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Limb-driven control allows for direct control by using residual limb
movements rather than unnatural and complex muscle activation.

Existing limb-driven methods simultaneously learn a variety of possible
motions, ranging from aresidual limb to entire arm motions, from
human templates by relying on linear or nonlinear regression techniques.
However, the map between a low-dimensional residual limb movement
and high-dimensional total limb movement is highly underdetermined.
Therefore, this complex, high-dimensional coordination problem cannot
be accurately solved by treating it as a data-driven black box problem.
Here we address this challenge by introducing the residual limb-driven
control framework synergy complement control. Firstly, the residual
limb drives a one-dimensional phase variable to simultaneously control
the multiple joints of the prosthesis. Secondly, the resulting prosthesis
motion naturally complements the movement of the residual limb by its
synergy components. Furthermore, our framework adds information on
contextual tasks and goals and allows for seamless transitions between
these. Experimental validation was conducted using subjects with

preserved arms employing an exo-prosthesis setup, and studies involving

participants with and without limb differences in a virtual reality setup. The
findings affirm that the restoration of lost coordinated synergy capabilities
isreliably achieved through the utilization of synergy complement control

with the prosthesis.

Humans have replaced lost or non-developed body limbs for millennia
with technical counterparts, namely prostheses. The first powered
upper limb prosthesis dates back to a patent from Germany in 1915
(refs.1,2). Since then, many powered mechanical systems have been
developedtoreplace limbs that have beenamputated, and the mechan-
ics of these systems have continuously beenimproved. Since the emer-
gence of myoelectric upper limb prostheses around 1950 (refs. 3-5),
substantial efforts have been made toimprove and enhance the oper-
ability of such systems® by using myoelectric controls with sequen-
tial control (SEQ), which meet today’s commercial standards’". SEQ
ofteninvolves afinite state machine, which allows the user to select and

controlonejointatatime using direct electromyography (EMG)-based
proportional control. The joints that are not in use are locked, and
amuscle co-contraction causes the change to the next joint”. How-
ever, due to the limitations of myoelectric control, such as muscle
fatigue, electrode displacement and difficulties in decoding complex
patterns or dealing with coordinated joint movements™, aninterestin
limb-driven control concepts has emerged. Here, the residual limb (RL)
movement, rather than muscle activation measurements, isused asa
continuous control input for the device. Several RL-driven methods
exist for upper limb prostheses that are still considered to be basic and
primarily focus on simulation, virtual reality (VR) or single degrees of
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Fig.1| The workflow of the proposed method in seven steps. The RL position1(¢) = A(m(¢)), which depends on the muscle activation m(¢), drives the prosthetic

motion p(¢) via the phase variable .

freedom (d.f.) elbow coordination (for example, refs. 15-17). These
methods share one fundamental idea at their core: learning the coor-
dination between the upper and lower arm for a wide variety of pos-
sible motions based on captured human templates into asingle model
instead of multiple models. To accomplish this, regression techniques
areapplied. These techniquesinvolve linear regression such as princi-
pal components analysis” '’ or nonlinear regression such as artificial
neural networks, radial basis function networks or locally weighted
regression” 7% However, the map between a low-dimensional
upper arm movement and high-dimensional total limb movement is
highly underdetermined, which resultsinaccuracy problems and may
evenlead to jerky prosthetic motions”. The authorsinref.17 revealed
another critical limitation of current approaches, which is the lack of
environmental context. With some exceptions such asref. 27, current
approaches are not able to systematically deal with changing tasks
or targets. More context and autonomy are required for limb-driven
methods to be useful for amputated participants. Therefore, there is
still aneed for alternative methods".

Inthis Article, we present anew RL-driven method called synergy
complement control (SCC) that is based on a whole new hypothesis
and overcomes the issues of previous methods: amputated subjects
are able to control a task-dependent, multi-dimensional coordinated
prosthesis motion via a low-dimensional motion phase and together
with task and target detection. Concretely, we introduce synergy
complements, which we define as the synergistic-complementary

prosthesis movement to the RL movement. The synergy complements
are controlled by asingle-dimensional phase variable, whichis driven
by theRL, and together resultinanatural motion correspondingtoan
unimpaired limb. SCC can inherently deal with complex motions that
have multiple d.f., and it can process changes in tasks and target loca-
tions utilizing proper intention detection. Figure 1shows the workflow
of the SCC method.

