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Anomalous quantum transport in fractal
lattices
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Fractal lattices are self-similar structures with repeated patterns on different scales. Quantum
transport through such structures is subtle due to the possible co-existence of localized and extended
states. Here, we study the dynamical properties of two fractal lattices, the Sierpiński gasket and the
Sierpiński carpet. While the gasket exhibits sub-diffusive behavior, sub-ballistic transport occurs in
the carpet. We show that the different dynamical behavior is in line with qualitative differences of the
systems’ spectral properties. Specifically, in contrast to the Sierpiński carpet, the Sierpiński gasket
exhibits an inverse power-law behavior of the level spacing distribution. As a possible technological
application, we discuss a memory effect in the Sierpiński gasket which allows to read off the phase
information of an initial state from the spatial distribution after long evolution times. We also show that
interpolating between fractal and regular lattices allows for flexible tuning between different transport
regimes.

Recent advances in the engineering of quantum systems have spurred
quantum technology applications, including the vast field of quantum
simulation. Different experimental platforms allow for the design and
control of completely artificial quantum systems, with or without real-
world counterpart. Recent examples for a simulation setup exploring the
laws of quantum physics beyond standard geometries are quantum
particles in fractal lattices, including electronic systems generated by
molecular assembly1 or using scanning tunneling microscopy2, photonic
systems of coupled optical fibers3,4, or cold atoms in optical tweezers5. In
general, fractal lattices are characterized by self-similar patterns repeated
on different scales which give rise to a fractal Hausdorff dimension6. In
the present article, we concentrate on Sierpiński fractals, specifically the
Sierpiński gasket and the Sierpiński carpet. The self-similar construction
scheme for these fractals is illustrated in Fig. 1a, b. The fractal (Haus-
dorff) dimension of these structures is df ¼ logð3Þ= logð2Þ≈ 1:585 for the
gasket, and df ¼ logð8Þ= logð3Þ≈ 1:893 for the carpet7. Exploring how the
fractal geometry affects the dynamical behavior of quantum systems is an
interesting research endeavor, and fascinating effects are found already in
the single-particle domain: For instance, the combination of non-
standard fractal geometry and topology has attracted significant
interest8–13. The fate of topological edge states in fractal lattices, where a
true bulk is absent, has now been studied experimentally using photonic
waveguide arrays4. Also in the absence of topological features, the

transport in fractal lattices is a rich research subject. In general, transport
behavior can be characterized through the mean square distance MSD(t)
from the initial position, and in particular, through its scaling as a
function of time:

MSDðtÞ∼ tα: ð1Þ

Transport is called sub-diffusive for α < 1, diffusive for α = 1,super-
diffusive or sub-ballistic for 1 < α < 2, ballistic for α = 2, hyper-ballistic for
α > 2. Classical diffusion on fractals has been studied extensively since the
1980s14–18, and sub-diffusive behavior with α = ds/df has been established,
whereds is the spectral dimension. In contrast to the fractal dimensiondf, the
spectral dimension ds takes into account also the connectivity of the fractal
lattice. It has auniversal value,ds = 4/3, at percolation threshold according to
the Alexander-Orbach conjecture15. For Sierpiński fractals, the values ds ¼
2 logð3Þ= logð5Þ≈1:365 and ds ≈ 1.805 have been obtained for gasket and
carpet19, respectively. Random fractals allow for independently tuning
Hausdorff and spectral dimension, and the latter has been found most
relevant also in the context of quantum transport20. Quantum-mechanical
transport in the Sierpiński gasket has been contrasted to the classical ran-
dom walk in ref. 19. Studying the return probability of a quantum object
evolving in the Sierpiński gasket, it has been shown that, instead of the
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classical decay t�ds=2, the quantum return probability in the Sierpiński
gasket oscillates and remains above the classical value at all times. Notably,
such a behavior is not apparent in the (finite-size) Sierpiński carpets, also
studied in ref. 19, hinting for different transport behavior of these two fractal
structures. In ref. 21, quantum transport in Sierpiński carpets has been
under scrutiny, also reporting clear differences between carpet and gasket.
While in the Sierpiński gasket conductance is zero in extended energy
regions, this is not the case in the Sierpiński carpet. As a possible geometric
reason for this difference ref. 21 mentions the infinite ramification number
of the Sierpiński carpet22, in contrast to a finite ramification number in the
Sierpiński gasket. The ramification number counts the number of bonds
that have to be cut in order to separate different iterations of the fractal. The
increased quantum return probability in the Sierpiński gasket can be seen as
a dynamical consequence of the existence of localized eigenstates. Localized
states in the Sierpiński gasket have first been found in ref. 23 using the
Migdal-Kadanoff decimation technique. In fact, this early work had con-
jectured that all quantum states in the Sierpiński gasket are exponentially
localized, considering its spectral similarities to 1D quasi-crystals24,25, and
the fact that, like in disordered media or in quasi-crystals, the absence of
Bloch’s theorem can give rise to quantum interference effects which slow
down the dynamics of a quantum object and possibly lead to Anderson
localization26. However, later work27 has shown that the Sierpiński gasket
exhibits a more complex behavior, as in addition to the localized states also
an infinite number of extended states were found to live on the gasket.
Recently, quantum transport in fractal geometries has been explored also
experimentally in ref. 3, reporting super-diffusive quantum transport
through Sierpiński gasket and carpet, with the scaling exponent α = df given
by the fractal (Hausdorff) dimension of the lattice.Although these values are
smaller than the ballistic diffusion exponent, α = 2, obtained for quantum
diffusion on planar Bravais lattices28,29, they still constitute a significant
quantum speed-up on fractals, in contrast to the increased return prob-
ability reported in ref. 19 and the expected quantum localization effect.
Given this controversial assessment on the transport behavior in Sierpiński
fractals, the present manuscript revisits this scenario. For the gasket, we
show that tiny changes in the connectivity of the lattice switch the particle’s
transport behavior from the super-diffusive motion reported in ref. 3 to a
sub-diffusive one, with a quantum transport exponent α ≈ 0.73 that is
smaller than the classical value α = ds/df ≈ 0.86, in line with the point of view

