

P(μn|Xn,φ;α). (9)

We then compute the posterior means for Un and μn, which we denote as Un  
and μn , respectively.

Inferring cell type fraction and gene expression. Because cell state is often used to 
approximate gene expression on a continuous manifold, it may not necessarily 
correspond to any actual state in the bulk. Therefore, we compute the posterior 
sum of the fraction and expression of each cell type over multiple cell states within 
a given cell type. The posterior sum is also of lower variance and more biologically 
interpretable than that of individual cell states. The following notation will be used 
to describe this step:
•	 θ0nt, estimates of fraction of reads from the tth cell type and the nth bulk 

sample
•	 Zntg, number of reads assigned to the gth gene of tth cell type in the nth bulk 

sample.
More formally,

θ0nt =
∑

s∈{s:h(s)=t}

μns (10)

Zntg =
∑

s∈{s:h(s)=t}

Unsg, (11)

where h is a surjective function that maps the cell state index to the cell type 
index—that is, h : {1, ..., S} → {1, ..., T}.

Updating cell type fraction estimates. Under situations where (1) nonmalignant 
cell types are of low heterogeneity across bulk samples and (2) they are presented 
at substantial fractions—for example, >1%—in at least one bulk sample, it is 
beneficial to leverage the information shared across bulks to improve the estimates 
of cell type fractions. This is done by first constructing an updated reference matrix 
ψ to replace φ, and then re-estimating the posteriors of cell type fraction using ψ. 
The rationales for modeling ψ are described below.

For malignant cells, BayesPrism infers a maximum likelihood estimate to infer 
a sample-specific ψ, without pooling information across bulk samples. This feature 
allows users to estimate gene expression in the cell type that exhibits substantial 
heterogeneity. The following notation will be used to describe this step:
•	 ψmalng, the updated reference of the gth gene of the malignant cell from the nth 

bulk
•	 ψenvtg, the updated reference of the gth gene of the tth nonmalignant cell
•	 σ, a hyperparameter describing a weak prior on ψenv, set to 2 by default to 

represent a weak symmetric prior
•	 θfnt, the updated cell type fractions of the tth cell type in the nth bulk sample
•	 Rnt =

∑G
g=1 Zntg , total reads assigned to the tth cell type in the nth bulk 

sample
•	 φ′

tg =

∑
c∈{c:Tc=t} Wcg

∑
g∈{1,...,G}

∑
c∈{c:Tc=t} Wcg

, the reference matrix defined for each cell 

type t, similar to equation (2)
To construct ψmal, we assume that

Znt· ∼ multinomial(ψmaln· , Rnt),where t = malignant, (12)

and hence the maximum likelihood estimate of ψmal is:

ψ̂malng =
Zntg∑G
g=1 Zntg

,where t = malignant. (13)

Finally, we adjust ψ̂mal by adding a pseudo-count similar to equation (2).
To estimate ψ for nonmalignant cells in the TME, denoted by ψenv, BayesPrism 

pools information across all bulk samples to estimate cell-type-specific expression. 
We assume that, for nonmalignant cell types, gene expression is reasonably similar 
across bulk samples15,20,21 and in these cases it is appropriate to share information 
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between samples by estimating ψ using all bulk data. Considering that some 
nonmalignant cells may be present in extremely low amounts in all bulk samples, 
we put a prior on ψenv and derive a maximum a posterior (MAP) estimator, such 
that the estimates of ψenv will be close to φenv when there is little information from 
the bulk. More specifically, we model a generative process as follows:

log(γtg) ∼ normal(0, σ) (14)

ψenvtg =
φ′
tg · γtg∑G

g=1 φ′
tg · γtg

(15)

Znt· ∼ multinomial(ψenvt· , Rnt) , for t ∈ {malignant}c (16)

Because there is no closed form solution to ψenv, we use numerical 
optimization to obtain the MAP of ψ̂envtg . For the nth bulk sample, we construct 
a sample-specific reference φntg by concatenating ψ̂envtg  and the nth row of ψ̂malng. 
More formally,

ψntg = ψ̂malng , for t = malignant, (17)

and

ψntg = ψ̂envtg , for t ∈ {malignant}c. (18)

We then use the same generative process as described in equations (3)–(6) by 
replacing φ′ with the sample-specific reference ψ, and derive the posterior similar 
to equation (9):

P(θfn. |Xn, ψn..;α). (19)

The embedding learning module. The second module of BayesPrism was designed 
to identify gene expression patterns that arise commonly among bulk RNA-seq 
samples after removal of nonmalignant cells infiltrating the tumor. BayesPrism 
learns the latent embeddings, called malignant bases (denoted by η), chosen such 
that their linear combination best approximates gene expression levels in malignant 
cells. Essentially this module tries to solve the non-negative matrix factorization 
(NMF) problem:





X1,1 · · · X1,G

...
. . .

