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Expanding agroforestry can increase nitrate 
retention and mitigate the global impact of a 
leaky nitrogen cycle in croplands

Ahmed S. Elrys1,2,3, Yves Uwiragiye4,5, Yanhui Zhang1, 
Mohamed K. Abdel-Fattah3, Zhao-xiong Chen1, Hui-min Zhang1, Lei Meng2, 
Jing Wang6, Tong-bin Zhu7, Yi Cheng    1,8,9  , Jin-bo Zhang1, Zu-cong Cai1, 
Scott X. Chang    10 & Christoph Müller11,12

The internal soil nitrogen (N) cycle supplies N to plants and microorganisms 
but may induce N pollution in the environment. Understanding the 
variability of gross N cycling rates resulting from the global spatial 
heterogeneity of climatic and edaphic variables is essential for estimating 
the potential risk of N loss. Here we compiled 4,032 observations from 398 
published 15N pool dilution and tracing studies to analyse the interactions 
between soil internal potential N cycling and environmental effects. We 
observed that the global potential N cycle changes from a conservative 
cycle in forests to a less conservative one in grasslands and a leaky one in 
croplands. Structural equation modelling revealed that soil properties (soil 
pH, total N and carbon-to-N ratio) were more important than the climate 
factors in shaping the internal potential N cycle, but different patterns in the 
potential N cycle of terrestrial ecosystems across climatic zones were also 
determined. The high spatial variations in the global soil potential N cycle 
suggest that shifting cropland systems towards agroforestry systems can be 
a solution to improve N conservation.

Reactive nitrogen (N) supplies N to soil microorganisms and plants 
but has a negative impact on the environment by affecting the qual-
ity of air and water, which in turn affects human health1. We thus need 
to maximize the benefits of reactive N while minimizing its negative 
impact on the environment1. The fate of soil N is affected by the rate 
of N fluxes and by the chemical form of N2, among a large number of 

other factors. Soil gross N cycling rates provide an understanding of 
the internal N cycle. A process-based understanding of global gross  
N transformations remains paramount to explaining how the internal 
soil N cycle contributes to sustained N losses from terrestrial ecosys-
tems. Given the importance of soil gross N cycling rates for estimat-
ing the potential risk of N loss, it is critical to understand the 
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Results and discussion
In our dataset, most incubation periods for gross N transformation 
rates ranged from 24 to 48 h, because gross N rate estimates based on 
15N isotopic pool dilution after a 48 h incubation can lead to inconsistent 
estimates8,10. Although many studies suggested an incubation period 
of 24 to 48 h to minimize the effect of remineralization on computed 
GNM11, other studies suggested that GNM is overestimated during 
short incubation periods12. Estimates of soil gross N cycling rates in our 
analysis should therefore be interpreted with caution. Moreover, most 
of our data were based on laboratory studies, which do not necessarily 
reflect the in situ conditions of soil N cycling8,13–15. Hence, we recognize 
that a number of the soil N cycling rates used in our study are possibly 
more in line with potential rates, a circumstance that also applies to all 
other studies of this kind. However, to avoid further inconsistencies, 
we do not use the term ‘potential’ here either, but we point out that the 
data should be interpreted with the appropriate caution.

Global patterns of internal N cycling
The global averages (±standard errors) of GNM, GAN, gross hetero-
trophic nitrification (GHN, the microbial oxidation of organic N to 
NO3

−), INO3, INH4 and dissimilatory nitrate reduction to ammonium 
(DNRA) were 8.63 ± 0.55, 3.04 ± 0.33, 1.77 ± 0.44, 1.93 ± 0.31, 8.17 ± 0.94 
and 0.44 ± 0.09 mg N kg–1 d–1, respectively (Fig. 1a). Soil GN was domi-
nated by GAN (63%; Fig. 1a). GHN was also an important N transforma-
tion process, representing 37% and 17% of the total production of 
NO3

− and of mineral N, respectively (Fig. 1a). However, recent studies 
have shown that GHN is stimulated in the presence of plants16. Hence, 
since most of the studies included in our analysis were laboratory stud-
ies, it can be expected that the fraction of NO3

− produced via GHN would 
be higher than what was demonstrated by our study. Soil INH4 dominated 
(81%) gross N immobilization rate (GI) and consumed 90% of the total 
NH4

+ production, manifesting high NH4
+ retention globally (Fig. 1a). 

This is consistent with previous studies, indicating a preferential micro-
bial uptake of NH4

+ (ref. 17). Soil microorganisms prefer NH4
+ because 

of the additional energy requirement for INO3 and NO3
− reduction and 

also because NH4
+ can suppress INO3 (ref. 18). However, most of our 

results are based on laboratory studies, so this preference may not be 
absolute but influenced by other factors. Under high plant NH4

+ 
demand, for example, plants outcompeted microbial NH4

+ acquisition, 
resulting in a switch towards INO3 (ref. 16). We also cannot ignore that 
NO3

− moves more easily than NH4
+ in soil solution by diffusion and mass 

flow to the root surface. A recent study found that plants take up less 
labelled NH4

+ than NO3
−, while soils retain more NH4

+ than NO3
−  

(ref. 19). Furthermore, previous studies suggested that sieving stimu-
lates soil INH4 but inhibits INO3 as a result of evenly distributing NH4

+, 
resulting in an underestimation or overestimation of the gross N trans-
formation rates13. As laboratory studies are probably limited in  
capturing the full soil gross N cycling rate dynamics, our global esti-
mates of soil gross N cycling rates should be interpreted with appropri-
ate caution.

The fact that soil NO3
− is more likely to be lost to the environment 

indicates the need to maximize the global NO3
− consumption processes 

( INO3 and DNRA). Although previous studies have demonstrated that 
the contribution of INO3 to GI was negligible20, we found that INO3 rep-
resents 19% of global GI and 40% of total NO3

– production (Fig. 1a). INO3 
in the soil temporarily converts NO3

−-N into microbial biomass, where 
it can later be converted into stable organic N or remineralized, decreas-
ing the risk of N loss from the soil21. We also found that DNRA accounts 
for 18.5% of the global NO3

− consumption (Fig. 1a). Although we noticed 
that the processes of INO3 and DNRA occur, they are still low and con-
sume less than 50% of the global NO3

− production, demonstrating a 
lower global NO3

− retention. However, we cannot disregard recent 
studies indicating the critical role of plant root exudates in stimulating 
DNRA in soil22, suggesting that gross N cycling rates based on laboratory 
studies in our analysis may be different in the presence of plants. As a 

variability of soil gross N cycling rates resulting from the global spa-
tial heterogeneity of climatic and edaphic variables. However, our 
understanding of the global spatial variations of soil gross N trans-
formation rates is still insufficient. Conceptual frameworks and 
empirical studies have been suggested during the past few decades 
to characterize the soil N cycle. For example, the conceptual model 
of Davidson et al.3 suggests that soil where nitrate (NO3

−) dominates 
over ammonium (NH4

+) has excess N and a ‘leaky’ N cycle (that is, high 
NO3

− losses through denitrification or leaching), whereas soil where 
NH4

+ dominates over NO3
− is characterized by a ‘conservative’ N cycle. 