Results

RL-prosthesis coordination

Inthis paragraph, we illustrate how SCC works on the basis of the results
of an unimpaired participant using an exo-prosthesis®® (Supplemen-
tary Fig. 5). Figure 2 shows animage sequence with the corresponding
time series for the RL-prosthesis coordination while it performed an
exemplar reaching movement. The movement was computationally
designed. For explanation purposes, we divided the time series into six
periods. In period 1, the user sat in the pose and did not move (Fig. 2,
period 1). In period 2, the RL moved forwards (cf. measured RL posi-
tion [,) while the phase variable ¢ started to drop. Consequently, the
end effector adapted its position p, and orientation a, to follow the
synergy complementary motion. In period 3, the user stopped moving
theRL, which caused ¢, p,and &, to remain constant (Fig. 2). This shows
that only the RL drove the prosthesis movement. In period 4, the user
continued to move the RL, leading to afurther dropin ¢. Correspond-
ingly, the prosthesis was lifted and rotated until it finally reached the
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Fig.2 | RL-prosthesis coordination for an exemplar reaching movement. Time series for the measured RL’s position [,, the phase variable ¢ (equation (15)), theend

effectors’ position p,and the end effectors’ orientation a, (angle around the x axis).

goal pose in period 5 (Fig. 2, period 5). In contrast, we show the final
configuration with the SCC turned off (Fig. 2, top right) In period 6, the
movement was reversed. The RLmoved backward, causing ¢ toincrease
again, which drove the prosthesis back to the initial configuration. In
period 6, the user pulled the RL beyond itsinitial position. In this case,
the phase variable remained at ¢ = 1. This ensured that the prosthesis
would stay inits initial position.

Reaching and reach-and-grasp tasks

In this paragraph, we present the results of three unimpaired par-
ticipants using an exo-prosthesis to accomplish reaching and
reach-and-grasp tasks (see Methods for more details). We used the
SCCmethod intwo purely reaching tasks (intransitive tasks) (Fig. 3) and
three reach-and-grasp tasks, the latter of which involve hand-object
interaction (transitive tasks) (Fig.4). Allmovements were learned from
human templates.

Figure 3 shows an image sequence for the template movement
and the corresponding ‘cyborg’ movement in each reaching task. The
first image shows the starting pose, the third image shows the final
pose and the second image shows an intermediate state. The ‘block
light source’ goal (Fig. 3a) is to protect the eyes from the centre light,
which originates from direction o while the hand keeps a distance of
~0.1 mfromtheface. This task was reliably executed witha100% success
rate (four out of four trials) at a duration that was close to an average
human’s duration (Fig. 5a). The ‘stop gesture’ goal (Fig. 3b) sends a
signal to an agent, which approaches at velocity v, to stop by extend-
ing the arm and presenting the palm in his direction. This task was
alsoreliably executed witha100% success rate (four out of four trials)
at a duration that was close to an average human’s duration (Fig. 5a).

Thisshows that, with the proposed SCC method, lost reaching abilities
canbereliably recovered. Note that the reaching tasks were pre-selected
before execution and did not involve intention recognition.

Figure 4 shows an image sequence for the template movement
and the corresponding representative ‘cyborg’ movement for each
reach-and-grasp task. The goal of all three tasks was for the subject
to reach and grasp the object (that is, the apple (Fig. 4a), the bottle
(Fig. 4b) or the book (Fig. 4c)) at location X, from direction o without
colliding with the table. All three objects were reliably grasped, each
with a100% success rate (four out of four trials). The durations are
showninFig. 5a. This shows that, based on the proposed SCC method,
more complex grasping tasks canbereliably achieved. The accompany-
ingvideo attachment shows the full experiment of representative trials.

Inter-task transitioning

In this subsection, we show the behaviour of inter-task transitioning,
whichwetested with an unimpaired participant (see Methods for more
details). Supplementary Fig. 2 shows the experimental setup, the task
sequence and the time series for the inter-task transition experiment.
The‘cyborg’wasseatedinfrontofatable. Abook (task1),anapple (task2)
and abottle (task 3) were placed on top of the table. The cyborg had to
grasp these objects. We applied the same template motions asin Fig. 4.
We used eye-tracking glasses to track the cyborg’s gaze, and amotion
tracking system to keep track of the objects. The user was instructed
tograsp the objectsin any order by following the task sequence (Sup-
plementary Fig. 2, bottom box). The user could activate a task transi-
tion request (TTR) by looking at the desired object for1s. ATTR was
onlyacceptedinthis workifthe RLwasin the starting position (that s,
phase variable ¢=1). Avalid TTR triggered a context transitionin which

Nature Machine Intelligence | Volume 6 | April 2024 | 481-492

483


http://www.nature.com/natmachintell

Article

https://doi.org/10.1038/s42256-024-00825-7

Human template movement

1) Start pose

Task: protect the eyes from
the centre light coming along
the direction o, while keeping
a distance of

~0.1 m from the face with the
hand.

Task: same as above

b

Task:

signal the agent approaching
at velocity v to stop by
extending the arm and
presenting the palm in their
direction.

Task: same as above

Fig.3|Recovered reaching skills using SCC. a, Block light source. b, Stop gesture.

2) Intermediate pose

3) Final pose

Light successfully
blocked

2) Intermediate pose 3) Final pose

successfully
signaled

boththe task-related RL reference motion and the task-related dynamic
movement primitive (DMP) with the goal pose p, were loaded.