...

XN,1 · · · XN,G




≈





ω1,1 ω1,K θ1,1 θN,T−1

. . .
. . .

ωN,1 ωN,K θN,1 θN,T−1




·





η1,1 η1,G

. . .

ηK,1 ηK,G
ψenv1,1 ψenv1,G

. . .

ψenvT−1,1
ψenvT−1,G





,

(20)

written in short as X≈ υ · ζ, with υ ∈ R
N×M and ζ ∈ R

M×G, where M = K + T − 1, 
with K being the number of malignant bases and T the number of cell types. In 
equation (20), θ and ψenv blocks are the nonmalignant components from θ and ψ, 
respectively, inferred by the deconvolution module in equations (19) and (18), and 
are fixed during inference. ω and η are latent variables inferred. η has a weak prior 
over η0:

log(λkg) ~normal (0, σ), where σ is set to 2 by default, similar to equation (14), 
and

ηkg =
η0kg · λkg

∑G
g=1 η0kg · λkg

,

η0 represents a prior guess of gene programs of malignant cells. It can be 
supplied by users either based on domain knowledge or by running clustering or 
NMF on the expression inferred for malignant cells in equation (13). In addition, ω 
has a weak scaled noninformative Dirichlet prior:

κn· ~ Dirichlet (α), where α is set to a small value (10–8), similar to equation (3).

ωn· = τn · κn·,where τn = 1 −
∑

t∈{malignant}c

θnt

The observed read count of bulk samples, X, is then generated as follows:
R′
n~ multinomial (υn·, Rn)

Vnm·
 ~ multinomial (ζm·

, R′
nm)

Xng = 
∑M

m=1 Vnmg

η is inferred using the expectation-maximization (EM) algorithm to optimize 
the log posterior to obtain the MAP of η while marginalizing V and ω:

η̂MAP = argmax
η

P(η|X, η0, θ, ψenv;α, σ).

ω is then taken as the posterior mean at the η̂MAP:

ω̂ = E[ω|X, θ, ψenv, η̂MAP;α].

Deconvolution of bulk RNA-seq using BayesPrism. Generation of reference 
expression profiles from scRNA-seq data. We used reference expression profiles 
generated from scRNA-seq data to deconvolve the bulk RNA-seq data of the 
corresponding tumor type. We summed raw read counts whenever count data 
were available20,21. For instances where only TPM normalized data were available 
the scRNA-seq reference for HNSCC (scHNSCC), we summed TPM normalized 
reads. To generate reference profiles of the cell states of nonmalignant cells, we 
first reclustered cell types showing substantial intertumoral heterogeneity based 
on the original scRNA-seq studies, including macrophages in GBM, fibroblasts 
and T cells in HNSCC and macrophages, B cells and CD4 and CD8 T cells in 
SKCM. To recluster, we normalized the raw reads of each cell using size factors 
estimated by scran38, then transformed the data using log2(Y + 0.1) for refGBM8 
and log2(Y + 1) for the scRNA-seq reference for SKCM (scSKCM) and scHNSCC, 
with Y being the count normalized by scran. We then removed ribosomal 
protein-coding genes and genes from chrM, chrX and chrY. Next, we performed 
dimensionality reduction using the randomized singular-value decomposition 
function provided by the rsvd package39 at k = 30, and clustered the data on the 
reduced dimension using PhenoGraph with default parameters40. To account 
for heterogeneity in malignant cells, we used subclusters of malignant cells 
generated by PhenoGraph40 in each individual patient, whenever malignant cells 
were clustered by the author (refGBM8, 60 subclusters in total for eight patients). 
For datasets where malignant cells were not clustered by the original paper 
(scHNSCC and scSKCM), we defined malignant cell states using patient ID. Last, 
we aggregated read counts in each cell state to generate the reference profile φ. We 
found that the expression of many noncoding genes in TCGA was close to zero 
across all patients, and hence we performed the inference on protein-coding genes 
when deconvolving TCGA data to speed up downstream analysis. Deconvolution 
over all genes generated almost identical results (data not shown). In addition, 
genes on the sex chromosomes were also excluded in the reference to avoid 
sex-specific transcription states, and ribosomal protein-coding and mitochondrial 
genes were removed to reduce batch effects. Outlier genes in the bulk, defined as 
those with expression >1% of total reads in >10% of bulk samples, were excluded 
from deconvolution analysis.