Experimentally, Corre et al.4 found a conservative N cycle in boreal 
forests, where soil immobilization rates of NO3

− ( INO3, the conversion 
of NO3

− into organic N) and NH4
+ ( INH4, the conversion of NH4

+ into 
organic N) were comparable to rates of gross nitrification (GN, the 
microbial oxidation of organic N or NH4

+ to NO3
−) and gross N miner-

alization (GNM, the conversion of organic N into inorganic N), respec-
tively. However, in tropical forest soils, a leaky N cycle has been 
observed where GNM and GN are greater than INH4 and INO3, respec-
tively5. In temperate grasslands, a leaky N cycle was observed in China, 
whereas a conservative N cycle was observed in other regions6. Crop-
lands in the different regions are usually also characterized by a leaky 
N cycle2,7. It is unlikely that a general pattern will emerge from these 
conceptual frameworks and individual experiments that can be 
applied to a broad range of ecosystems. However, the findings of the 
individual experiments can be pooled to show a general tendency of 
ecosystem N cycling patterns. So far, global gross N transformation 
rates have not been assessed to explain the pattern of soil internal  
N cycling and its contribution to potential N losses in different eco-
system types. Furthermore, previous global-scale studies reported 
that soil gross N cycling rates are mainly driven by a combination of 
soil attributes and climate8,9, but these studies neglected the connec-
tion between gross N cycling rates. The last data synthesis on these 
processes dates back almost 20 years8 and did not draw firm conclu-
sions about the global pattern of the soil internal N cycle due to the 
lack of data. There is an urgent need for a global synthesis to clarify 
how ecosystem-wide, land use, edaphic and climatic factors influence 
the internal soil N cycle, taking into account the relationship between 
gross N transformation rates.

To fill these knowledge gaps, we compiled 4,032 observations 
from 398 published 15N pool dilution and tracing studies (Supplemen-
tary References and Supplementary Data 1) incorporating gross N 
cycling rate data across various ecosystems (Supplementary Fig. 1a,b) 
to characterize the spatial patterns of global soil N cycling. We also 
analysed the impacts of soil and climate attributes and their interac-
tions on controlling global soil gross N cycling rates, as well as the 
relationship between gross N cycling rates. Our synthesis aimed to 
answer three questions. First, what are the global patterns and spatial 
variations of soil gross N cycling rates, and do they differ across ter-
restrial ecosystems and climatic zones? Second, how do soil and climate 
variables interact with gross N cycling rates globally, and what is the 
connection between gross N cycling rates? Third, what are the implica-
tions of the above relationships for the spatial variations of the global 
soil N cycle? To answer these questions, we first calculated the average 
gross N transformation rates across ecosystem types and analysed 
global-scale patterns in the data (Supplementary Tables 1–10). We then 
predicted the distribution of soil gross N transformation rates globally 
by five machine learning models using a global database of soil and 
climatic variables (Supplementary Figs. 2a–c and 3a–h). Next, we con-
ducted structural equation modelling (SEM) to estimate the factors 
that directly and indirectly control soil N cycling. Finally, we calculated 
the ratios of gross autotrophic nitrification (GAN, the microbial oxida-
tion of NH4

+ to NO3
−) to INH4 and of soil NO3

− to NH4
+, and we used 

mixed-effects meta-regression models to investigate the main factors 
affecting these ratios. These ratios are utilized as indicators of the 
potential risk of N losses.
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result of low NO3
− retention, high ratios of soil NO3

− to NH4
+ (5.30) and 

GAN to INH4 (1.73) were observed at the global scale, indicating a leaky 
N cycle (Fig. 1a), and thus there is a high potential risk of N loss2. A rela-
tively high average nitrous oxide (N 2O) emission rate 
(40 ± 8.0 µg N kg−1 d−1, n = 136) was observed globally (Fig. 1a). However, 
we observed high spatial variations in the global N cycle (Fig. 2) as its 
pattern changes from a conservative cycle in forests to a less conserva-
tive one in grasslands and a leaky one in croplands (Fig. 1), as discussed 
below.

Patterns of internal N cycling in croplands. A decoupled N cycle was 
observed in croplands: INH4 rates were somewhat lower than GNM rates, 

GN rates were six times those of INO3, the GAN-to- INH4 ratio was 
2.84 ± 0.73 and the NO3

−-to-NH4
+ ratio was 12.9 ± 1.71, indicating a leaky 

soil N cycle (Fig. 1d), which is in line with previous findings23. Soils with 
a low GAN-to-INH4 or a low soil NO3

−-to-NH4
+ ratio have a lower potential 

for N losses than those with high ratios2. High ratios of GAN to INH4 and 
NO3

− to NH4
+ in croplands resulted in high N2O emissions (Fig. 1d and 

Supplementary Fig. 4). Our study revealed that GAN, GN, and the ratios 
of GAN to INH4 and NO3

− to NH4
+ in grasslands and forests were signifi-

cantly lower than those in croplands (Fig. 1c–e), which is in line with 
previous studies8,9,23,24. Agricultural practices result in different soil pH 
conditions, leading to a different function and structure of the com-
munity of soil microorganisms. For example, the high rate of  
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Fig. 1 | Changes of gross N cycling and N2O emission rates (means ± s.e.; 
mg N kg−1 d−1) in terrestrial ecosystems and two unique soil layers in forest 
ecosystems and in the mineral soil in grasslands and croplands. a, Pattern of 
global soil gross N cycling and N2O emission rates. b, Pattern of soil gross N 
cycling and N2O emission rates in the organic soil in forests. c–e, Patterns of gross 
N cycling rates in the mineral soil in forests (c), croplands (d) and grasslands (e).  
f, Conceptual diagram of global soil N cycle under different land uses. Differences 
in GNM (P < 0.0001), INH4 (P = 0.045), INO3 (P = 0.408), GAN (P < 0.0001), GHN 

(P = 0.393), DNRA (P = 0.004) and N2O emission (P = 0.01) rates among mineral 
soil horizons of forests, croplands and grasslands were tested using one-way 
analysis of variance with least significant differences. The different letters next to 
the numbers indicate significant differences in gross N transformation and N2O 
emission rates across terrestrial ecosystems at P < 0.05, while the values in 
parentheses are the number of observations. The P values were obtained by 
two-tailed tests. The comparisons among terrestrial ecosystems were here 
confined to mineral soil horizons. SOM, soil organic matter.
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GN in croplands may be associated with high nitrifier activity24. Gener-
ally, ammonia-oxidizing bacteria (a type of nitrifying bacteria that 
oxidizes ammonia to NO3

−) cannot grow in soil with pH less than 5.0–5.5 
(ref. 25). In our dataset, croplands have an average pH of 6.26, condi-
tions that favour ammonia-oxidizing bacteria25. Long-term N supply 
would promote GN through enhancing the abundance and activity of 
ammonia-oxidizing bacteria26. However, agricultural practices increase 
soil aeration by damaging soil structure, which accelerates carbon (C) 
decomposition27. Additionally, high rates of mineral N additions block 
the production of humus-degrading enzymes by soil microorganisms 
and thus inhibit GNM4 and ultimately GI. Among the climatic zones, 
the highest rates of GN and the highest ratios of GAN to INH4 and NO3

− to 
NH4

+ were found in humid subtropical croplands (Supplementary  
Figs. 5 and 6). In support of this, our global predictions revealed higher 
rates of GAN and GN as well as higher ratios of GN to INH4 in croplands 
in tropical and subtropical regions (Fig. 3a,b,d).