of Anderson localization. On the other hand, for the carpet, our study
confirms super-diffusive behavior with α ≈ 1.8. This surprising difference
between the two structures can be understood from their different spectral
properties, already noted in ref. 19. Specifically, for the Sierpiński gasket, a
relation is established between α and the exponent of an inverse power-law
scaling of the level spacing distribution. The stark contrast between sub-
diffusive transport on the Sierpiński gasket and ballistic behavior on the
regular lattice, together with the tunability of synthetic quantum lattices,
opens an avenue to freely tune the transport behavior through all regimesby
interpolating between the fractal lattice and the regular lattice, as illustrated
in Fig. 1c. In addition to this opportunity, we also discuss amemory effect in
dynamics of the Sierpiński gasket,whichpossiblymay lead to applications as
a quantum memory. Specifically, we demonstrate that the localized quan-
tum dynamics on the Sierpiński gasket does not only significantly slow-
down the spreading of a wave packet, but it also keeps memory of relatively
fragile quantities like the phase of a quantum superposition. To this end, we
compare the evolution of non-classical states, specifically symmetric and
anti-symmetric arrangement of a delocalized object, and we find that the
anti-symmetric superposition experiences slower initial spreading due to
quantum interference. Interestingly, this leads to significantly different
MSD(t) values even at long times, when in a regular lattice initial differences
have been washed out.

Results
Quantum transport on Sierpiński fractals
We start by considering the mean square distance of a particle on the
Sierpiński gasketwhich is initially prepared in one of the corners.An explicit
definition of the tight-binding model is given in the Methods section. For
different generations of the fractal, the obtained behavior is shown in Fig. 2a.
Each of these curves can be divided into three temporal regimes:
• Short times, tJ≲ 1: Ballistic regime.On short times, the systembehaves

ballistically, MSD(t) ~ tαwith α ≈ 2.1. In this regime the system has yet
no notion of the fractal geometry, and the behavior is the same as in a
regular lattice.Wenote that the slightlyhyper-ballistic valueofα > 2 is a
consequence of preparing the state near the boundary. For such initial
conditions, also regular lattices exhibit the same increased value of α.

• Intermediate times, 1≲ tJ≲ TJ with T ¼ ðL=aÞdf =ð4JÞ: Sub-diffusive
regime. On intermediate-times, the system behaves sub-diffusively,
with α ≈ 0.56. The extent of this regime is limited by the system size,
determined by the fractal dimension df and the side length L of the
triangle. We note again that also in this regime the exact value of α
depends on the initial conditions, as we further discuss below.

