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Developing robust benchmarks for driving 
forward AI innovation in healthcare

Diana Mincu       & Subhrajit Roy     

Machine learning technologies have seen increased application to the 
healthcare domain. The main drivers are openly available healthcare 
datasets, and a general interest from the community to use its powers 
for knowledge discovery and technological advancements in this more 
conservative field. However, with this additional volume comes a range 
of questions and concerns — are the obtained results meaningful and 
conclusions accurate; how do we know we have improved state of the  
art; is the clinical problem well defined and does the model address it?  
We reflect on key aspects in the end-to-end pipeline that we believe  
suffer the most in this space, and suggest some good practices to avoid 
reproducing these issues.

Our intended audience is anyone who performs benchmarking 
experiments on machine learning (ML) in healthcare, and submits 
these results to conferences or journals; and anyone reviewing for 
these venues. By clinical benchmarking we refer to following the  
combined process.

	1.	 Choosing a problem in the healthcare space.
	2.	 Using or creating accompanying datasets.
	3.	 Developing a suite of ML models and their corresponding 

infrastructure.
	4.	 Evaluating these models on a set of criteria for how well they 

solve the original problem.
The problem of finding a good benchmark is much more preva-

lent in the healthcare domain because there is not enough alignment 
on what this actually constitutes1. In a typical research cycle, when 
ML is first applied to a new medical area it leads to a publication that 
measures the model performance and sets the bar for that problem. 
The dataset, ground truth, metrics or code are not always scrutinized 
as much as in traditional ML, as there is a lot of interest in seeing what 
the new technology can actually do in practice. We would argue that 
benchmarking papers should be scrutinized even more, as variability 
in definitions, set-ups and evaluation can lead to a lot of misrepresen-
tation of findings, as well as confusion for newcomers to the field on 
how to compare their work.

In the next four sections, we cover the areas where we believe most 
of the discrepancies between two different benchmarking publications 
lie: datasets, tools and practices, problem formulation and results. In 
our view, any such changes could have an impact on the overall clini-
cal application, as advancements would be much easier to quantify. 

Inspired by ref. 2, we classify our suggestions into three categories: nec-
essary, recommended and encouraged (Box 1–4). Each section builds 
upon the previous one, and is placed within a given bucket by taking 
into account a mix of its impact and difficulty of implementation. Even 
if some might not agree fully to the categorization, we expect to start 
a conversation around these topics that will see changes in the field.

There is existing work in this space looking at either defining 
reporting standards (for example STARD-AI3, TRIPOD-AI4) or specify-
ing best practices when it comes to model development and technique 
reporting5. Both of these directions encourage the inclusion of addi-
tional details in the final works to reduce uncertainty when it comes to 
the methods employed. We believe our work builds upon and extends 
these works, by looking at the end-to-end pipeline and tackling less 
explored topics such as tools and infrastructure.

Datasets
Large, high-quality, diverse and well documented health datasets are 
hard to obtain as data sharing is not the norm in ML for healthcare 
research6. First, health datasets contain extremely sensitive informa-
tion and are therefore firmly regulated, with recent research looking 
to understand patients’ attitude towards health data sharing7,8. This 
is why these datasets are typically de-identified before public release, 
a process that involves the removal of the patient’s name, identifica-
tion number, date and location of data collection. Even so, it has been 
recently shown that anonymized magnetic resonance imaging (MRI) or 
computed tomography data can be used to reconstruct a patient’s face9, 
which raises questions on whether the current de-identification stand-
ards are sufficient for safe public data release. Second, the collection, 
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achieved through a breakdown of the various features inside the dataset 
(informally referred to as the Table 1 data18); we offer more suggestions 
on how to achieve this in the ‘Necessary’ section of Box 1.