For explanation purposes, the procedure was divided into five
periods. In period 1, the cyborg was in the starting pose and did not
move. He then moved his gaze onto the book, which causeda TTR to
grasp the book. In period 2, he reached for the book. This caused the
phase variable ¢ to drop, and the end effector adapted its position p,
and orientation a, accordingly. In period 3, the user closed the pros-
thetic hand viathe myo armband, which was attached to his lower left
arm (see Methods for more details). In period 4, he returned to the
starting pose while holding the book with his prosthetic hand. In period
5, he placed the book back in its original location and returned to the
starting pose to complete the task sequence. Next, he focused on the
apple, repeating the same procedure. All three objects were reliably
grasped following this sequence, and each had a100% success rate
(four out of four trials). The durations are shownin Fig. 5b. The results
showthat the proposed SCC method allows usersto transition between
different tasks seamlessly.

Goal changes within a task
The following experiments are performed with a subject with pre-
served arm wearing an exo-prosthesis (more details can be found in

Methods). Supplementary Fig. 3 shows the experimental setup, task
sequence and time series for this experiment. The experimental setup
was the same as in the inter-task transitioning experiment. Another
humantemplate motionwas used in this experiment: a ball was grasped
from the table. The red-coloured ball was placed at the default goal
X, ¢er- The blue- and yellow-coloured balls were placed at different goals
(xz and x,,, respectively). The positions were measured by a motion
capture system in a global frame, and by computation subsequently
transformed to the exo-prosthetic base frame (see Supplementary
Information for details). For explanation purposes, the procedure
was divided into five periods. In period 1, the cyborg was in the start-
ing pose and did not move. He then moved his gaze onto the red ball,
which caused a TTR (that is, the corresponding RL reference motion
u,cand the DMP with the goal pose X, 4.swereloaded). In period 2, the
user reached for the red ball, causing the phase variable ¢ to drop, and
the prosthesis reached the default goal position. In period 3, the user
grasped the ball with the prosthetic hand. In period 4, he placed the
ball in the ball bucket, and then he returned to the starting position
(period 5). Next, he focused on the blue ball (located in the middle).
The goal was updated to x,;, and the procedure was repeated. This
experiment shows that the proposed SCC method canbe generalized
to new goal poses.
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Fig. 4 |Recovered reach-and-grasp skills using SCC. a, Reach and grasp anapple. b, Reach and grasp a bottle. ¢, Reach and grasp abook. *Due to the size of the subject
and the system, the starting pose was taken in front of the table. **To ensure a firm grip with the prosthetic hand, the goal pose was adjusted compared with the template.
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Fig. 5| A comparison between the duration of each method. The dataare
presented as median values (the central line of each box) along with the 25th
and 75th percentiles (the bottom and top edges of each box) as well as minima
and maxima (the whiskers attached to each box). a, Box plots for the time it took

for the hand to move from the starting position to the time at which it touched
the object (transitive tasks) or the time at which it reached its final goal pose
(intransitive tasks). b, Box plots for the duration of the entire task sequence
(see Supplementary Fig.1for details).

User studyin VR
We conducted a confirmatory study witha participant with limb differ-
ence and six unimpaired participants in an extended VR setup (more
details canbe found in Supplementary Information). The participants
were asked to grasp an apple on the table, grasp a bottle on the table,
grasp abook with goal pose 1 (horizontally on the shelf), grasp abook
with goal pose 2 (right to goal pose1and vertically on the shelf), grasp
ahatonthe table, perform a greet gesture, grasp a plate on the table
and perform a stop gesture.

For quantitative performance assessment and comparison
between SCC and SEQ, we evaluate three metrics:

« The‘timetocompletion’measures the task completion speed; that
is, the lower its value, the faster the task is completed.

« The ‘gaze focus index’ indicates the level of a participant’s gaze
focus. The lower its value, the higher the gaze focus.

« The‘torso tilting magnitude’ captures the extent of torso move-
ments. The higher this value, the more pronounced the torsotilts.

The metrics are calculated for each task repetition performed with
both control methods (Fig. 6a (participant with limb difference) and
Fig. 6b (unimpaired participants)).

In general, tasks were completed substantially faster with SCC
than with SEQ, where one exception task ‘hat’ shows comparable per-
formance. Additionally, SCC exhibits notably improved gaze focus
across all tasks compared with SEQ, with one exception task ‘apple’
that exhibits a similar value for both SCC and SEQ. Moreover, SCC
demonstrated lower torso tilting magnitude than SEQ across various
tasks, except for task ‘hat’. The reason for similar performance is that
the hat was located at the farthest distance the participants may reach,
while only minimal joint switching was required in SEQ.

Noticeably, the participant with limb difference exhibits lower
variability among task repetitions with SEQ than the unimpaired par-
ticipants as she has been an experienced user of a state-of-the-art
prosthesis. It is also worth noting that an unimpaired participant faced
challenges using SEQ and has managed only ~2.5 repetitions with SEQ.
In Fig. 6b, one is able to see that several data points in SEQ’s time to
completion are located far away from the 75th percentile, indicating
very long time duration; this reflects the challenges that this partici-
pantfaced. In contrast to the large variability and unreliability of SEQ,

the performance variations among task repetitions are much smaller
with SCC. This demonstrates the SCC’s capability of maintaining con-
sistent performance. These facts suggest that SCC requires little learn-
ingtouseand, therefore, the difference inindividual’s learning abilities
does not play an essential role in using SCC.