• Long times, t≳ T:Quasi-localized regime. The evolution of theMSD(t)
flattens further and becomes extremely slow. On long time scales, the
behavior can be described on average with an exponent α≲ 0.15,
cf. Fig. 2b.
It is important to note that at t ≈ T, i.e., at the transition from the

intermediate regime to the long-time regime,MSD(T) is still far below its
thermalized value. In a thermalized system, the center ofmass of thewave
function would be at the center of the triangle, hence for a system initially
prepared in one of the corners, the square distance between the corner
and the center of the triangle defines the thermalized value,MSDth = L2/3.
With the intermediate regime being too short to thermalize the system
and with the subsequent evolution being extremely slow, it turns out that
in the Sierpiński gasket the thermalized value will essentially never be
reached. This can be seen fromFig. 2b which extends up to tJ = 106, i.e., to
times scales which are clearly beyond experimentally realistic values.
Even on this time scale, the MSD remains below 1000 for a system with
L = 128, that is MSDth = 5461. Of course, this example does not exclude
the possibility of thermalization on even longer time scales which then
become difficult to assess even in a numerical simulation due to the
numerical precision. However, it is possible to argue rigorously that in
the thermodynamic limit the system will not thermalize. Therefore,
we note that MSD(T) scales sub-linearly with the system size,
MSDðTÞ∼Tα ∼ L0:56df , in contrast to the quadratic size dependence of
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Fig. 1 | Construction scheme for fractal lattices. a Sierpiński gasket and (b) Sier-
piński carpet, showing in white the region of the fractal structure and in blue the
regions that do not belong to the fractal. In (c) we show a lattice, where the solid lines
form a 3rd generation Sierpiński gasket, and the dashed lines interpolate between the
fractal gasket and a regular triangular lattice.
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MSDth ~ L2. Hence, for larger systems the difference to a thermalized
state gets more and more enhanced.

So far we have studied only the transport starting from a very special
initial state where the particle is prepared in one corner of the triangle.
However, in contrast to the case of an (infinite) Bravais lattice, the fractal
lattice has non-equivalent lattice sites, and hence, the choice of initial state
may affect the dynamical behavior. Indeed, when considering initial pre-
paration on a variety of different sites, see Fig. 2c, the exponent α in the
intermediate regime tends to be larger for generic initial states as compared
to an initial corner state. While the dynamics remains sub-diffusive for all
initial states which we have considered, the MSD(t) averaged over different
initial states, plotted in Fig. 2c together with its standard deviation, evolves
with an exponent α ≈ 0.73.

The behavior on the Sierpiński gasket is in stark contrast to the
quantum diffusion in a regular triangular structure. In that geometry, the
ballistic initial behavior (with the possibility of α > 2 due to preparation near
the boundary) is maintained up to a saturation time T 0 ∼ L2 at which the
system enters a thermalized regime withMSD(t) oscillating aroundMSDth.

The behavior on the Sierpiński gasket is also very different from the
dynamics on the Sierpiński carpet. Instead of sub-diffusive transport, the
carpet exhibits a highly super-diffusive, or sub-ballistic behavior, with
α ≈ 1.8, see Fig. 3. This value is similar to the one previously obtained in
ref. 3, and it constitutes a significant quantum speed-up, compared to the
classical value α = ds/df ≈ 0.95. In this context, it should be noted that
even for some non-Bravais periodic lattices sub-ballistic quantum
transport has been found, e.g., with a value of α ≈ 1.71 for the honey-
comb lattice29.

The sub-diffusive dynamics observed here at intermediate times in the
Sierpiński gasket is in contrast to the super-diffusive behavior reported in
ref. 3,withα ≈ 1.59.Theoriginof this discrepancy is a subtle difference in the
definition of the fractal lattice: while the setup of ref. 3 incorporates tun-
neling between any pair of nearest-neighbor sites, the lattice studied in the

present work has the connectivity which is shown in Fig. 2c. Here, hopping
processes occur only between nearest neighbors belonging to the same
generationof the fractal. In this case, the threecorner sites of eachgeneration
are obviousbottlenecks, as different generations are connectedonly via these
sites. The remarkably different transport behavior on the two graphs, which
are both characterized by the same Hausdorff dimension, suggest that the
dynamics is crucially influenced by the ramification properties of the graph.
Although both structure are finitely ramified, incorporating nearest-
neighbor links between pairs from different generations doubles its rami-
fication number.

Fig. 3 | Mean square distance for Sierpiński carpet. For a fifth generation G(5)
Sierpiński carpet lattice, we show the mean square distance MSD(t) as a function of
time. The initial state is conformed by a particle on a corner of the lattice and evolves
freely. There is afit regionwith slopeα = 1.804 ± 0.001. J is the hopping termbetween
each connected site and a is the distance between neighbor sites. The error on the
exponent α is associated with the fit parameters error.