Another example is that in 2020–2021 various papers trained models  
on datasets containing chest X-rays for COVID-19 modelling, where 
images of paediatric patients represented the control group. However, 
such models are likely to overperform as they are merely detecting 
children versus adults, and are inherently biased19. The mere availability 
of this dataset during the early days of the COVID-19 pandemic caused 
the community to overindex without careful consideration of whether 
it was appropriate for their research question or not. Such cases could 
be avoided if datasets were accompanied by a transparency artefact 
(for example Healthsheet20) along with the paper. The Healthsheet 
questionnaire, for example, contains specific questions on different 
aspects of a dataset such as the collection process, composition, dis-
tribution, cleaning and recommended use cases. Such artefacts vastly 
improve the transparency and accountability of datasets and data 
curators, and bring to the surface technical imbalances (for example 
improper acquisition protocol, equipment manufacturer), which may 
adversely affect model predictions. We realize that the creation of an 
extra artefact along with their manuscript is time consuming, given that 
researchers often work towards tight deadlines. To manage workload, 
researchers may choose to share such artefacts after submission.

Tools and practices
One of the more unseen and less talked about sides of ML research is the 
infrastructure. We use the term infrastructure to refer to the design of a 
system, together with the underlying code that forms it, including the 
environment in which it runs, and the software libraries that are used. 
While often it is considered unglamorous, it is absolutely necessary 
and can make or break the result quality and reproducibility.

While the role of good coding and system design practices has 
been previously explored for production or deployment set-ups21, 
in-depth descriptions of the libraries or pipelines used for a publication 
are still lacking. This is especially important in the healthcare domain, 
as any impactful finding is quickly picked up by news outlets and spread 
as ground truth, or used by other researchers as the basis for future 
explorations. Looking through the retraction database for recent 
ML papers in healthcare that contained errors, we can find troubling 
examples such as “an outstanding Parkinson’s Disease predictor” which 
the authors claim “has the potential to revolutionize the diagnosis of 
PD and its management”. Upon later inspection it was found to exhibit 
errors in data, errors in methods, errors in results and errors in analyses. 

maintenance and curation of such datasets require substantial effort, 
time and expense. Moreover, the datasets are seen as a competitive 
commercial advantage, with cases where companies are formed around 
the exclusive use of one. Hence, they tend to have substantial business 
value, thereby making it less appealing for data collectors to freely share 
their work. However, to broaden the impact of publishing research on 
non-public datasets and encourage reproducibility, data curators could 
set up infrastructure allowing the community to develop models by 
using privacy-preserving ML techniques such as federated learning10–12. 
In this setting, the data controller defines its own governance processes, 
associated privacy policies and access management strategies, during 
both the training and the validation phase. This unlocks the explora-
tion of health datasets by external researchers while retaining data 
privacy, thereby accelerating progress. We do however acknowledge 
that there is a steep learning curve in setting this up, and it is difficult 
to trust such systems given that these methods are relatively new. It 
might be preferable then, at the beginning, for data curators to work 
with vetted external data scientists. Another field that is promising for 
retaining business value is tracing when a member of a dataset is used to 
train a model. Examples of this include recent work on ‘watermarking’ 
a given dataset to facilitate identification of models trained on it13, or 
techniques such as membership inference14. We do caution that this 
field is not yet established, so care needs to be taken if going this route.

The low availability of public health datasets often forces the com-
munity to rally around one or two that are accessible, thereby overfo-
cusing on a few applications. For example, popularly used electronic 
health records datasets such as the MIMIC-X series15–17 primarily contain 
intensive care unit data, which are frequently recorded but represent 
merely a fraction of the population of patients admitted to hospitals. 
In addition, MIMIC-X is curated from a single site and is therefore less 
likely to produce fair and inclusive ML models. As such, models devel-
oped on these datasets may not necessarily generalize to other wards 
or find hospital-wide applications. A thorough characterization of the 
data is needed for external researchers and developers to evaluate the 
data quality, and decide whether the methodologies proposed in the 
paper can be expanded to their use case. This can also help identify 
unwanted demographic biases (for example skewed distribution for 
age, gender, socioeconomic status). This data characterization can be 

Box 1

Dataset suggestions
Necessary

•• Provide a thorough description of the provenance, demo
graphics and content of the dataset (for example, Table 1 data).

•• Apply and include numerical (for example, mean, variance, min, 
max and correlation matrices) and/or graphical (for example, 
scatterplot, histogram, heatmap and dimensionality reduction) 
exploratory data analysis in the final work.

•• Include details of how the quality of the dataset was verified 
by describing missing features, imbalanced data, duplicate 
instances, sampling bias and other dataset-specific issues.