Patterns of internal N cycling in natural ecosystems. We found a 
coupled N cycle between the organic and mineral layers of forest soils: 
INH4 and INO3 rates were comparable to GNM and GN rates, the ratios of 
GN to INH4 and of GAN to INH4 were 0.31 ± 0.08 and 0.45 ± 0.10 in the 
organic and mineral layers, respectively, and the ratios of NO3

− to NH4
+ 

were 0.51 ± 0.13 and 1.67 ± 0.20 in the organic and mineral layers, 
respectively, manifesting a conservative soil N cycle (Fig. 1b,c), which 
is consistent with earlier findings23. GNM and INH4 in croplands were 
significantly lower than those in grasslands and forests (Fig. 1c–e), 
which is again consistent with previous studies8,9,23,24. Our global predic-
tions are in line with our observed patterns of gross N transformation 
rates across ecosystem types (Fig. 2a,c,d), as forest and grassland soils 
mostly had high rates of GNM and INH4 across various climatic zones, 

and most had high INO3 rates in tropical and subtropical zones. Former 
regional-scale to global-scale studies reported that GNM, INH4 and INO3 
were best explained by soil microbial biomass8,9, which is consistent 
with our findings (Supplementary Tables 1, 6 and 7). Soil total C and N, 
which are key sources of energy for soil microorganisms, were higher 
in grasslands and forests than in croplands, thus promoting soil micro-
bial biomass24. In support of this, the higher availability of soil sub-
strates to microorganisms in forest organic soil horizons enhances 
microbial activity and ultimately GNM, INH4 and INO3 (P < 0.01; Fig. 1b 
and Supplementary Fig. 7). However, due to the limited availability of 
substrates in mineral layers of forest soils, microbial activities were 
restricted9, and thus gross N transformation rates in mineral soil layers 
also decreased (Fig. 1c). In contrast, significantly higher soil C/N ratios 
in forests increase the microbial N demand and thus reduce the sub-
strate (NH4

+) availability for nitrification, which explains the observed 
lower rates of GAN and GN (Fig. 4a and Supplementary Tables 2 and 4). 
Moreover, the rapid recycling of NH4

+ in forests may leave little chance 
for nitrifiers to compete for available NH4

+. In our dataset, forests had 
an average pH of 4.86, so nitrification in forest soils was probably 
limited by low pH25. This also may explain why GAN in grasslands was 
higher than in forests (Fig. 1e), as the average pH of grasslands was 6.17 
in our dataset. We thus noted a decoupled N cycle in grasslands; total 
NO3

− consumption represents 57% of total NO3
− production, and the 

ratios of GAN to INH4 and NO3
− to NH4

+ were 2.08 ± 0.61 and 1.77 ± 0.37, 
respectively, manifesting a leaky N cycle (Fig. 1e). However, the soil N 
cycle in grasslands was less leaky than that in croplands; the ratios of 
GAN to INH4 and NO3

− to NH4
+ in grasslands were 1.36 and 7.29 times less 

than those in croplands.
Furthermore, we analysed a subset of data for sites that measured 

the full N cycle or most variables of soil N processes (Supplementary 
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Data 2) to test whether the number of observations affected the global 
pattern of the soil N cycle. The results of this subset confirmed our 
findings that the soil N cycle pattern changes from conservative in 
forests to leaky in croplands, as indicated by the increasing ratios  
of GAN to INH4 and of soil NO3

– to NH4
+ from 0.48 ± 0.10 and 1.72 ± 0.34 

in forests to 2.06 ± 0.35 and 14.2 ± 2.94 in croplands, respectively  
(Supplementary Fig. 8).

Arctic ecosystems are generally expected to be limited by the 
availability of nutrients, including N. When soil freezes, microbial 
activity (which is the main stimulator of GNM8) is inhibited as the 
temperature decreases because the liquid water film, which is a pre-
requisite for biological activity, is reduced28. This reduction in liquid 
water films prevents soil substrate diffusion and soil microorgan-
ism and enzyme activities29, ultimately reducing GNM9. Moreover, 
the space of air-filled pores in the soil may decrease as a result of 
the expansion of water during freezing, causing less oxygen dif-
fusion and the microbial depletion of oxygen remaining in those 
pores, thereby suppressing aerobic respiration28. Hence, the cold 
climate in the Arctic slows down the activities of decomposers, 
reducing GNM. The high C/N ratio is also a major reason for the 
low N mineralization rates in Arctic soils30. In contrast, our global 
predictions showed that GNM rates in the Arctic are higher than 
in some of the most productive black soils on Earth, which is hard 
to imagine. However, given that the gross N transformation rates 
included in our global analysis are often measured under laboratory 
conditions, it is not surprising that C-rich soils would have higher 
gross N rates than soils with lower C (for example, boreal forests 
versus croplands)8,9. In contrast to field studies, soil moisture and 
temperature conditions are precisely controlled in the laboratory, 
which may affect the activities of the decomposers and ultimately 

the GNM. For instance, Rustad et al.31 found that a temperature 
increase of 2.4 °C improves soil N mineralization by 46%. In addi-
tion, microbial access to substrates is driven by the availability of 
water in the frozen soil32. In dry tundra, the effect of snow depth on 
the increase of soil N availability was less pronounced than that in 
moist tundra33. Therefore, the difference between field and labora-
tory flux measurements may be the main reason for the high rate of 
GNM in the Arctic in our global predictions. Gross N cycling rates 
in our global analysis should thus be interpreted with caution and 
need to be validated under field conditions. However, we should 
not ignore the studies that reported that soil GNM increases with 
increasing snow depth, which is due to enhanced soil organic C avail-
ability and abundance of N mineralization genes34. This increase in 
organic C substrate availability may have resulted from the increased 
breakdown of soil organic macromolecules or C and N input through 
microbial cell turnover or killed roots33. During winter, deepened 
snow increases the underlying soil thermal insulation, causing 
higher soil temperatures34. For example, increased snow depth 
from 30 to 150 cm increased the soil surface temperature by 6 °C35, 
which may enhance soil organic matter decomposition and gross 
N transformation rates33,34. There is therefore an ongoing debate 
about soil N cycling rates in the Arctic, and there is still an urgent 
need for more field studies to resolve this controversy.