Fig. 2 |Mean square distance for Sierpiński gasket. aMean square distanceMSD(t)
of a particle starting from one corner of a Sierpiński gasket of generation G(X) with
X = 4, 5, 6, 7. This corresponds to D = 123, 366, 1095, 3282 sites, or triangles of
length L = 16, 32, 64, 128. On time scales up to t ~ 1/J, the particle behaves ballisti-
cally, MSD(t) ~ tα with α ≈ 2.1. On an intermediate time scale bound by the system
size, the system evolves sub-diffusively, with an exponent α = 0.561 ± 0.005. Beyond
that regime, the MSD(t) almost flattens. The value reached at that time is still far
away from the center of the triangle, MSD≪ L2/3. For comparison, we also plot the
MSD of a classical continuous-time randomwalk on a G(7) gasket. b Same plot as in

(a) for the 7th generation of the Sierpiński gasket, but on an extremely long time
scale. We extract a long-time scaling α = 0.159 ± 0.003 from this figure. c For the 6th
generation Sierpiński gasket, we analyze the behavior of MSD(t) averaged over a set
of different initial positions, as indicated by the red-colored sites, together with a
standard deviation of the averagedMSD(t). In the intermediate temporal regime, we
find α = 0.73 ± 0.01. J is the hopping term between each connected site and a is the
distance between neighbor sites. The errors on the exponentα are associatedwith the
fit parameters error.
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Spectral properties on the Sierpiński gasket
Quite generally it is known from random matrix theory that the spacing
between adjacent energy levels provides deep insight into the dynamical
behavior of a quantum system30. Specifically, ergodic systems exhibit level
repulsion, and their level spacing distribution p(s) has a power-law behavior
p(s) ~ sβ for s→ 0. This allows for classifying the system according to the
exponent β. For the energy spectrum in fractal lattices, similarly to the case
of quasi-crystals, level spacing analysis seems, on first sight, to be inap-
propriate, since the energy spectrum is characterized byhugedegeneracies31.
However, in refs. 32–34, the concept of level spacing distribution has been
adapted to the highly degenerate Cantor spectrum of quasi-periodic 1D
models, and an inverse power law p(s) ~ s−β has been found. To test this
behavior, the integrated level spacing distribution pintðsÞ ¼

R1
s ds0pðs0Þ can

be considered, by counting the number of gaps larger than s. In a finite
system, this leads to a devil’s staircase which, due to self-similarity of the
spectrum across various scales, can be smoothened to a power law,

pintðsÞ∼ s1�β: ð2Þ

The exponent β of the level spacing distribution and the exponent α of
the mean square distance can be related in the following way32,34: By defi-
nition of the integrated level spacing distribution, the number of states
which can be energetically resolved with an energy resolution s (in units of
the hopping energy ℏJ) is given by pint(s) ~ s1−β. On the other hand, con-
sidering that the volume of a system scales with length L (in units of the
lattice constant a) as Ldf , where df is the Hausdorff dimension, we also have
Ldf ∼ pintðsÞ. Hence, the smallest energy resolution s is related to the lengthL
of the system as L∼ sð1�βÞ=df . At the same time, the relation MSD~ tα

connects a largest length scale L to a largest time scale t (in units 1/J) via
L ~ tα/2, or alternatively, to a smallest energy scale s ~ t−1 via L ~ s−α/2.
Combining these scaling relations leads to

α ¼ 2ðβ� 1Þ
df

: ð3Þ

Here, we analyze the spectral properties of different geometries by
plotting the integrated level spacing distribution, pint(s), that is, the (nor-
malized) number of energy gaps larger than s, see Fig. 4. Indeed, for the
Sierpiński gasket we find that within an extended region in energy, the
staircase function is approximated by an inverse power law, pint(s) ~ s1−β, as
seen by using a double-logarithmic axis scale. Numerically, we obtain
β = 1.6 ± 0.05. The proximity of β to the Hausdorff df seems suggestive that
both quantities might be identical, but we are lacking any a priori argument
for such a relation. Importantly, the fractal dimension relates β to α through
Eq. (3), and for β = 1.60 ± 0.05, we expect α = 0.76 ± 0.06, in accordance
with the α obtained before by averaging over different initial states.

For other geometries than the with Sierpiński gasket, the integrated
level spacing distribution is qualitatively different: Neither a regular lattice
with triangular or square geometry, nor the Sierpiński carpet exhibits an
extended spectral regime which can be approximated by an inverse power-
law, see Fig. 4. As we have argued above, both the Sierpiński carpet and
regular lattices (square or triangular) exhibitmuch faster transport behavior
than the Sierpiński gasket, within or close to the ballistic regime. In this
context, the Sierpiński gasket of the experiment in ref. 3 appears to be an
intermediate case: For sufficiently large gaps, the level spacing distribution,
shown ingreen inFig. 4, can still be approximatedbypower-lawscaling.The
exponent is found to be significantly larger than in the case of a standard
Sierpiński gasket, β = 2.25 ± 0.05. It is noted that, by applying Eq. (3), this
value ofβ is in full agreementwith the exponentα ≈ 1.59of theMSDscaling,
reported in ref. 3.