Discussion

Existing limb-driven methods simultaneously learn a wide range of
possible motions, ranging from an RL to entire arm motions, from
human templates by relying on linear or nonlinear regression tech-
niques” 72, However, the map between a low-dimensional RL
movement and high-dimensional total limb movement is highly under-
determined. Thus, these methods oftenresultininaccurate, jerky pros-
thetic motions that are unnatural and often delayed. Moreover, most
approaches lack contextual information. In this work, we introduced
the SCC framework, which is based on a whole new hypothesis and
fundamentally overcomes these problems: amputated subjects are able
to control atask-dependent, multi-dimensional coordinated prosthesis
motion via low-dimensional limb motion using a single-dimensional
motion phase and together with task and target detection.

Results on the exemplar reaching movement showed that the RL
purely drives the prosthetic movement. EMG-based control, which is
accompanied by non-robust EMG measurements', was omitted for
prosthetic arm motion generation. However, this does not mean that
EMG measurements are or should be avoided entirely. For example,
in this work, the prosthetic hand was able to grasp objects as aresult
of an EMG measurement (Supplementary Table 1). Although the SCC
framework focused on trajectory tracking, future work shall extend
SCCtoadapttheimpedancesetting of the prostheses and the grasping
force. EMG measurements will play a central role here”.

The unimpaired participants solved the reaching tasks using SCC
witha100% success rate at aduration that was close to human perfor-
mance (Figs. 5a,b and 6b). When SCCis used, the accuracy problem s
reduced toasimple tracking problemand fully governed by controller
performance. Therefore, SCCis more accurate than existing methods
that output inaccurate prosthetic positions because of the inherent
underdetermination in the learning approach. Moreover, in contrast
to current approaches, SCC introduces no control delay between RL
movement and the complementary prosthesis motion generation.
The RL position directly controls the prosthesis motion only with
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the dynamics of the DMP in between. The unimpaired participants
solved all reach-and-grasp tasks with a100% success rate. It is crucial
to note that the trajectory generated by SCC is twice differentiable,
as explicitly outlined in equations (21) and (23). On the other hand,
the trajectory generated by SEQ is only once differentiable, as shown
in equation (29) in Supplementary Information. This confirms that
the SCC method reliably generates smooth complementary synergy
movements in complex grasping tasks. However, the unimpaired par-
ticipants reached objects (Fig. 5a) and completed whole tasks (Fig. 5b)
slower thanthey would do naturally. The bulky exo-prosthetic system
may have prevented the subjects from performing the reaching move-
ment more quickly. The longer time taken to complete the whole task
may be also explained by the time-consuming grasping procedure
(seethe accompanying video attachment). Extended algorithms that

resultin faster task completion should beimplemented in the future.
A further key advantage of SCC is that it can adapt to changing goals
and transitions between tasks, asis shownin Fig. 6a,b. The comparison
withthe SEQ mode indicates that reaching tasks and reach-and-grasp
tasks can be solved much faster with SCC. In case of the ‘grasp apple’
task with the SEQ method, the time for the ‘start-to-object’ (Fig. 5a)
is similar to other control modes, but higher for the entire task. This
is because our participants’ strategy was to first move the prosthesis
near the object (as the starting configuration of the prosthesis allowed
this) and then to position the prosthesis to grasp the object using the
time-consuming SEQ approach.

Furthermore, the pilot study with the amputated participant
(Supplementary Fig. 4) confirms that the SCC method also works
with potential users. The higher standard deviation in case of the
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‘grasp apple’ tasks is probably due to the hand-on-object detection
algorithm and the handling of the amputated participant with the
VR system (Fig. 5a). The time was stopped as soon as the distance
between the heel of the virtual prosthesis hand and the centre of
the object fell below a certain threshold. Inthe case of the apple, the
subject found this threshold at different rates. We note that a coloured
marking of the heel of the virtual prosthesis might have facilitated
the participant’s coordination. Inthe case of the book task, however,
the performance remained almost constant. The confirmatory study
revealed a small variability of SCC among task repetitions (Supple-
mentary Figs. 4 and 6). This demonstrates the SCC’s capability of
maintaining consistent performance.

Torsotiltingis acrucial factor when reaching for objects beyond
one’s natural reach. Notably, the preservation of a focused gaze on
the target object, despite torso movement, underscores the adapt-
ability and efficacy of our control approach in real-world scenarios.
Furthermore, the findings derived from the confirmatory study high-
light a notable distinction (Fig. 6a,b): the scattering of torso tilting
magnitude exhibits a considerably higher magnitude for the SEQ
method when compared with our SCC. This observation accentuates
the efficacy of SCC in streamlining the reach-and-grasping process
for users, also achieved through a reduction in torso movements
and, thus, the user’s physical effort. Moreover, the participants’ gaze
focus was improved by SCC compared with SEQ, as told by the con-
firmatory study (Fig. 6a,b). This signifies that SCC facilitates users to
focus on tasks.