Classifying drivers of the global soil internal N cycle
Total soil N content was the most important factor influencing GNM 
(Fig. 4a). Soils with a higher total N content typically contain more 
microbial biomass9 and exhibit greater GNM rates8,9 (Supplemen-
tary Table 1). This relationship between soil total N and GNM is main-
tained across terrestrial ecosystems and climatic zones (Fig. 5a and  
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Supplementary Fig. 9a). Precipitation can also influence global GNM 
(Fig. 4a) by altering plant community composition and related litter 
fall input, which increases soil substrate availability, thus promot-
ing soil microbial biomass9. In support of this, the highest rates of 
GNM were observed in tropical forests (Supplementary Fig. 5a) with 
high rainfall and abundant soil substrates. We also found that GAN 
is mainly controlled by soil C/N ratio, soil pH and GNM, with stand-
ardized coefficients of −2.11, 0.80 and 0.38, respectively (Fig. 4a and 
Supplementary Table 4). The requirement of microorganisms for 
inorganic N increases during organic C decomposition in soils with 
a high C/N ratio, thus decreasing the substrate NH4

+ for nitrifiers and 
resulting in a low abundance of ammonia-oxidizing bacteria, which 
use NH4

+ as a substrate36. We found that GAN increased with increasing 
ammonia-oxidizing bacteria (R2 = 0.31) and overall bacteria (R2 = 0.52) 
abundances (P = 0.001; Supplementary Table 4). However, our study 
showed that soil C/N ratio controls GAN only in natural ecosystems (for-
ests and grasslands) (Fig. 6b) and in all climatic zones except the conti-
nental zone (Supplementary Fig. 9c). Free ammonia rather than NH4

+ 
is the substrate of ammonia-oxidizing bacteria. A higher soil pH shifts 
the equilibrium between NH4

+ and ammonia towards ammonia, thus 
increasing ammonia availability and ultimately GAN (Fig. 4a and Sup-
plementary Table 4). This significant and positive influence of soil pH 
on GAN is maintained across different terrestrial ecosystems (Fig. 6c),  
but it has been shown only in the continental, humid subtropical and 
Mediterranean regions (Supplementary Fig. 9d). Although the stimu-
lated effect of GNM on GAN is plausible because the mineralization 
process is the master producer of NH4

+, which is the main substrate 
for soil nitrifiers9, our study showed that GNM was a controlling factor 

of GAN in forest and croplands but not in grasslands (Fig. 6a). In addi-
tion, GNM and GAN were correlated only in the continental and humid 
subtropical zones (Supplementary Fig. 9b).

Previous studies suggested that GHN in acidic soils contributes 
to GN37. This is consistent with our SEM, which found that soil pH is 
a negative factor controlling global GHN (Fig. 4a). Lowering soil pH 
could enhance soil fungal abundance, which in turn stimulates GHN37. 
There were positive relationships between GHN and the abundance of 
fungi (R2 = 0.55, P < 0.001) and the fungi-to-bacteria ratio (R2 = 0.54, 
P = 0.002) at the global scale (Supplementary Table 3). Soil GHN is 
more closely related to fungal activity due to their lower N demand 
per unit C and their higher acid tolerance than bacteria6,37,38. Soils 
with high organic C and low pH therefore exhibit relatively higher 
fungal activity. Our study showed that total soil C is positively asso-
ciated with GHN (P < 0.001) and negatively correlated with GAN 
(P = 0.11; Supplementary Tables 3 and 4). Unexpectedly, this inverse 
relationship between soil pH and GHN existed only in croplands 
(Fig. 4d) and in humid subtropical zones (Supplementary Fig. 10f), 
while GHN increased significantly with increasing soil pH in forests 
(Fig. 5d). Furthermore, we found positive relationships among GHN, 
total N and GNM rate (P < 0.01; Supplementary Table 3), but our SEM  
(Fig. 4a) revealed that GHN was more closely related to GNM than to total 
N, indicating the importance of NH4

+ as a substrate for heterotrophic 
nitrifiers. Our global predictions also confirmed the importance of NH4

+ 
as a substrate for heterotrophic nitrifiers, as higher GHN rates were 
observed in the tropics with higher rates of GNM (Fig. 3c). By examining 
these relationships in different terrestrial ecosystems, we found that 
GNM plays a central role in controlling GHN only in forests (Fig. 5c),  
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but soil total N controls GHN in croplands and grasslands (Fig. 5e).  
In contrast, GHN decreased (R2 = 0.54, P = 0.007, n = 12; Fig. 5c) with 
increasing GNM in grasslands. Our analysis also revealed that mean 
annual temperature (MAT) was a driving factor of GHN globally (Fig. 4a 
and Supplementary Fig. 5f), which is consistent with the finding of Liu 
et al.39, who reported that high temperatures decrease GHN. Soil fungi, 
which control GHN (Supplementary Table 3), are more active than bac-
teria at lower temperatures40. Additionally, our SEM (Fig. 4a) revealed 
that high temperatures reduce soil total N content, which is a substrate 
for GHN and GNM. The highest rate of GHN was recorded in the conti-
nental climate zone, confirming the negative effect of temperature on 
GHN (Supplementary Table 3 and Fig. 4a). Our global predictions also 
revealed high rates of GHN in the continental climate zone (Fig. 3c). 
However, the effect of MAT on GHN was inconsistent across climatic 
zones. For example, GHN increased significantly with decreasing MAT 
in the humid subtropical and Mediterranean regions but with increas-
ing MAT in the continental regions (Supplementary Fig. 9h), suggest-
ing that the effect of temperature on GHN is not universal but has a 
threshold. The highest average GHN (4.00 ± 2.07 mg N kg−1 d−1, n = 24) 
in our dataset was recorded when MAT was in the range of 11–15 °C. 
However, our study is inconsistent with other studies that reported 
that heterotrophic nitrifiers in hot, semiarid grasslands can nitrify best 
at 40 °C, a value far above the optimal temperature for heterotrophic 
nitrifying activities (25 °C) in forested environments with a rainy and 
warm climate41. We must not ignore that the GHN rates in our study are 
often estimated under laboratory incubation conditions.

Global GNM is the key factor driving INH4 (Fig. 4a and Supplemen-
tary Fig. 4b), a relationship that is well established6,8, and this relation-
ship is maintained across terrestrial ecosystems and climatic zones  
(Fig. 5b and Supplementary Fig. 9i). This is also confirmed by the highest 

rates of INH4 in tropical forests with higher GNM rates (Supplementary 
Fig. 5d). Soil GHN and total N were the main stimulators of global INO3 
(Fig. 4a). The stimulating effect of GHN on INO3 is plausible, as both 
require high C availability, which is an unfavourable condition for GAN 
(Fig. 4a and Supplementary Table 4). GHN is thus a major source of 
NO3

− under these conditions, stimulating global INO3. Moreover, soils 
with a higher total N content often contain more microbial biomass9 
and exhibit greater INO3 (ref. 8). Soil microbial biomass stimulates both 
GNM and GN globally8,9, which are positively correlated with INO3 
(P < 0.001; Supplementary Fig. 10c,g), as they are responsible for provid-
ing a NO3