Transport on interpolating lattices
The very different transport behavior of Sierpiński gasket and regular tri-
angular lattice open up a route to tailor-made transport behavior by inter-
polating between these two cases, as sketched in Fig. 1c. The interpolating

lattice contains all sites of the regular lattice, but for the bonds at those sites
which are exclusive to the regular lattice a different hopping amplitude J 0 is
chosen (as compared to the hopping amplitude J on the fractal). In Fig. 5a,
theMSD(t) is plotted for various interpolating choices γ � J 0=J . Also in the
intermediate case (i.e., 0 < J 0 < J), the transport behavior can be separated
into three temporal regimes. Our main interest is the exponent α for the
intermediate temporal regime, in between the dashed lines of Fig. 5a. We
plot this value α in Fig. 5b, showing that the transport properties can con-
tinuously be tuned fromthe sub-diffusive regime in the fractal latticeγ≲ 0.3,
througha super-diffusive regime (0.3≲ γ≲ 0.8), into aballistic regime in the
(almost) regular lattice (γ≳ 0.8).

Role of disorder
We have also studied the effect of a disorder potential Vdμi on each site i,
whereVd is the disorder strength, and μi randomnumbers between 0 and 1,
drawn from a uniformdistributionU(0,1). In Fig. 6a, we show the evolution
of the MSD for a particle prepared in one corner of the fifth generation
Sierpiński gasket for different Vd, averaged over 100 disorder realizations.
For weak disorder, the evolution is essentially unchanged by the disorder
potential, except for a smoothening effect which is due to the disorder
averaging, and which sets in after a time scale that depends on the disorder
strength. This finding is particularly relevant from the point of view of
experiments, because it shows that unavoidableweak disorder does not alter
the dynamical behavior. From a theoretical point of view, it is interesting to
see that very strong disorder (Vd≫ J) further slows down the dynamics and
leads to a saturationof theMSDat a smaller value than in the cleangasket. In
Fig. 6bwe also plot theMSDat long times as a functionofVd. Strong enough
disorder leads to an exponential decay of the long-time MSD. For an
interpretation of this observation, we note that low-dimensional systems
(i.e., 1Dor 2Dsystems) are known to localize at anydisorder strength,with a
localization length which depends on the disorder strength, and which for
weak disorder may exceed the size of a finite system. The behavior seen in
the Sierpiński gasket is interpreted as a competition between two different
localization mechanisms: For weak disorder, the localizing effect of the
fractal structure is dominant, and we do not observe an effect due to the
disorder. Strong disorder, in contrast, produces a localization length that
confines the dynamics in a stronger way than the fractal structure. In this
case, the effect of disorder becomes apparent in the system evolution.

Fig. 4 | Energy gaps distribution. Integrated level spacing distribution pint(s) for the
energy spectra on different lattices: Solid lines are for triangular geometries, with the
fractal Sierpiński gasket (SG) of generation 7 (3282 sites) in blue, the corresponding
regular triangular lattice (RTL) with 8385 sites in red, and the Sierpiński gasket used
in experiment3 in green (SG exp.) The dash-dotted lines correspond to square
geometries, where the blue is the fractal Sierpiński carpet (SC) of generation 5
(5280 sites), and the red one is the regular square lattice (RSqL) with the same basis
(6724 sites). Only on the gasket (SG and SG exp), the integrated level spacing
distribution exhibits approximately an inverse power-law behavior pint(s) ~ s1−β.
This allows to determine the exponent β via fitting, β ≈ 1.60 ± 0.05 for SG, and
β ≈ 2.25 ± 0.05 for SG exp.
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Discussion
Our results have established that the dynamics on the Sierpiński
gasket is coined by the localized eigenstates and an inverse-power-
law level spacing distribution, in stark contrast to the case of regular
lattices or Sierpiński carpet. We now discuss how this localized
nature of the gasket leads to a memory effect which possibly might be
used as a quantum memory. Clearly, the slow growth of the MSD(t)
and the demonstrated inability of reaching a thermalized value keep
memory of the classical information about the initial position of the

particle. This is also illustrated in Fig. 7, showing that after initial
preparation in the corner of a G(7) gasket, the weight of the time-
evolved wave function will remain concentrated in the surrounding
G(1) gasket (indicated in blue). Considering the surrounding G(6)
structure, i.e., roughly 1/3 of the total lattice, this will keep more than
95 % of the weight for all times. In contrast, for the case of a regular
lattice we see a rapid drop to the thermalized value 1/3.