A limitation of all RL-driven prosthetic control methods is that
the prosthesis cannot be controlled if no RL motion is involved. For
example, the lower arm cannot be positioned without moving the RL.
In such situations, the probably simplest solution would be using
classical SEQ mode based on EMG as a default. Alternatively, we could
leverage EMG signals to be fused with RL motion and thus have kinody-
namicand muscle input, which could substantiallyimprove as both the
causal muscleinput and motion output would be used for driving the
prosthesis. This might also apply for the situations where the intention
recognition does not work. In future work, SCC shall be validated on
amputated participants wearing a prosthesis to investigate whether
the physicalimpacts of the prosthesis to the limb influence the overall
results. Furthermore, the intention detection remains a challenge
notonly for intransitive tasks but also for unstructured and cluttered
environments. In future work, the intention recognition algorithms
will be extended with three-dimensional vision-based scene under-
standing and other sensing interfaces®, and their performance will
be evaluated for practical life situations. Moreover, the SCC method
will be extended to manipulate more modalities such asimpedance®.
Also DMP’s feature of adjusting the starting pose will be evaluated in
future experiments.

In summary, this work has presented a new, robust RL-driven
control method, called SCC, that can cope with the disadvantages of
existing methods. We experimentally validated the key advantages
of SCC, such as its reliability (that is, its high success rates when per-
forming tasks) and its ability to adapt to goal updates, using a novel
prosthesis with four d.f. Furthermore, a pilot and confirmatory study
withamputated participants and unimpaired participantsindicate that
this method is beneficial for prosthesis wearers in the future.

Methods

This section focuses on explaining the functionality of SCC and
delves into the general and fundamental concepts of experimental
user studies. Detailed implementations of SCC and experimental
setup, along withaccompanyingdata, canbe foundinSupplementary
Information, which includes Supplementary Figs. 1-6 and Supple-
mentary Table 1for visual reference. Additionally, cross-references
withinthe text direct readers to relevant sections containing further
explanations and details.

Concept

SCC can be explained in seven steps, which are shown in Fig. 1. In the
first step, we use a full hand-arm motion x,,(¢) for task Tthat was gener-
ated from experiments with unimpaired subjects that perform daily
living tasks. In this work, we set two intransitive tasks in which the
subjects had to lift their right arm to perform a ‘stop’ and ‘block light
source’ gesture. Furthermore, we included three transitive tasks that
involved hand-object interactions such as grasping an apple, abook
and abottle. Inthe second step, we divide the intact motion x,(¢) into
amputation-specific motions X, (t) and x;(¢) such that

Xu(0) = XA (1) © xg(0), (6]

where the operator @ denotes the tensor product. Thus, we obtaina
motion corresponding to the RL x,(¢) and the corresponding synergy
complement x;(¢). Throughout this work, we demonstrate our
method for the case of transhumeral amputation. However, our
method can also be transferred to other amputation degrees and
limbs such aslegs. Inthe third step, motions x,(¢) and x;(¢) are scaled
to the individual cyborg via the scaling program S, resulting in the
individualized motions X, ,(t) and xg ((¢). In the fourth step, the indi-
vidualized reference motion Xg(¢) is decoded into a phase-based
prosthetic motion program p(¢) in which ¢ is the phase variable.
Furthermore, ¢(¢) is anchored to the RL reference motion x, ((¢)
by sample-based allocation resulting in u/ ; € {f [xxs(&) = f(Y(©), vt} .
The resulting ‘cyborg’ motion is

X)) =u . ®pE). (2

The goal is to minimize the error

e(t) = xy — S7'X(¥) ©))

based on a policy optimizer. For the specific implementation, we use
DMP equations (19) and (21). ADMP is a differential equation system
that can be used to model trajectories. In the fifth step, the measured
RL position v’ := I(m(®)) € R?® (which depends on muscle activation
m(t)) is matched to the task-specific reference trajectory u/ . online,
and a continuous phase variable g(u’) € [0,1] (equation (15)) is gener-
ated online. A value of ¢ =1 means that u’ corresponds to the starting
position of w, ., while ¢ = 0 means that u’ reached the end position of
u’,.. The task-specific prosthetic motion program p(¢) is generated
onlineusing the DMP, where g istheinput. Thus, p(¢) is fully driven by
1(m(¢)). We further consider anintention decoder for seamless transi-
tion between tasks. In step 6, the user’s intention is decoded on the
basis of measurements such as eye tracking and motion tracking. It
outputs the task that is intended to be solved as well as the goal pose
that is related to the corresponding object. If the user switches to a
different task or goal, the corresponding reference motion u’ . and
DMP areloaded. Insummary (step 7), this framework leads toacyborg
movement X that corresponds to a natural synergistically coordinated
movement of an entire arm.