Recommended
•• Release a transparency artefact by using standardized 
questionnaire templates (for example, Healthsheet20) along with 
the paper.

Encouraged (private datasets only)
•• Use robust infrastructure developed by non-profits such as 
Openmined21 to host and manage health datasets.

Box 2

Tools and infrastructure 
suggestions
Necessary

•• Add an implementation section in either the main paper or the 
appendix.

•• Add a ‘How was this implementation verified?’ section for 
submissions.

Recommended
•• Add an ‘Experimental environment’ section in the final works, 
which should not count towards the page limit.

Encouraged
•• Provide links to the open-source code and ways to run it.
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All of these could be caught earlier in the review process if a detailed 
‘infrastructure used’ section raised any red flags. We would like to 
encourage authors to describe their implementation and system design 
in more depth. Adding a detailed diagram of their modelling pipeline 
or including rigorous descriptions of data processing modules, such as 
mapping tools that might have been developed, are a few examples of 
what we would expect to see. This is a lightweight proposal and should 
be fairly simple to adopt, with only a small overhead for the authors.

To enforce this more broadly, we would like to encourage confer-
ences to add a ‘How was this implementation verified?’ section for 
submissions. Authors will be required to describe what steps they have 
taken to ensure the correctness of their work. Where appropriate, code 
reviews are a great way for any work to be sanity checked, and while 
not foolproof this can still help catch problems before it is too late. 
Furthermore, we want to advocate for adding unit tests and checking 
for code coverage. Apart from the immediate benefit of validating the 
expected behaviour, it is much quicker to understand a piece of code by 
looking at how it is used in practice, and tests offer a glimpse into this. 
While our recommendations rely heavily on coding, we acknowledge 
that certain techniques reuse existing implementations. Alternative 
ways of testing, such as checking for a matching performance to the 
original work, would also be covered. While the addition of this sec-
tion introduces an overhead for both the reviewers and the authors, it 
contributes to the overall reproducibility goal and propagates good 
practices throughout the community.

Even so, it takes time and resources to investigate the accuracy 
of reported findings once they have been publicly released, and often 
this involves rebuilding the paper’s entire set-up from scratch. To make 
this easier, conferences and journals have started to include a section 
on code availability, encouraging researchers to open-source their 
work. This is a great step forward, and even though still not widely 
adopted the importance of code publication is accepted by the research 
community. As an example, the Machine Learning for Health (ML4H) 
conference collects statistics on how many submissions will have their 
code released. In the year 2020, only 66% of submissions reported they 
would do so. This number increased in 2021 to 73%.

We believe that, in addition to this, conferences should ask for 
an extra section called ‘Experimental environment’, which should 
not count towards the page limit. This would be a superset of the 
‘Code availability’ tick box, requiring authors to also list all publicly 
available libraries used and their version. We believe this is important 
as familiarity with the tools used is a big factor for trustworthiness.  

We understand that this could be a cumbersome task at first, especially 
as projects grow larger and there could be tens if not hundreds of librar-
ies used, but without it there is no true reproducibility.

Above all, open-sourcing the code remains the most transparent 
way for the community to check results. This is strengthened if it is 
released together with a script to run the code, and real or synthetic data 
depending on the possibilities. In the case of synthetic data we would 
also refer back to the dataset section for further recommendations.

Problem formulation
We focus on clinical problems that have been posed as supervised 
prediction problems as these constitute the majority of the ML for 
healthcare literature.

The most important step for supervised learning in healthcare is 
to decide which clinical labels to predict. Error or bias in labelling is 
common in ML and can lead to subpar models. It was estimated that test 
sets of popular datasets contain at least 3.3% label errors on average22. 
Correcting these labels allows lower-capacity models to outperform 
commonly reported state-of-the-art models.