Choice of hyperparameters and retrieval of output from BayesPrism. We used the 
default hyperparameters of BayesPrism to perform deconvolution: σ = 2, α =10–8. 
We used the default setting for Gibbs sampling as follows: chain.length = 1,000, 
burn.in = 500 and thinning = 2 (that is, we ran a Markov chain Monte Carlo of 
1,000 samples, discarded the first 500 and used every other sample to estimate 
parameters of interest). The maximum number of iterations of the conjugate 
gradient method was set to 105. All cell type fractions used were the initial cell type 
fraction estimate (θ0). The updated cell type fraction estimates, θf, highly correlates 
with θ0 (R > 0.98), and results from all downstream analyses were consistent 
whether using θ0 or θf.

Details of benchmarks are listed in Supplementary Note 3.

Embedding learning analysis. To initialize the malignant gene programs (bases), 
we used the NMF R package41 to learn a linear combination that best approximates 
the normalized expression of malignant cells inferred by the deconvolution module 
of BayesPrism (res$first.gibbs.res$Zkg.tum.norm). We optimized the number of 
malignant bases from two to 12, and chose the number of gene programs (K) that 
yielded the best cophenetic score before a significant drop began. This strategy 
selected K = 5 for GBM, K = 4 for HNSCC and K = 7 for SKCM. We then fixed 
K, randomly initialized NMF 200 times and chose bases that yielded minimal 
residuals. The optimal bases were then used as the prior for the embedding 
learning module of BayesPrism, thereby incorporating information from the 
scRNA-seq reference into the embeddings learned by BayesPrism. Although 
BayesPrism does not necessarily require the use of input bases learned using 
external algorithms such as NMF, and can initialize bases using clustering methods 
when no user-defined input is used, we found that initialization of bases using 
NMF significantly speeded up the convergence of EM and also facilitated the 
selection of K when no prior information was provided.

Gene set enrichment analysis. To visualize the magnitude of enrichment of 
selected gene sets in the inferred embeddings in Fig. 4b,e–g, and the mean of 
inferred expression of malignant cells in each anatomical structure in Fig. 5d, we 
calculated gene set variation score using the GSVA R package42. To compute the 
statistical significance of gene set enrichment for correlation coefficients in Fig. 3d, 
and Wald statistics of differential gene expression in Supplementary Table 4, we 
performed gene set enrichment analysis using the fgsea R package31.
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Input gene sets are listed as follows. In Fig. 4b,e–g we used the marker genes 
of each subtype; in Figs. 3d and 5d and Supplementary Table 4 we used Hallmark 
v.7.4 (ref. 43) and the GO biological process v.7.4 (ref. 44) gene sets from The 
Molecular Signatures Database v.7.4 (ref. 45).

Details of fgsea analysis used to generate Supplementary Table 4 are as follows. 
To prepare for the input of differential expression analysis, we first ranked samples 
by normalized weights of gene programs in each sample (weights were normalized 
to sum to 1). We selected the top N/K samples, with N being the number of 
bulk samples and K the number of pathways. Core tumor samples representing 
each gene program were selected by focusing on samples uniquely selected by a 
single program. We performed differential expression analysis by comparing the 
inferred expression profile of malignant cells between the core samples of each 
gene program of interest with remaining core samples, using DESeq2 (ref. 46). The 
results of differentially expressed genes are shown in Supplementary Table 5. Wald 
test statistics were used as the input for fgsea.

Analysis of M1/M2 macrophage score across three tumor types. We first 
selected tumor samples with inferred macrophage fractions (by BayesPrism) >5%: 
127 GBM, 26 HNSCC and 225 SKCM samples were selected. We then applied 
DESeq2 variance-stabilizing transformation46 over the inferred macrophage gene 
expression profiles. We computed Pearson correlation coefficient between the 
inferred macrophage expression and the log2 transformed expression profile of M1 
and M2 macrophages from LM22 over a set of M1/M2 marker genes. Marker genes 
were defined as those with the highest expression in M1/M2 macrophages across 
all cell types included by the LM22 reference matrix27.