Importantly, the Sierpiński gasket is also able to memorize quantum
properties of the initial state. To this end, we consider the initial quantum

Fig. 5 | Interpolate Sierpiński gasket. aMean square distance MSD(t) of a particle
in an interpolating lattice, cf. Fig. 1c, characterized by the ratio γ � J 0=J between
hopping parameters J 0 exclusive to the regular lattice, and J in both regular and
fractal lattice. We initialize the evolution in one corner of an interpolating gasket of
generation 7. The slowest behavior is obtained in a fully fractal geometry (γ = 0),
whereas the fastest behavior corresponds to regular triangular lattice (γ = 1). b For

the different values of γ, we extract the exponent α of themean square distance (from
fits to the curves in (a) in the intermediate regime marked by the dashed lines). The
result is plotted as a function of γ. The error bars of the fitted α are smaller than the
circles displayed. a is the distance between neighbor sites.

Fig. 6 | Disordered Sierpiński gasket. aMean square distance MSD(t) of a particle
starting from one corner of a Sierpiński gasket of generation G(5) for different
disorder strengths Vd. The solids lines correspond to the average over 100 random
configurations whereas the colored region is the standard deviation. bMean square
distance for long times MSDav obtained by averaging the MSD from tJ = 103 to

tJ = 104, as a function of the strength of the random potential Vd with the error bars
obtained with the standard deviation. J is the hopping term between each connected
site and a is the distance between neighbor sites.
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superposition

∣Ψ±

� ¼ 1ffiffiffi
2

p ∣Ai± ∣Bið Þ; ð4Þ

with+ denoting the symmetric, and− the anti-symmetric superposition.
The states ∣Ai and ∣Bi denote two different initial positions, where for
concreteness we choose ∣Ai to be a corner state and ∣Bi its neighbor.
Defining MSD(t) with respect to their center-of-mass, we find that the
anti-symmetric state ∣Ψ�

�
evolves slower as compared to the symmetric

state ∣Ψþ
�
, see Fig. 8. We attribute this difference to destructive

interference effects during the simultaneous tunneling from A and B to
their common neighbor. Such a confinement effect stemming from the
phase of the wave function is also found initially on a regular lattice.
However, on longer time scales only the fractal lattice keepsmemory of the
initial phase difference in form of a significantly different MSD(t). In the
regular lattice, as can also be seen from Fig. 8, both initial states evolve to

the same MSDth, and there is no obvious indicator of the initial phase
difference.

If we interpret the two states of Eq. (4) as a qubit, and consider the
presence of slowdephasing noise, it is clear that the information of this qubit
will be lost with time. However, as we have shown, the evolution in the
fractal lattice encodes the information in the spatial distribution of the wave
function, and thereby provides some robustness against dephasing noise.
We speculate that this might be exploited as some form of quantum
memory.

In futurework, it will be interesting to explore this effect beyond single-
particle physics. For example, one could consider two or more entangled
particle evolving quantum-dynamically but under the influence of a certain
measurement rate.We expect that themeasurement-induced entanglement
transition35 will depend on the geometry, and the Sierpiński gasket will
maintain the entanglement at higher measurement rates as compared to
regular lattices or the Sierpiński carpet. These investigations are also relevant
to further advance our idea of using quantum particles in the Sierpiński
gasket as quantummemory. In the many-body regime, we expect to find a
glass and/or many-body localized phase in the Sierpiński gasket, whereas
such a phase is not expected on the carpet. In view of the computational
complexity of quantummany-body physics and open quantum systems, we
expect that quantum simulationswith interacting particles on fractal lattices
will be particularly useful and provide important new insights into exotic
quantum phenomena. This may include electronic and atomic fractal sys-
tems, cf. refs. 1,2,5, or by adding optical non-linearities to the photonic
simulations. In particular in the context of electronicmaterials, it will also be
relevant to study the effect of finite temperature which might produce a
crossover between quantum transport and the classical random walk sce-
nario. So far, theoretical attempts to study quantum many-body phases in
fractal lattices include studies of quantum phase transitions and quantum
criticality in interacting spinmodels36–38, the study of interacting topological
systems, inparticularwith respect to the fate of anyons39–41, or the very recent
mean-field study of the Bose-Hubbard model on the Sierpiński gasket42.