Proper annotation of instances in healthcare datasets usu-
ally depends on the expert knowledge of medical professionals. 
Labels are typically either fully defined by clinicians, or generated 
semi-autonomously using rule-based methods incorporating clinical 
guidance. Examples of the former include skin classification from der-
matology imaging23, breast lesion detection in mammograms24, referral 
recommendation in optical coherence tomography25, segmentation of 
lymph nodes on multiparametric MRI26 and seizure detection using EEG 
data27. Expert-guided labels usually involve developing a set of rules to 
identify certain conditions and using the rule set to annotate the full 
dataset. Examples include prediction of adverse events or interven-
tions in electronic health record data such as acute kidney injury28, 
mechanical ventilation29, medication orders30 and continuous renal 
replacement therapy31. In both cases, the labels would closely mirror 
a clinician’s workflow, the goal of labelling being to document the 
process in which medical professionals make decisions. We therefore 
strongly encourage the use or improvement of existing labels such as 
those in the Phenotype KnowledgeBase32.

For expert-defined labels it is imperative that a detailed descrip-
tion of the labelling process used is included in the paper. Note that 
even when labels are fully defined by experts there may be variability 
among healthcare professionals on the annotation of an instance. 

Box 3

Problem formulation 
suggestions
Expert-defined labels
Necessary

•• Add a detailed description of the labelling process used in the 
paper.

Expert-guided labels
Necessary

•• Add a ‘Label analysis’ section in the main paper.
•• Investigate ‘label leakage’ in the data and include findings in the 
appendix or supplementary information.
Recommended

•• Implement a multistage label quality framework consisting of 
manual feature inspection, label statistics and case reviews.

Box 4

Results suggestions
Necessary

•• Include fairness measurements, calibration scores and 
label-dependent metrics during model evaluation.

•• Include comparisons with baseline models and tune the bias–
variance trade-off with respect to model complexity.

Recommended
•• Perform failure analysis — identify instances where the model 
fails and investigate their commonalities. We recommend 
methods such as the ‘medical algorithmic audit’ framework for 
structured failure analysis45.

Encouraged
•• Include thorough descriptions of experiments that need to be 
done, but were not performed.

•• Add model visualizations to the resulting research.

http://www.nature.com/natmachintell
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Researchers should report whether a single clinician/expert or a com-
mittee of experts labelled instances, and if the latter then report the 
inter-rater agreement. To demonstrate thoroughness, authors should 
report the average time it took to annotate each instance. Researchers 
may also provide a benchmark by sharing the human-level perfor-
mance. Note that these suggestions are not exhaustive and are included 
to guide the researchers. This reporting will capture the subjectivity 
in labelling among raters, and provide an idea of the robustness and 
reliability of the labelling process. It also sets a bar for how subse-
quent studies should approach labelling for other tasks defined on 
this dataset.

In the case of rule-based or expert-guided labels, a robust pro-
cess is required to validate them, as they often contain anomalies 
in individual instances and/or suffer from label leakage. We suggest 
performing an analysis on the distribution for each label, including 
patient demographics for cohorts corresponding to each label class, 
label counts per subject or instance, and distribution statistics (mean, 
median, percentiles, variance). In addition, for continuous labels in 
temporal data, the distribution of the label onset time and distribu-
tion of the label duration should also be reported. These should be 
cross-referenced with expert clinicians to detect any anomalies in the 
label distribution.

We also suggest that researchers investigate whether there is any 
potential label leakage in their problem formulation. This usually leads 
to a false high performance and requires domain knowledge to identify 
and solve. Label leakage may happen for various reasons when data 
from either the validation or the test set have leaked into the training 
set. This problem can be relatively easily solved by checking whether 
the same instances exist in multiple splits and if there is a duplication 
of instances, and by ensuring that the blind test set remains locked until 
the final results are computed for inclusion in the paper. Label leakage 
may also occur when certain operational or observational features 
undesirably reveal the state of a label. Researchers should perform 
feature importance analysis to inspect suspicious relationships33. If 
identified, such features should be reviewed with clinicians to identify 
whether they are indeed undesirably indicative of the ground truth.

Ideally this would be combined in a multistage label quality frame-
work consisting of manual feature inspection, label statistics and case 
reviews. A methodical approach allows researchers to ensure consist-
ency throughout the process. This approach, albeit time consuming, 
if open-sourced can be adapted by the community on other tasks on 
the same dataset, or even datasets from other domains, reducing the 
workload in the long run.