− substrate to soil microorganisms. Positive associations of 
GHN and total soil N with INO3 were observed in croplands and forests 
but not in grasslands (Fig. 6d,e). Moreover, GHN controlled INO3 only in 
the humid subtropical areas, but soil total N controlled the INO3 rate in 
all climatic zones except for the continental regions (Supplementary 
Fig. 9j). We also found that the DNRA rate is primarily driven by mean 
annual precipitation (MAP) (Figs. 4a and 6f), which is in line with previ-
ous studies42 and is shown by the higher DNRA rates in the tropical and 
subtropical regions in our global predictions (Fig. 2b). Soil oxygen 
depletion as a result of increased moisture content leads to low redox 
potential, and then NO3

− is used as an electron acceptor, facilitating the 
reduction of NO3

− to NH4
+ (ref. 42). By testing this relationship across 

climatic zones, we observed this connection in the marine west coast 
and tropical wet regions only (Supplementary Fig. 9l), and this was 
consistent with our global predictions (Fig. 2b). However, we did not 
observe significant differences in DNRA rates in terrestrial ecosystems 
across different climatic zones (Supplementary Fig. 5c). In addition, the 
highest rates of INO3 and DNRA were reported from humid subtropical 
zones, which may be due to the high ratio of soil NO3

− to NH4
+ in this 

region compared with other regions (Supplementary Fig. 11), as NO3
− is 
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Fig. 5 | Relationships of gross N transformation rates to each other and to 
environmental factors across terrestrial ecosystems. a, The regression 
relationship between GNM and soil total N across terrestrial ecosystems. b, The 
regression relationship between INH4 and GNM across terrestrial ecosystems.  
c, The regression relationship between GHN and GNM across terrestrial 
ecosystems. d, The regression relationship between GHN and soil pH across 

terrestrial ecosystems. e, The regression relationship between GHN and soil total 
N across terrestrial ecosystems. f, The regression relationship between GHN and 
MAT across terrestrial ecosystems. The solid lines are the slopes, the grey areas 
indicate the 95% confidence intervals around the regression lines and n is the 
number of observations. Statistical significance was obtained with a two-tailed 
Student’s t-test.
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the substrate for both processes2. The high precipitation rate in humid 
subtropical regions can increase the availability of soil substrate (for 
example, total N and C) and thus stimulate microbial activity2,9. Further-
more, we found that higher net NH4

+ production rates are observed with 
enhanced GNM and DNRA and are suppressed by increasing INH4. In 
contrast, net NO3

− production rates are stimulated by enhanced GHN, 
GAN, net NH4

+ production and soil pH and are suppressed by increasing 
INO3 (Fig. 4a).

The implications of this study
A more detailed understanding of the global N cycle in response to 
various controls is of great interest to a wide readership, as this ulti-
mately determines important processes such as the ecosystem 
response to climate change (for example, progressive N limitation 
theory). It is critical to understand the variability of soil gross N cycling 
rates resulting from the global spatial heterogeneity of climatic and 
edaphic variables, which is important for estimating the potential risk 
of N loss. Our study aimed to predict the global spatial variations of 
soil gross N cycling rates and highlights promising areas for future 15N 
gross transformation studies. The type of data used in this study has 
also been used in previous meta-studies, the last one almost 20 years 
ago8. Although most gross N transformation rates in our synthesis are 
possibly not representative of in situ rates (owing to laboratory inves-
tigation and the lack of plants), this study provides an overview of the 
current state of knowledge on gross N rates that goes far beyond previ-
ous studies with a limited number of observations8. Unlike previous 
studies, we are able to draw firm conclusions. Our study shows that 
soil NO3

− retention is lower overall, with wide ratios of soil NO3
− to NH4

+ 
and of soil GAN to INH4, indicating a leaky N cycle. The global patterns 

of the soil N cycle change from conservative in forests to leaky in crop-
lands. We also found a difference in the global N cycle across climatic 
zones (Supplementary Fig. 11). This underlines the importance of for-
ests in the global N cycle and the need for further insights on NO3

− reten-
tion in croplands, as well as the potential effect of climate change on 
the global soil N cycle, as discussed below.

Importance of forests in the global N cycle. Our study revealed that 
land use was the most important factor affecting the ratios of GAN to 
INH4 and of soil NO3

− to NH4
+ (Fig. 4b,c). We did not observe significant 

differences in GAN rates across climatic zones, confirming that land 
use was more important in controlling GAN rates than climate23. Land 
use is thus likely to be the controlling factor of the potential risk of 
global soil N losses. The low ratios of GAN to INH4 and of soil NO3

− to 
NH4

+ in forests imply that GNM and GI are tightly coupled (Fig. 1b,c), 
indicating that forests can effectively conserve reactive available 
N4,23. In contrast, nitrification was the main fate of NH4

+ from GNM in 
croplands (Fig. 1d). Converting croplands to forests would improve 
soil N retention and minimize N losses to the environment, but this 
may be difficult to achieve given the need to maintain food security 
for a rapidly growing population. Instead, we suggest that expanding 
agroforestry can be a solution that can improve N conservation, 
among many other benefits. In agroforestry systems, the deep tree 
rooting can catch and recycle subsoil inorganic N leached below the 
rooting zone of linked croplands, causing a more efficient intercep-
tion of the leaked N43. Moreover, NH4

+ consumption in tree-based 
systems is higher, leaving less NH4

+ N for nitrification and thus lower-
ing soil N losses, compared with cropland systems44. A recent 
meta-analysis reported that soil organic C and N storage and available 
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Fig. 6 | Relationships of gross N transformation rates to each other and to 
environmental factors across terrestrial ecosystems. a, The regression 
relationship between GAN and GNM across terrestrial ecosystems. b, The 
regression relationship between GAN and soil C/N ratio across terrestrial 
ecosystems. c, Regression between GAN and soil pH across terrestrial ecosystems. 
d, The regression relationship between INO3 and GHN across terrestrial 

ecosystems. e, The regression relationship between INO3 and soil total N across 
terrestrial ecosystems. f, The regression relationship between DNRA and MAP 
across terrestrial ecosystems. The solid lines are the slopes, the grey areas 
indicate the 95% confidence intervals around the regression lines and n is the 
number of observations. Statistical significance was obtained with a two-tailed 
Student’s t-test.
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N increased by 21%, 13% and 46%, respectively, under agroforestry 
compared with crop monocultures43. Increased soil organic C content 
in agroforests compared with cropland makes the soil N cycle more 
conservative43,44 and is therefore an important factor for climate-smart 
agricultural systems.

Understanding NO3
− retention in croplands. Although we noticed 

that INO3 and DNRA occur, they are low and consume only 20% of the 
total NO3

− production in croplands, demonstrating a lower NO3
− reten-

tion in croplands than in other land use systems. DNRA and INO3 are 
favoured by increasing levels of soil C (Supplementary Tables 7 and 11), 
a condition that restricts GAN (Supplementary Table 4). A rapid deple-
tion of NH4

+ was observed when C (for example, in the form of crop 
residues) was added to soil, causing microorganisms to immobilize 
NO3

− to maintain their growth, which in turn promotes INO3 ideally with 
negligible denitrification N loss45. Concurrently, C supplies electrons 
through respiration or fermentation, which facilities the reduction of 
NO3

− to NH4
+, providing energy to DNRA bacteria46. Exogenous organic 

C additions can thus promote INO3 and DNRA while restricting GAN  
(Fig. 4a), reducing soil NO3

− accumulation in croplands.