For survival analysis, we focused our analysis on SKCM (Fig. 2e) and GBM 
(Supplementary Fig. 3d) where >50 samples had sufficient macrophage content to 
estimate expression. Patients were stratified into two groups: the group with high 
M1 and low M2 scores versus that with low M1 and high M2 scores, where high 
and low were defined by comparison to the median of M1/M2 scores.

Analysis of anatomically resolved transcriptomics data from IVY GAP. 
Anonymized BAM files for each sample were downloaded from glioblastoma.
alleninstitute.org, and raw counts for each gene were obtained using 
featureCounts47 using the GENCODE annotation v24lift37.

To test the statistical significance in the mean of cell type fractions (Fig. 5b) 
and gene program weights (Fig. 5c; obtained by applying BayesPrism to deconvolve 
the inferred expression of malignant cells using the pathway profile inferred from 
TCGA as the reference) across multiple anatomic structures, while taking account 
of the multiple biological replicates of each patient, we fit a linear mixed model 
using the lme function from the R package nlme48 with a random intercept. We 
modeled anatomic structures as the fixed effects and patient IDs as random effects. 
The ground level was set to CT. We maximized the log-likelihood function by 
setting the method as ‘ML’, and used ‘optim’ as the optimizer.

To validate candidate genes from the correlation analysis in Fig. 3a, we selected 
genes profiled in at least ten samples from the cancer stem cell RNA-seq study of 
IVY GAP (Supplementary Table 3a), resulting in the retention of five genes. Two 
genes out of five, PI3 and POSTN, also passed the filters used to define malignant 
intrinsic correlative genes and are characterized in Fig. 3b,c. The P value of the 
regress-out filter for gene POSTN is 0.02. Although it did not pass the alpha value 
we used (0.01), we still included it for visualization and validation purposes.

Survival analysis. To avoid known clinical or genetic factors that have a strong 
influence on patient survival from confounding our survival analysis, we focused on 
the population with the greatest sample size after conditional on known confounders. 
These included primary IDH-1 wild-type tumors for GBM, primary HNSCC and 
metastatic SKCM. We also attempted to control for human papillomavirus (HPV) 
state in HNSCC. Although only 72 of 500 samples were annotated for HPV, we 
nevertheless reproduced consistent trends in a small cohort of 56 patients that 
were HPV negative (Supplementary Fig. 3b). Two methods were used to test the 
association between survival and the feature of interest: (1) patients were stratified 
into high and low groups based on the median value of the feature of interest—for 
example, normalized weights of malignant gene programs or nonmalignant cell 
fractions—and then HR was computed by fitting a Cox proportional-hazards 
regression model for a categorical variable denoting patient groups. (2) Features of 
interest were modeled as a continuous variable by the Cox proportional-hazards 
model, in which we derived statistical significance using the Wald test and examined 
proportional-hazards assumption using the chi-squared test for scaled Schoenfeld 
residuals—that is, whether the Schoenfeld residuals were independent of time.

Statistics and reproducibility. No statistical method was used to predetermine 
sample size. No data were excluded from the analyses. The experiments were not 
randomized. The investigators were not blinded to allocation during experiments 
and outcome assessment. No new experiments were conducted for this study. 
BayesPrism yielded near-identical results among different seeds used by the 
random number generator.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All datasets used in this study are publicly available. Accession codes used here 
include GSE103224, GSE131928, GSE115978, GSE103322, GSE146026, GSE132044 
and GSE67835. Additional data were downloaded from TCGA (https://portal.
gdc.cancer.gov), IVY GAP (https://glioblastoma.alleninstitute.org) and the 
CIBERSORT website (https://cibersortx.stanford.edu/download.php). Source 
data are provided with this paper. Data sources for each figure are shown in 
Supplementary Table 1b. All intermediate data supporting the findings of this study 
are available from the corresponding author on reasonable request.