Results
Investigating and comparing model results becomes a make-or-break 
step, as the ultimate goal for much healthcare research is aiding clinical 
practice in some capacity. For this to take place, we need confidence 
that the model will not cause any harm — either by making the current 
state worse, or by introducing any new problems. Moreover, the further 
away from clinical practice a proposed method is, the more evidence 
we need that it actually works.

A growing field has been looking at fairness and robustness evalua-
tion for ML in healthcare, and a number of works have been advocating 
for more fairness metrics to be included with model reporting. One way 
to do this would be by making use of model evaluation tools such as 
TensorFlow Model Analysis. In addition to adding a layer of consistency 
when it comes to analysis, such tools have the added benefit of providing 
APIs (application programming interfaces) for fairness measurements. 
By using and reporting these results, it can become common practice 
to look beyond the full test-set performance. Comprehensively report-
ing a broad set of metrics will allow different aspects of the model to be 
questioned and understood. For example, looking at the class imbalance 
and showcasing metrics based on the label skew is critical (for example 
reporting the area under the precision–recall curve alongside just the 

area under the receiver operating characteristic), as well as including 
clinically relevant metrics such as sensitivity and specificity34.

When it comes to fairness and robustness, there are a few key 
issues that keep surfacing: (1) performance across subgroups differs; 
(2) similarly performing models behave differently in unexpected 
ways when there is a shift from the training distribution. Recent work 
has shown that general mitigation techniques developed for some 
fairness issues do not translate so well when it comes to healthcare 
applications35. Together with ref. 36, it showcases a number of stress 
tests that were performed during model investigation, that we argue 
should be performed as part of the usual benchmarking routine to bring 
such issues to the surface before it is too late. A popular benchmarking 
study on MIMIC-III1 has recently been found to display issues when it 
comes to fairness and generalizability37. We therefore want to stress 
the importance of the community becoming more familiar with the 
model’s performance in different contexts, and include stress tests. 
Future improvements could then not only target the base model per-
formance on the training set, but also see what technique is the most 
resilient when faced with real-world contexts.

Aside from looking at metrics and tables, visualizations can also 
help investigate the model’s performance. A few suggestions would 
be activation atlases38, attention heatmaps39, grand tour40, integrated 
gradients41 or concept activation vectors42. These can help identify 
what the model is learning and help test these techniques in different 
contexts, providing valuable data for future research directions. We 
do want to acknowledge that, in the fields of model explainability and 
interpretability, results can be misinterpreted43,44, and urge researchers 
to familiarize themselves with the various techniques and their failure 
modes to avoid misuse.

Finally, we are aware that there is always more work left to be done 
when finalizing a research paper. More often than not, there are linger-
ing experiments that authors wanted to perform, but were unable to 
owing to various constraints. While some are listed in the limitations 
sections, typically these address continuations of experiments already 
mentioned. We believe that asking authors to further write down pre-
cise experiments that were left out can help both expand upon that 
work, and also spread awareness of key tests.

Clinical deployment
While innovative ML models have been developed for healthcare, very 
few of them find real-world application46,45. Recent surveys on ML-based 
clinical tools have shown that well validated models, achieving good 
performance in the development stage, may fail to show any clinical 
benefit for patients when compared with routine care47.

We acknowledge that the deployment of ML in healthcare for 
researchers is hard, as barriers to implementation include regula-
tion, incentives, lack of appreciation and generalizability concerns, 
to name a few. In addition, prospective validation studies require time 
and money, which can be a big challenge. Under these circumstances, 
papers that go the extra mile47,48 and show some form of validation 
studies should be positively distinguished.

Papers studying the clinical effectiveness of ML tools should be 
rigorous in reporting various aspects of the study, including but not 
limited to study setting, criteria for inclusion, human–algorithm inter-
action and its downstream effects, methods for continual learning 
and most importantly a comparison with existing clinical practice. To 
improve the quality of reporting, we recommend that authors follow 
validated guidelines such as checklists published by the CONSORT-AI 
and SPIRIT-AI steering groups45,49.

While current benchmarking papers are more focused on creating 
an upstream data science benchmark for clinical research in healthcare, 
we strongly believe that the future of applied healthcare research will 
see a lot more emphasis on the clinical deployment aspect, as the field 
moves from theory to practice and the array of challenges associated 
with it are explored in greater depth50,51.
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