Climatic change may influence global N cycling. Our global analysis 
revealed that higher temperatures directly reduce GHN and indirectly 
reduce GNM, GAN, INO3 and INH4 via reducing soil total N (Fig. 4a). Soil 
microbial maintenance costs increase with higher temperatures, caus-
ing higher energy requirements and lower microbial C use efficiency, 
which results in lower microbial biomass and gross N transformation 
rates9,47. Global warming may thus reduce gross N transformation rates 
in the long run while stimulating it in the short term. Furthermore, the 
global hydrological cycle is intensifying and will continue to do so in 
the future, with a global redistribution of precipitation (wet sites 
become wetter, dry sites drier) and more intense rainfall accompanied 
by longer and more intense droughts. Soil microbial biomass and N2O 
emissions decrease with increasing drought intensity, while decreasing 
precipitation significantly increases extractable NH4

+ (ref. 48). Sus-
tained N processing during drought could thus lead to greater N losses 
during subsequent wetting events. This can also be seen in the increas-
ing soil δ15N values, which are due to the effects of drier conditions49.

Finally, our SEM showed that 53%, 79%, 87%, 73%, 36% and 90% of 
the variation in GNM, INH4, INO3, GHN, GAN and DNRA, respectively, is 
still unexplained, which may be because the influence of microbial 
community structures was not included in the analysis. Although the 
regression analysis (Supplementary Tables 1, 3 and 4) revealed a vital 
role of soil microorganisms in controlling soil gross N cycling rates 
globally, our SEM did not include the effect of soil microorganisms due 
to the paucity of data. Climate change, N deposition and/or anthropo-
genic disturbances affect soil microbial community composition50, 
which might affect soil gross N cycling rates and, eventually, soil N 
availability and loss. Consequently, future studies should focus more 
on the effects of microbial community composition on soil gross N 
cycling rates, which will improve the prediction of soil N cycling under 
future global changes.

Sources of uncertainty
Although our dataset is much larger than those used in previous syn-
theses, large uncertainties in our estimate of the global N cycle pat-
tern in terrestrial ecosystems still exists. There are three sources of 
uncertainties.

Influence of controlled laboratory conditions. Most studies included 
in our dataset were based on laboratory experiments conducted under 
controlled conditions using disturbed soils and often without plants; 
these are not necessarily representative of in situ conditions8,13. For 
example, GNM rates were up to five times lower in the laboratory than 
in the field14. Soil disturbance such as sieving can alter soil bulk density, 

aggregate structure, soil aeration, nutrient availability, and the abun-
dance and activity of microorganisms, with consequences for soil  
N transformations. This is seen, for instance, in an immediate increase 
in GNM and INH4 and suppression of INO3, but with no effect on GN13. Even 
if GNM is unaffected, a redistribution of substrate may enhance the 
contact with immobilizers10. In addition, the form in which N fertilizers 
are applied (for example, as granules in the field or as a liquid in the 
laboratory) affects the availability of N. Laboratory studies are often 
carried out with only soil. However, the interactions of plants via C 
rhizodeposits can affect the soil microbial community and conse-
quently the associated N transformations16. For example, GNM and 
GHN were stimulated by the presence of wheat15, whereas soil micro-
organisms switched to assimilate NO3

− in the presence of 
NH4

+-preferring plants16. Soil moisture and temperature conditions in 
the laboratory are carefully controlled, but these conditions are vari-
able in the field. In particular, the fluctuating effect of soil moisture 
due to precipitation creates conditions referred to as hot moments, 
where N transformations are different compared with controlled condi-
tions51, which is also reflected by the high temporal variability of N2O 
emissions52. Soil N2O emissions also vary significantly with fertilizer 
application mode53, crop type54, irrigation pattern55 and tillage prac-
tice53. Since these agricultural factors can influence N2O emissions in 
the field but not in the laboratory, laboratory studies should be inter-
preted with caution and, if possible, validated under field 
conditions.

Influence of substrate addition. Our dataset contained results from 
15N pool dilution and tracing techniques. These techniques are the most 
commonly used methods for measuring gross N cycling rates; however, 
the 15N label addition can increase the size of soil N pools (that is, NH4

+ 
and NO3

−), which can stimulate the gross N consumption rates56. This 
seems to be less of a problem if only low amounts of 15N are applied56,57, 
which is also dependent on the ecosystem (that is, if it is used to only 
low N amounts)14. In temperate grassland soils, for example, larger 
amounts of highly enriched 15N have often been applied58, whereas in 
low-fertility arable soils, smaller N amounts have been used59. In forest 
soils, typically 5% of the initial pool size is applied60. Most N additions 
used in the 15N isotopic pool dilution technique in our dataset were 
small (0.001–5.0 mg N kg−1), but our synthesis also included studies 
that used large additions of N, which probably led to an overestimation 
of INH4 and INO3. The combination of the 15N isotopic pool dilution tech-
nique with an estimate of the net N turnover in separate samples that 
do not receive 15N additions (that is, the reformed difference approach) 
can be an improvement8,57. Furthermore, 15N tracing studies running 
for long enough that mineral N pools return to background values can 
evaluate the stimulation effect of N additions61. Advanced natural 15N 
abundance techniques can also be useful for studying N dynamics 
without any N application.

Machine-learning-based global maps. Machine learning typically 
relies on the variance of predictions made by ensembles of models62, 
such as the random forests (RF) algorithm. Each tree in RF is a model of 
an ensemble, and the variation in predictions between individual trees 
is utilized to estimate uncertainties. One issue with these approaches 
is that information for unknown environments is unavailable, because 
they do not take into account dissimilarities in the predictor space 
between new and training data63. The recent suggestion by Meyer and 
Pebesma63 to add the area of applicability to the modeller’s standard 
toolkit and to report a map of dissimilarity-index-dependent perfor-
mance estimates alongside prediction maps may provide improved 
uncertainty estimates. The area of applicability was not estimated in 
our study, but our standard deviation maps clearly reveal areas where 
the models perform poorly or extrapolate with higher standard devia-
tions than the root mean square error (RMSE) (for example, deserts, 
polar regions and other regions where no observations were available) 
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(Figs. 2 and 3). Our analysis thus highlights promising areas for future 
15N gross transformation studies—that is, areas characterized by high 
uncertainties. Generally, the close correlation between modelled and 
observed gross N transformation (close to the 1:1 line) confirmed the 
usefulness of the ensemble machine learning (Supplementary Fig. 12).