Code availability
BayesPrism and all script files used in the analysis in this manuscript can be 
downloaded from GitHub at https://github.com/Danko-Lab/BayesPrism.git.
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Extended Data Fig. 1 | A detailed algorithmic flow of the deconvolution module of BayesPrism. Gray grids show the dimension of the variables used or 
inferred in each step.
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Extended Data Fig. 2 | Comparison between BayesPrism and other deconvolution methods using simulated noise. Benchmark using simulated noise. 
Line plots show the cell type-level Pearson’s correlation coefficient (left) and MSE (right) as a function of the noise level.
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Extended Data Fig. 3 | Comparison between BayesPrism and other deconvolution methods on pseudo-bulks across different sequencing platforms 
and biological samples. Boxplots show the cell type-level Pearson’s correlation coefficient and MSE for the deconvolutions of pseudo-bulk human PBMC 
scRNA-seq (a and b, n=200 pseudo-bulks simulated using 253 single cells collected from one healthy adult) and mouse cortex single nucleus-seq (c and 
d, n=200 pseudo-bulks simulated using 295 single cells collected from one mouse). Boxes mark the 25th percentile (bottom of box), median (central bar), 
and 75th percentile (top of box). Whiskers represent extreme values within 1.5 fold of the inter quartile range. One-sided p values were shown for cell type 
fractions inferred by BayesPrism (updated θ using the marker free mode) and those by the second-best methods ranked by the median value. T test was 
used for MSE and z test was performed on Fisher’s Z-transformed cell type-level correlation coefficients (see Methods).
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Extended Data Fig. 4 | Performance of BayesPrism in inferring cell type composition and gene expression in malignant cells on the leave-one-out 
pseudo-bulk data of HNSCC, SKCM and OV. (a-b) Scatter plots show θ0 in (a) HNSCC and (b) SKCM versus the ground truth in pseudo-bulk. (c-d) 
Scatter plots show the CIBERSORTx inferred cell type fraction in (c) HNSCC and (d) SKCM versus the ground truth in pseudo-bulk. Tables below show 
the one-sided p values for cell type fractions inferred by BayesPrism and CIBERSORTx. T test was used for MSE and z test was performed on Fisher’s 
Z-transformed cell type-level correlation coefficients (see Methods). (e-f) UMAP shows the expression profile of individual malignant cells in scRNA-seq 
of (e) HNSCC and (f) SKCM colored by patient ID. Patients with >50 malignant cells and cells with reads detected for >3000 genes are shown. The 
inferred expression profile, shown as △, and the averaged expression profile from scRNA-seq for each patient, shown as ○, are projected onto the UMAP 
manifold. (g-h) Scatter plot shows Pearson’s correlation coefficient between inferred expression and that of the averaged expression from malignant 
cells in scRNA-seq of (g) HNSCC and (h) SKCM as a function of the fraction of malignant cells in each simulated data. The correlation coefficient was 
computed on DESeq2 variance-stabilized transformed values. Red marks the correlation inferred by BayesPrism, while blue marks that of total expression 
of the simulated data. (i) Scatter plot shows the AXL and MITF program scores of malignant cells from SKCM in the leave-one-out test, calculated by the 
mean of Z scores over the corresponding marker genes. ○ marks the average expression of malignant cells in each patient from the scRNA-seq data, while 
△ marks the inferred expression profile of malignant cells in each patient. (j) Scatter plots show θ0 in OV versus the ground truth in pseudo-bulk. (k) 
UMAP shows the expression profile of individual malignant cells in scRNA-seq of OV colored by patient ID. The inferred expression profile, shown as △, 
and the averaged expression profile from scRNA-seq for each patient, shown as ○, are projected onto the UMAP manifold.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | BayesPrism expression estimates group malignant cells from the same patient. Heatmaps show the pairwise Pearson correlation 
matrix between gene expression computed for each pair of simulated pseudo-bulk samples with the fraction of malignant cells greater than 10% (top 
row), 20% (mid) and 50% (bottom). Simulated samples were constructed by drawing a random proportion of each non-malignant cell type and sampling 
the malignant cells from one of 27 GBM patients. Vectors used for computing the Pearson correlation are of length equal to the total number of genes used 
to perform deconvolution, denoting zero centered variance-stabilizing transformed reads. Simulated pseudo-bulk samples are grouped by hierarchical 
clustering, as shown by the dendrogram. Left column: Correlations using total expression from bulk samples without any correction; Right column: 
Correlations over the same set of samples and genes as in the left column but using deconvolved expression profiles for malignant cells in each sample.
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Extended Data Fig. 6 | Comparison between BayesPrism and the two different modes of expression inference by CIBERSORTx. Scatter plot shows 
Spearman’s correlation (left), and Pearson’s correlation (right), between gene expression estimated by BayesPrism (red), total bulk (blue), CIBERSORTx 
group mode (orange) or CIBERSORTx high resolution mode (purple) and the average expression from malignant cells in scRNA-seq as a function of the 
fraction of malignant cells in the dataset containing the 270 simulated samples. The correlation coefficient was calculated on 53 imputable genes by the 
high-resolution mode out of the top 1000 most variable genes in malignant cells. Spearman’s correlation coefficients were calculated on untransformed 
gene expression values, while Pearson’s correlation coefficients were calculated on variance-stabilizing transformed gene expression values.
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Extended Data Fig. 7 | BayesPrism improves correlations between gene expression in reference and ground truth pseudo-bulk data in non-malignant 
cells. Scatter plots show log2 gene expression in non-malignant cells from the original scRNA-seq reference φ (the left column) and the updated reference 
ψ after the information pooling step (the right column) versus the mean expression in scRNA-seq used to generate pseudo-bulk. Genes with zero 
expression counts in the scRNA-seq reference are colored in red, and those with non-zero expression counts are colored in blue.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | BayesPrism accurately recovers the heterogeneity in the expression of macrophages. (a) UMAP visualization shows the 
expression of individual macrophages in the pseudo-bulk GBM28 dataset. The expression profile inferred by BayesPrism, shown as △, and the averaged 
expression profile from scRNA-seq for each patient, shown as ○, are projected onto the UMAP manifold. (b) Scatter plot shows Pearson’s correlation of 
reads summed across macrophages in the pseudo-bulk (ground truth) and gene expression deconvolved by BayesPrism (red) or undeconvovled pseudo-
bulk (blue) as a function of the fraction of macrophages in the simulated pseudo-bulk (N=1,350). The correlation was computed using variance-stabilizing 
transformed reads. (c-f) Heatmap shows the pairwise Pearson correlation matrix between gene expression computed for each pair of simulated pseudo-
bulk samples with macrophage fractions greater than 20% (c, e) and 50% (d, f). Simulated samples were obtained by drawing a random proportion of 
each cell type from the GBM-28 dataset, while sampling macrophages from an individual macrophage sub-cluster. Simulated pseudo-bulk samples are 
grouped by hierarchical clustering, as shown by the dendrogram. (c-d) Correlations estimated using the total gene expression without any correction. 
(e-f) Correlations over the same set of samples and over the same set of genes as in c and d, but using BayesPrism deconvolved expression profiles for 
macrophages in each sample.