Synergy dataset

We took the human template motions from the dataset in ref. 31.
This dataset contains multi-modal measurements such as the Car-
tesian marker trajectories of shoulder-arm movements from six
right-handed, male, unimpaired humansubjects (age 30 + 5.81 years).
Thesubjects performed 30 table-top activities that would be useful in
daily life (inref. 32, we analysed this dataset for kinematic and muscular
synergies). In this work, we used two intransitive tasks (in which no
objectswereinvolved) and three transitive tasks (thatinvolved hand-
objectinteractions) for validation purposes. In the intransitive tasks,
the subjects lifted their right arm from a relaxed pose on the table to
perform common gestures (‘block light source” and ‘stop gesture’).
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The transitive tasks involved hand-object interactions such as ‘grasp
anapple’,‘grasp abottle’and ‘grasp abook from the shelf”. These tasks
aresuitable for demonstrating our proposed method for two reasons.
First, they involve complex arm movements with multiple d.f. (includ-
ingtheupperarm, forearm and wrist rotation). Second, the prosthetic
hand cangrasp objects (thatis, anapple, abottleand abook). We scale
the captured template motions x,(t) and xz(¢) (Supplementary Fig. 5) to
individual subjects by using a parameterized kinematics model. In this
work, we use arm segment length as the kinematic parameter. However,
note that the parameterization step is not limited to arm lengths but
can be extended to further modalities such as bone diameter.

SCC

Kinematic synergy identification. The core of kinematic synergy
identification methods is to find amapping froma given joint space R:
to a more compact representation in a lower-dimensional space R
(ref. 32). For the sake of argument, let us consider the existence of a
template human with measured joint state g, that can be consistently
scaled to an arbitrary unimpaired human. For example, if the mathe-
matical tool for finding the synergy space is linear principal compo-
nents analysis, the goalis to find a transformation matrix W € R that
maps thereference synergy coordinate vector v, € R'to thejointangle
vector q, € R such that

q. ~ W+ q,, “4)

where g, = const.is the temporal mean of q,. Through this method it is
possible to identify kinematic synergies across various tasks in unim-
paired subjects® and even design controllers in the synergy space R%
for robotic tools such as exoskeletons®.

Cyborg system. For anideal cyborg system, the prosthesis shall com-
plement the RL motion to generate the synergistic arm motion of the
template human such that

! _
q.rq =~ Wy, +q,, (5)

where q. = [qlqp]T denotes thejoint vector of the cyborg system. This
vector is composed of the RL joint vector ¢, and the matching joint
vector of the prosthesis q,, thatis, we assume that the reference human
and the resulting cyborg system match at least regarding their
kinematics.

Kinematic synergy complements. For the cyborg and the template
human to be compatible with each other, let us assume that the tem-
platehumanis dividedinto parts Aand B, correspondingto the junction
between residual and prosthesis in the cyborg system, respectively.
This allows to stack the motion states at the junction for the effective
cyborgequation. In previous works on limb-driven prosthesis control,
the controlinputuis assumed to be the RL position q,such asinref. 21.
The system can then be written as

q=:-u), _ Wa qia
~rWV +q, =: Ve+| . (6)
qp WB qt,B

With this, the human would be able to directly control the prosthesis
configuration

QW) ~ WeWiu— WyWiQq, , + G 7)
asthejoint-space synergy complement of q,=u. Herein, the superscript

hashsymbol denotes a pseudo-inverse of the respective matrix. How-
ever, since q;isnotdirectly measurable, thisapproachisnotapplicable

space as follows. Differentiating equation (5) and left multiplication
with the respective Jacobian]}.(q.) andJ.(q,) leads to

. a\ . Wa\
Xc =Jc(qc)< . )zxt zJt(%)( )Vt~ (8)
q Wg

p

When stacking the equations of the Cartesian RL velocity x,and equa-
tion (8), we get

( u' =X ) B ( Ji(anq, ) L(’“) _ (JA(QA)QA) B (JA(QA)WAVt>
X =% ) \Je@d ) \% J@0d, J@owv, )’
where the Cartesian space human-driven RL movement acts as control
inputu’ e R°. Withthis, we candeduce the Cartesian-level differential
synergy complement of x,to be
X, (')~ Jo(q)WW i (qu) u, (10)
| L —_

Pscc

where Pscc = ) (q)WW,J% (q,) denotes the according synergy comple-
ment projector, generating prosthesis motions directly from com-
manded limb movements. However, we can identify at least four
challenges that prevent us from applying equation (10). First, its dif-
ferential nature requires the template Jacobian J.(q,) to be coupled to
the control input u so that the full synergy complement x, can be cal-
culated online. Second, the choice of the pseudo inverses makes this
approach dependent oninterpretation. Third, synergies cannot gen-
eralize per se to new goals and do not allow for dynamic trajectory
generation. Fourth, the static nature of the presented synergy formal-
ismso far makes transition between tasks during executionimpossible.
Inturn, we propose to extend the useful, however, rather limited static
synergy mappings in the sense of equation (4) and transform them to
a dynamic and more flexible formulation. Specifically, we fuse a new
SCC-based interpretation of synergies with state-of-the-art
phase-based trajectory learning and generalization approaches.