Methods
Data compilation and overview of the dataset
All peer-reviewed publications published before December 2020 that 
examined soil gross N transformation rates were systematically col-
lected by searching Google Scholar and the Web of Science database. 
We also searched within these publications for references. Studies that 
have been included in previous meta-analyses of gross N transformation 
rates were also included in our synthesis8. We used the following search 
terms: ‘gross nitrogen rates’, ‘soil gross nitrogen transformation’, ‘gross 
nitrogen mineralization’, ‘gross nitrification’, ‘gross nitrogen immobi-
lization’ and ‘gross dissimilatory nitrate reduction to ammonium’. We 
followed PRISMA guidelines to conduct the literature search (Supple-
mentary Fig. 13). We employed the following criteria for compiling gross 
N transformation rate data: (1) soil gross N transformation rates were 
quantified using the topsoil samples (0–20 cm), (2) most of the incuba-
tion periods for gross N transformation rates ranged from 24 to 48 h 
and (3) the 15N isotopic pool dilution technique and/or tracing models 
were used to measure gross N transformation rates. In total, 398 studies 
met these criteria (Supplementary Fig. 13 and Supplementary Refer-
ences). The dataset of gross N transformation rates was created by 
compiling 4,032 observations representing data from isotope tracing 
assays in different ecosystems. We evaluated a total of 1,065, 434, 413, 
437, 240, 171, 903, 233 and 136 observations for GNM, INH4, INO3, GI, GAN, 
GHN, GN, DNRA and N2O emission, respectively. The global distribution 
of study sites for gross N transformation rates included in our study is 
shown in Supplementary Fig. 1a,b. In large-scale pattern analysis, meas-
urements from organic, mineral and mixed (organic + mineral) soil 
horizons or from disturbed and intact soils were included; however, we 
only used data from disturbed mineral soil horizons to compare eco-
system types. Most of the collected studies (312 studies) were conducted 
under controlled laboratory conditions.

Two authors performed data extraction independently, aiming 
to extract from the eligible studies the detailed site information such 
as climatic zone, latitude, longitude, ecosystem type, MAT, MAP and 
soil chemical (pH, total C and N, C/N ratio, and extractable NH4

+-N and 
NO3

−-N) and biological (microbial biomass C and N, fungi-to-bacteria 
ratio and the abundances of bacteria, ammonia-oxidizing bacteria, 
ammonia-oxidizing archaea and fungi) attributes, along with soil gross 
N transformation rates (GNM, GAN, GHN, GN, INO3, INH4, GI and DNRA). 
The data on the emission of N2O were also collected from the original 
articles. The ratios of GAN to INH4, GAN to GNM and NO3

− to NH4
+ were 

computed and included in the analysis. We also calculated the net NH4
+ 

and NO3
− production rates. GetData (v.2.22) (http://getdata-graph- 

digitizer.com) was used to extract the data contained in graphs. All 
geographical regions except Antarctica are represented in our dataset, 
with a wide range of MAP (266–7,000 mm yr−1) and MAT (−4.80 to 
28.5 °C). Terrestrial ecosystems in our dataset included forests (58%), 
grasslands (15%) and croplands (25%). We coded climatic zones as 
marine west coast, the Mediterranean, tropical wet, continental and 
humid subtropical according to the Köppen classification system.

Data analyses
We checked the normality of the data using the Kolmogorov–Smirnov 
test. If the data did not show a normal distribution, a transformation 
to the natural logarithm was performed to approximate normality and 
stabilize the distribution.

Global patterns of the N cycle. We calculated the average (±standard 
error) gross N cycling rates globally and across soil layers and different 

types of ecosystems. Since there were insufficient data for GAN and GHN 
in forest organic layers, we used GN to compare mineral and organic soil 
layers in forests. Differences in gross N cycling rates among soil layers 
and ecosystem types were tested using analysis of variance with least 
significant differences for multiple comparisons. Moreover, regres-
sion analysis was used to analyse the relationships between soil and 
climatic variables and gross N transformation rates and between gross 
N transformation rates and each other (Supplementary Tables 1–10).

SEM and mixed-effects meta-regression analysis. The variance 
inflation factor was used to estimate the collinearities among variables, 
and variables with a variance inflation factor value of >5 were excluded. 
We then conducted an SEM using the lavaan package64 in R to test how 
gross N transformation rates (GNM, GHN, GAN, INH4, INO3 and DNRA) and 
net NH4

+ and NO3
− production rates are impacted by soil variables (for 

example, pH, total N and C/N ratio) and climatic variables (MAT and 
MAP) and by each other. The conceptual SEM included the direct 
impacts of soil properties and climatic variables on gross and net  
N transformation rates as well as the effects of gross N transformation 
rates on each other and on net N production rates. It also included the 
indirect effects of climatic variables on gross N transformation rates 
via changing soil attributes. To evaluate the conceptual models, we 
used goodness-of-fit statistics (comparative fit index, 0.94; Tucker–
Lewis index, 0.90). Furthermore, we tested the effect of soil variables 
(for example, pH, total N and C/N ratio) and climatic variables (MAT 
and MAP) and/or land use on the ratios of GAN to INH4 and of soil NO3

− to 
NH4

+ in a mixed-effects meta-regression model using the glmulti pack-
age65 in R. We estimated the importance of each variable as the sum of 
Akaike weights for models that included this variable, which is consid-
ered as the overall support for each variable across all models.  
To explore the most important variables, we set the cut-off to 0.8.

Global prediction
Model development for global prediction. The network of gross 
N transformation rates was predicted using five machine learning 
models: RF, support vector machine (svmRadial), generalized boosted 
regression models (gbm), stepwise regression (leapSeq) and general-
ized linear models (glmnet). Three of these machine learning methods 
(RF, gbm and svmRadial) are based on decision trees and boosting 
approaches, while two are linear regression models (leapSeq and glm-
net). The caret66 and caretEnsemble67 packages were used to combine 
the five approaches, and the single best prediction model was built 
from these five base models. We created gross N transformation rate 
models using environmental variables, including climatic factors, 
soil attributes (pH, N, C, bulk density and clay content) and land use 
cover (Supplementary Fig. 3a–h). Recursive feature elimination was 
utilized to estimate the number of covariates that should be included 
in the model fit. Once a predetermined number of covariates had 
been reached, the least significant explanatory variable was gradually 
eliminated to reduce computational load and ensure that the aver-
age resolution of all covariates was equal with a spatial resolution of 
1 km. These variables were collected from a worldwide collection of 
soil and climatic property information. The soil property database, 
which has a geographical resolution of 1.0 km, was derived from the 
International Soil Reference and Information Centre’s World Inven-
tory of Soil Emissions database (www.isric.org)68. Climatic data with 
a resolution of 0.5° was obtained using the getdata function from the 
raster package69. The land use system was sourced from the Food and 
Agriculture Organization of the United Nations70. The freely available 
world base map data were downloaded from the Global Administra-
tive Areas Database (https://gadm.org/index.html). The worldwide 
distribution maps were created using the ESRI ArcGIS program71. All 
gross N transformation rate predictions in this investigation were 
made using R v.4.1.1, and the R scripts that were used are available 
on Figshare72.
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Model validation. We assessed the prediction of gross N transfor-
mation rates using tenfold cross-validation with five repeats. The 
whole database was subsampled into ten subsamples, nine of which 
served as training data and one as test data. We averaged the test 
results from each subsample to estimate the model’s performance. 
The RMSE, the regression coefficients of determination (R2) and the 
mean of the absolute value of errors (MAE) are three extensively 
used validation indicators that were calculated according to the 
following formulas:

MAE = 1
n ∑

n

i=1
|Pi −Oi|

RMSE =
√√√
√

1
n

n
∑
i=1

(Pi −Oi)
2

R2 =
∑n

i=1 (Pi − Ōi)
2

∑n
i=1 (Oi − Ōi)

2

where n is the number of samples, and Pi, Oi and Ō are the predicted, 
observed and mean of observed values, respectively.