Nature Cancer | www.nature.com/natcancer

http://www.nature.com/natcancer


Technical Report Nature CancerTechnical Report Nature Cancer

Extended Data Fig. 9 | Comparison between tumor purity inferred by BayesPrism, CIBERSORTx, ABSOLUTE, ESTIMATE and IHC. Boxplots show the 
correlation between malignant fractions inferred by each method for TCGA-GBM, TCGA-OV, TCGA-HNSCC, and TCGA-SKCM. Three statistics were 
computed: Pearson’s correlation coefficient (left column), Spearman’s correlation coefficient (center column), and mean squared error (right column). 
Statistics were computed between each method indicated by the x axis and the mean of ABSOLUTE scores from two sources (top row), ESTIMATE (center 
row), and IHC (bottom row). Boxes mark the 25th percentile (bottom of box), median (central bar), and 75th percentile (top of box). Whiskers represent 
extreme values within 1.5 fold of the inter quartile range.
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Extended Data Fig. 10 | Comparison between the total lymphocyte fraction estimated by BayesPrism and H&E. Box plots show the distribution of θ0 (a) 
and θf (b) of total lymphocytes computed by summing across CD4+ and CD8+ T cells B cells and NK cells. θ0 (a) and θf are binned by the quantiles of 
the fraction of H&E patches classified positive for tumor infiltrating lymphocytes (TIL). Boxes mark the 25th percentile (bottom of box), median (central 
bar), and 75th percentile (top of box). Whiskers represent extreme values within 1.5-fold of the inter quartile range. P values were calculated using the 
one-sided Wilcox test. 379 independent TCGA-SKCM patients with a unique single bulk RNA-seq sample and H&E data available were analyzed. Each bin 
contains n=95, 95, 95 and 94 samples respectively.
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