Methods
Quantum transport
We study tight-binding systems described by a Hamiltonian of the form

H=_ ¼ �
X

i;j

J i;ja
y
i aj þ

X

i

ϵini: ð5Þ

Fig. 7 | Localization on fractal lattice. After preparing the system initially in the
lower left corner of a G(7) Sierpiński gasket or the corresponding regular triangle, we
plot in (a) the weight of the wave function within the lower-leftmost G(i) structure
(as indicated in (b)). In the regular lattice the weight decays quickly and thermalizes

at the thin dashed lines, corresponding to the ratio of site numbers Ns[G(i)]/
Ns[(G7)]. In contrast, the weight in the fractal (solid lines), will always keep some
memory of the initial state. J is the hopping term between each connected site.

Fig. 8 | Non-classical initial state.Mean square distanceMSD(t) of a particle with a
non-classical initial state. The particle is prepared in a superposition of being in the
corner and one of its first neighbors. The solid red line corresponds to a particle in a
seventh generation Sierpiński gasket with a symmetric initial configuration. The
solid blue line corresponds to the anti-symmetric initial condition for the fractal
geometry. The dashed lines correspond to a standard triangular lattice geometry
with the same basis as the fractal considered. J is the hopping term between each
connected site and a is the distance between neighbor sites.
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Our focus is on fractal lattices, in particular the Sierpiński gasket and
Sierpiński carpet, where sites i are the vertices of the structure. The con-
struction scheme for these fractals is illustrated in Fig. 1a, b. The tunneling
amplitude Ji,j = Jδ〈i, j〉 is non-zero between nearest-neighbors within each
generation of the fractal.We note that on the Sierpiński gasket there are also
nearest-neighbor pairs where the sites belong to different generations of the
fractal. While tunneling between these site is possible in the experimental
realization of ref. 3, we have set Ji,j to zero along these links. We have also
studied the caseof an interpolating lattice, as shown inFig. 1c,wherewehave
nearest-neighbor hopping on a regular lattice, but with two types of cou-
plings, J belonging to the Sierpiński fractal, and J 0 for the others. The on-site
frequencies ϵi are, where not otherwise defined, homogeneous, ϵi = ϵ. With
this choice, the diagonal term of the Hamiltonian is proportional to the
identity matrix and only contributes an irrelevant overall phase factor.
Hence, we choose ϵ = 0. By numerical diagonalization of (H/ℏ), we find the
eigenvectors ∣αi and eigenvalues ωα of the tight-binding model on finite
lattices, which then allows us to evolve an arbitrary initial state ∣Ψð0Þ� to
time t,

∣ΨðtÞ� ¼
X

α

hαjΨð0Þie�iωαt ∣αi: ð6Þ

We are then interested in different observables which are best defined
in a local basis ∣ii ¼ ayi ∣vaci, that is, a basis of states where the particle
exclusively occupies one site i. Specifically, the probability to be at a given site
i at time t reads pi(t) = ∣〈i∣Ψ(t)〉∣2. If the particle has initially been prepared at
a site i, i.e., ∣〈i∣Ψ(0)〉∣ = 1, the quantity pi(t) equals the return probability of
the quantumwalk. Another interesting quantity is themean square distance
MSD(t). Let again be ∣〈i∣Ψ(0)〉∣ = 1, and let rj denote the Euclidean coor-
dinates at any site j. The mean square distance is then defined as

MSDðtÞ ¼
X

j

jrj � rij2jhjjΨðtÞij2: ð7Þ

Continuous-time classical randomwalk
With a proper choice of the on-site potentials ϵi, the Hamiltonian H also
defines an analog classical evolution, cf. ref. 43. In the classical randomwalk,
the probability ofmoving from site i to site j during a small time interval τ is
given by− τ〈j∣H∣i〉 = τJ, for connected sites i and j. If i is connected to Ni

different sites, the total probability of a move is τJNi. The probability of
remaining on the site shall be given by 1− τ〈i∣H∣i〉 = 1− τϵi. To keep the
probability normalized, wemust have ϵi =NiJ. On a Sierpiński gasket, ϵi = 4J
for all sites, except for the three corner sites, where we have ϵi = 2J. The
definition of probabilities after an infinitesimal time step τ defines the
probabilities for all times through a Schrödinger-like equation d

dt pjiðtÞ ¼
�P

khjjHjkipkiðtÞ: Under the boundary condition pji(0) = δji, with i
denoting the site of initial preparation, the differential equation is solved by
pji(t) = 〈j∣e−Ht∣i〉. From this,we define the classical returnprobabilitypii(t), or
the mean square distance of the classical diffusive process by replacing
∣〈j∣Ψ(t)〉∣2 in Eq. (7) by pji(t).