The model with the lowest MAE, lowest RMSE and greatest R2 for 
each gross N transformation rate was selected as the best (Supple-
mentary Fig. 2a,b). We used the selected model to map the global gross  
N transformation rates. The R2 values of the best models are shown 
in Supplementary Fig. 12. To evaluate the uncertainty of the pro-
duced maps, we characterized the distributions of mean, median 
and quantile values (upper and lower). These four values were 
computed for each N transformation predicted, and the standard 
deviation of each map was then derived from these values (mean, 
median, and upper and lower boundaries). The standard deviation 
map was used for evaluating the uncertainties of the produced 
maps. These quantiles were used to express the uncertainties of 
the global soil map73.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data supporting the findings of this study are available in Supple-
mentary Data 1 and 2. The data underlying Figs. 2 and 3 are available on 
Figshare (https://doi.org/10.6084/m9.figshare.21406731.v4). Source 
data are provided with this paper.

Code availability
The R (v.4.1.2) code used to generate the results and figures reported 
in this study is available on Figshare (https://doi.org/10.6084/
m9.figshare.21406731.v4).
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Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description We compiled 4032 observations from 398 published 115N pool dilution and tracing studies to predict soil internal soil N cycle 
patterns and their environmental consequences. Detailed site such as longitude, latitude, climatic zone, ecosystem type, mean 
annual temperature (MAT), mean annual precipitation (MAP), total C, total N, C:N, soil pH, microbial biomass C and N, the 
abundances of bacteria, ammonia-oxidizing archaea, ammonia-oxidizing bacteria, and fungi, fungi to bacteria ratio, and extractable 
ammonium N and Nitrate N were collected along with soil gross N transformation rates gross N mineralization, gross nitrification, 
gross autotrophic nitrification, gross heterotrophic nitrification, gross N immobilization,  gross ammonium immobilization, gross 
nitrate immobilization, and dissimilatory nitrate reduction to ammonium ). The data on the emission of N2O were also collected from 
original articles. The ratios of gross autotrophic nitrification to gross ammonium immobilization, gross autotrophic nitrification to 
gross N mineralization, and nitrate to ammonium were calculated and included in the analysis. We also calculated the net 
ammonium production and net nitrate production. Data from organic, mineral, and mixed (organic + mineral) soil horizons were used 
to analyze the global-scale pattern in the data; however, the comparisons between different ecosystem types were limited to data 
from mineral soil layers. In large-scale pattern analysis, measurements from disturbed and intact soils were included, but the 
comparisons between different ecosystem types were limited to measurements from disturbed soils. Most of the collected studies 
were conducted under laboratory incubation under aerobic conditions. The dataset included three terrestrial ecosystems: forests 
(58%), grasslands (15%), and croplands (25%). We coded climatic zones as humid subtropical, tropical wet, the Mediterranean, 
continental, and marine west coast based on the Köppen Classification System.  
We first calculated the average gross N transformation rates across ecosystem types, and analyzed global-scale patterns in the data 
by regression analysis. Second, we predicted the global distribution of soil gross N transformation rates by five machine-learning 
models using a global database of soil and climatic variables. Third, we conducted structural equation modelling (SEM) to estimate 
the factors directly and indirectly control soil N cycling. Finally, we calculated the ratios of gross autotrophic nitrification to gross 
ammonium immobilization and nitrate to ammonium , and used mixed-effects meta-regression models to explore the most 
important factors affecting these ratios. These ratios are used as indicators of the potential risk of N loss. Soils with a high ratios have 
greater potential of N loss than those with low ratios.  
We found that total nitrate consumption represents 49% of the total nitrate production globally with a high ratio of autotrophic 
nitrification to ammonium immobilization (1.71±0.31), manifesting a leaky N cycle. We observed high spatial variations in the global 
N cycle as its pattern changes from a conservative cycle in forests to a less conservative one in grasslands and a leaky one in 
croplands, as indicated by the increasing ratios of autotrophic nitrification to ammonium immobilization and nitrate to ammonium. 
The structural equation modelling revealed that soil properties (soil pH, total N and carbon to N ratio) were more important in 
shaping the internal N cycle than climate. We suggest that the global N cycle requires a shift towards agroforestry systems and a 
possible increase of nitrate retention in croplands, which would play a vital role in ecological restoration.

Research sample We systematically searched all peer-reviewed papers published prior to December 2020 that examined soil gross N transformation 
rates using the Web of Science and Google Scholar Database and searched for references within these papers. Our search also 
included studies summarized in previously published gross N transformation rates meta-analyses. We utilized the following terms: 
‘gross nitrogen rates’; ‘soil gross nitrogen transformation’; ‘gross nitrogen mineralization’; ‘gross nitrification’; ‘gross nitrogen 
immobilization’; or ‘gross dissimilatory nitrate reduction to ammonium’ to search for papers. We employed the following criteria for 
compiling gross N transformation rate data: 1) gross N transformation rates were estimated using the topsoil samples (0-20 cm), 2) 
Most of the incubation periods for gross N transformation rates range from 24 to 48 h, and 3) Gross N transformation rates data 
were quantified based on the 15N isotopic pool dilution technique and tracing model. In total, 398 studies met these criteria. 

Sampling strategy We followed the guidelines of PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) to perform the 
literature search. We employed the following criteria for compiling gross N transformation rate data: 1) gross N transformation rates 
were estimated using the topsoil samples (0-20 cm), 2) Most of the incubation periods for gross N transformation rates range from 
24 to 48 h, and 3) Gross N transformation rates data were quantified based on the 15N isotopic pool dilution technique and tracing 
model. In total, 398 studies met these criteria. 

Data collection We systematically searched all peer-reviewed papers published prior to December 2020 that examined soil gross N transformation 
rates using the Web of Science and Google Scholar Database and searched for references within these papers. Our search also 
included studies summarized in previously published gross N transformation rates meta-analyses. We utilized the following terms: 
‘gross nitrogen rates’; ‘soil gross nitrogen transformation’; ‘gross nitrogen mineralization’; ‘gross nitrification’; ‘gross nitrogen 
immobilization’; or ‘gross dissimilatory nitrate reduction to ammonium’ to search for papers. 

Timing and spatial scale We systematically searched all peer-reviewed papers published prior to December 2020 that examined soil gross N transformation 
rates.

Data exclusions For the meta-analysis dataset, the studies which didn't follow the criteria described in "Sampling strategy" were excluded into 
analysis.  

Reproducibility All attempts to repeat the experiment were successful.
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Randomization Not applicable

Blinding Blinding is not relevant to our study. Our study is a meta analysis regarding the global soil nitrogen cycle.

Did the study involve field work? Yes No

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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