Kinematic synergy sequencing. Our previous results* indicate that,
instead of codingall synergiesinto asingle systeminthe sense of equa-
tion (4), one could reduce the number of necessary synergies to
describe meaningful arm motions down to L’ = 1. This deeper
one-dimensional structureinthe synergy space appearstobeevident,
when analysing one specific task class only. The L’ = 1 dimensional
(task-aware) synergies existinrespective (sub-)manifoldsand notina
single L-dimensional one. Task sequencingis then achieved by switch-
ingthe weight vector w;along the task-encoding sequence (note that,
inequation (6), Wis amatrix). Therefore—in contrast to muscle syner-
gies®* thatare mere anatomical properties or postural hand synergies®
thatwere also used for robot hand design®** and control**—sequencing
of joint-level motion segments driven by one-dimensional segment
synergies can be used to encode entire tasks such as drinking from a
bottle. For static synergies a single motion segment driven by a par-
ticular segment synergy becomes

Qi ¥ Wil + G =Wilp+ 4, (1)

where the ith synergy coordinate v; € R essentially takes the role of
anindependent phase variable ¢ € [0, 1]. To transition from one motion
segment to the next, the weight vector w;is then simply switched syn-
chronously to the limitcycle of ¢ and q,; is updated accordingly.

Analogue to equation (6), the phase-based reinterpretation is
broughtinto the SCC representation

i . . uy, Wa qia
without externalmeasurement devices such as exoskeletons or visual ( )zwvt +q, =: ( >¢+( " ) (12)
tracking systems. Therefore, we transform the probleminto Cartesian p Wg Acp
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allowing one to express the coupling between the residual inputuand
the according prosthesis motion through ¢ as

A =Wl + Q. (13a)

Y=w'(u=-4,). (13b)
Now, duetothe firstand second challenge, we bring equation (13b) to
the Cartesian level using the forward kinematics map t(-) € SE(3) and
u’ = t(u).

Xp = t(wB(/) + qt’B) , (14a)

Y=w (W) - q,,). (14b)

Solving equation (14b) requires knowing the synergy submatrices w,
and wy and the inverse kinematics map t~!(u’), which is hardly achiev-
able under real conditions and real humans.

In contrast, we leverage the known human template motion x,(t)
as follows: First, it is encoded into an SCC-compatible phase-based
representation x,(¥). Then, instead of using equation (14b), ¢ is esti-
mated by solving the optimization problem

¢* = argmin || Xz(¥) — w'|l,, subjectto 0 <w <1. (15)

Equation (15) can be efficiently solved even in real time from the
phase-parameterized template human x,(¥) and the Cartesian-level
measurement of the RL w', then finally driving the prosthesis position
Xp (P (u)).

However, the third and fourth challenge remain unsolved yet.
Neither are velocity or acceleration encoded, noris it possible to change
the goal or even a task online. For this, we generalize the encoding
process beyond the static version discussed so far. Specifically, we fall
back on the well-known idea of encoding originally time-series data
intoaphase-based dynamical system. As awell-known implementation
we chose DMPs* to encode the human template complement X,(t) into
its matching phase-based DMP representation xz(¢*(u’)), driven by the
human residual motion w'. Finally, we arrive at the dynamic reference
for the prosthesis (x,(£), %,(6), %,(£)) = (Xg(*(u")), Xp(P* (")), Xg(¢* (W)
driving the underlying motion control system described next. As shown
inequations (19) and (21), we also employ DMPs’ well-known ability to
generalize to new goals or transfer between task instances.

Motion control. The prosthesis hand pose is defined as

p =X, =[r, ®p], (16)

where r,, € R*denotes the position vector and ® € SE(3) the orientation
vector. The prosthesis motion control law is defined as a basic opera-
tional space controller on joint torque-level

Ki(rpq —1p)

17)
1o (@K

Tmyp =jT(q)< ) + qu + 8, + s

wherer, denotes the desired Cartesian position of the prosthetic hand
(cf.Supplementary Fig. 1b), respectively. ¢ € R3isthe orientation dif-
ferenceinthe Euler angle representation,and J, € R>3is theJacobian
between the Euler angle velocities and the angular velocities*°. The
diagonal matrices K; and K; € R¥3 denote the translational and rota-
tional stiffness matrices, respectively. D € R***is the damping matrix.
Furthermore, §,and t;, denote the gravitational effect estimate and
the frictional effect estimate, respectively.

The exoskeleton compensated for its own weight as well as the
weight of the prosthesis. The feed-forward control law, which was
applied to the exoskeleton, is defined as

Tm,exo = gexo(e) + i'f,exo’ (18)
where g.,,(0) and t;.,, denote the g,,(0) estimates and the t;,,, esti-
mates, respectively.

In the experiments with SCC, the exoskeleton was controlled in
gravity compensation mode (equation (18)), and the prosthesis fol-
lowed the control law that is defined in equation (17). The control
parameters of equation (17) were empirically determined on the basis
of afull simulation of the exo-prosthetic system. They were chosen to
be K, =125 N/ml,,; and K, = 25 N/rad/,.,, where I3, ; € R3*3 denotes a
identity matrix.

Human template encoding. For the specificimplementation, we used
the DMP framework from refs. 39,41 to generate a desired position
tp 4() € R and orientation a(¢) (which is expressed as a quaternion
throughout this manuscript) to feed the controller in equation (17). A
DMP is essentially a nonlinear system that can be written as®

".'P,d = Ap(rg - rP,d) - Bpr,d - Ap(rg - ro)‘p + Apfp(ll)), (19)

wherer,and r, € R3are the starting position and goal position, respec-
tively. The positive definite and diagonal matrices A, and B, € R>3
denote the stiffness and damping, respectively. A forcing term is
defined as

2 ()&,

bW =3 o0

¥, (20)

where 2,() = exp(—=hy (¥ — c,)»)is a Gaussian function. h,and c, are the
Gaussian function’s width and centre, respectively. The parameter
vector §, € R3islearnedforadesiredtrajectorybased onlinearregres-
sion (cf. ref. 39). In this work, the hand position trajectories ry ; of task
T (rgs were the positional component of X, s in Fig. 1), and they were
extracted from the synergy dataset (‘Synergy dataset’ section).

The quaternion-based orientational DMP can be written as**

@ = 2A,A (log(ag x @)) — Bow — 2A,A (log(ag x @o)) ¥ + Aofo(),  (21)

Q= %V(w) xa, 22)

where the output orientation is expressed as the unit quaternion
a=a,+na,+ ma,+kas;, and1, n, mand k denote the quaternion basis.
Thestarting quaternoin and the goal quaternion are denoted by a, and
a,, respectively. The positive, definite, and diagonal stiffness and damp-
ing matrices are denoted by A, and B, € R*<3, respectively. w € R?
denotes the angular velocity, and f,(¢) (cf.equation (20)) isanonlinear
forcing term. The operators [J, *, log(-)and exp(-)denote the quaternion
conjugation, product, logarithm and exponential function, respec-
tively. Furthermore, we introduced the following operators:

Ab) := (by, by, bs)" 23)

V() =0+ mz + nz, + kz;, 24)

where b =0+ mb, + nb, + kb, denotes a non-real quaternion, and
z=(z,2,,73)" . To integrate equation (22), we used the following
formula*

a(t+ 8t) = exp (%StV(w)) x a(t), (25)

where 6t denotes the time step. Corresponding to the learned position,
the orientation of the hand’s trajectory ag in task T'is learned (ag  is
the orientation component of X; s in Fig. 1).
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We note that, on the policy level, the accuracy corresponds to
the offline learning stage performance of a DMP, thatis, how good are
thetrajectories of theintact hand-arm approximated by the DMP.On
the task level, the accuracy only depends on the identification of the
actual goal (a;andr,). Another potential source of accuracy errors may
ariseifthe prosthesis user deviates from the template motion, as seen
inupper arm or torso movements (refer to Supplementary Video 2 at
02:48 min). Insuchinstances, SCC can effectively compensate for local
inaccuracies. However, if there are substantial global deviations, such
asthe upper arm movingin acompletely different direction, this may
beinterpreted as the user’s intentional choice not to execute the task
and decide for another task. However, the systematic analysis of this
dynamic cognitive process and its interplay with SCC would need to
be handled by appropriate onlineintention decoding and adaptation,
whichis beyond the scope of this work.

Participants and experimental protocol

We conducted two studies. Instudy 1, one female subject aged 58 years
with transradial arm amputation of the right arm (>1year) and three
male subjectsaged 33.3 £ 0.58 (mean * standard deviation) years with
preserved arm participatedinthe experiments. In study 2, one female
participant, 23 years old, born with an undeveloped right forearm,
and seven male participants aged between 22 and 32 years, without
limb differences participated in the experiments. All subjects gave
their written informed consent before participation. No participant
received financial or other compensation. The experiments took place
at the Munich Institute of Robotics and Machine Intelligence at the
Technical University Munich. All the experiments were conducted
according to the principles in the Declaration of Helsinki. Guidelines
for study procedures were provided by the Ethic Commission of the
Technical University Munich. The experimental protocol canbe found
in Supplementary Information. Note for data collection we have uti-
lized Simulink 2017b, EtherLab 1.5 and Vicon Nexus 2.15, while MATLAB
2017b and 2021awas used for data analysis.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All experimental data collected during the user study in virtual
reality can be accessed for download at https://doi.org/10.6084/
m9.figshare.25368253 (ref. 42).

Code availability

We have included MATLAB scripts to reproduce Fig. 6 in this man-
uscript, as well as relevant Supplementary Figs. 1-6 in Supple-
mentary Information. Additionally, a ‘Read me’ file is provided for
additional guidance. These can be accessed for download at https://
doi.org/10.6084/m9.figshare.25368253 (ref. 42).
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Data exclusions There were no data excluded.
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Population characteristics Study 1: One female subject aged 58 years with transradial arm amputation of the right arm (>1 year) and three male
subjects aged 33.3 +- 0.58 (mean+- standard deviation)
Study 2: One female participant, 23 years old, born with an undeveloped right forearm, and seven male participants aged
between 22 to 32 year




Recruitment Patients with impaired limbs were recruited from the pool of candidates within the Orthopedics & Trauma Therapy
department at Klinikum rechts der Isar, Technical University Munich Hospital. Additionally, unimpaired subjects were
recruited from students and researchers affiliated with TUM.
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