Data availability
Data will be made available upon reasonable request to the authors.

Code availability
Codes will be made available upon reasonable request to the authors.

Received: 14 February 2024; Accepted: 14 July 2024;

References
1. Shang, J. et al. Assemblingmolecular Sierpiński triangle fractals.Nat.

Chem. 7, 389 (2015).

2. Kempkes, S. N. et al. Design and characterization of electrons in a
fractal geometry. Nat. Phys. 15, 127 (2019).

3. Xu, X.-Y., Wang, X.-W., Chen, D.-Y., Smith, C. M. & Jin, X.-M.
Quantum transport in fractal networks. Nat. Photon. 15, 703 (2021).

4. Biesenthal, T. et al. Fractal photonic topological insulators. Science
376, 1114 (2022).

5. Tian, W. et al. Parallel assembly of arbitrary defect-free atom arrays
with a multitweezer algorithm. Phys. Rev. Appl. 19, 034048 (2023).

6. Mandelbrot, B. How long is the coast of britain? statistical self-
similarity and fractional dimension. Science 156, 636 (1967).

7. Gefen, Y., Mandelbrot, B. B. & Aharony, A. Critical phenomena on
fractal lattices. Phys. Rev. Lett. 45, 855 (1980).

8. Brzezińska, M., Cook, A. M. & Neupert, T. Topology in the Sierpiński-
Hofstadter problem. Phys. Rev. B 98, 205116 (2018).

9. Pai, S. & Prem, A. Topological states on fractal lattices. Phys. Rev. B
100, 155135 (2019).

10. Iliasov, A. A., Katsnelson, M. I. & Yuan, S. Hall conductivity of a
Sierpiński carpet. Phys. Rev. B 101, 045413 (2020).

11. Fremling,M., vanHooft,M., Smith,C.M.&Fritz, L. Existenceof robust
edge currents in Sierpiński fractals. Phys. Rev. Res. 2, 013044 (2020).

12. Manna, S., Nandy, S. & Roy, B. Higher-order topological phases on
fractal lattices. Phys. Rev. B 105, L201301 (2022).

13. Ivaki, M. N., Sahlberg, I., Pöyhönen, K. & Ojanen, T. Topological
random fractals. Communi. Phys. 5, 327 (2022).

14. Gefen, Y., Aharony, A., Mandelbrot, B. B. & Kirkpatrick, S. Solvable
fractal family, and its possible relation to the backbone at percolation.
Phys. Rev. Lett. 47, 1771 (1981).

15. Alexander, S. & Orbach, R. Density of states on fractals : fractons. J.
Phys. Lett. 43, 625 (1982).

16. Rammal, R. & Toulouse, G. Random walks on fractal structures and
percolation clusters. J. Phys. Lett. 44, 13 (1982).

17. Gefen, Y., Aharony, A. & Alexander, S. Anomalous diffusion on
percolating clusters. Phys. Rev. Lett. 50, 77 (1983).

18. Havlin, S. & Ben-Avraham, D. Diffusion in disordered media. Adv.
Phys. 36, 695 (1987).

19. Darázs, Z., Anishchenko, A., Kiss, T., Blumen, A. & Mülken, O.
Transport properties of continuous-time quantumwalks on sierpinski
fractals. Phys. Rev. E 90, 032113 (2014).

20. Kosior, A. & Sacha, K. Localization in random fractal lattices. Phys.
Rev. B 95, 104206 (2017).

21. van Veen, E., Yuan, S., Katsnelson, M. I., Polini, M. & Tomadin, A.
Quantum transport in sierpinski carpets. Phys. Rev. B 93,
115428 (2016).

22. Gefen, Y., Aharony, A. & Mandelbrot, B. B. Phase transitions on
fractals. iii. infinitely ramified lattices. J. Phys. A: Mathe. Gen. 17,
1277 (1984).

23. Domany, E., Alexander, S., Bensimon, D. & Kadanoff, L. P. Solutions
to the schrödinger equation on some fractal lattices. Phys. Rev. B 28,
3110 (1983).

24. Aubry, S. &André, G. Analyticity breaking andanderson localization in
incommensurate lattices. Ann. Israel Phys. Soc 3, 18 (1980).

25. Kohmoto, M., Kadanoff, L. P. & Tang, C. Localization problem in one
dimension: Mapping and escape. Phys. Rev. Lett. 50, 1870 (1983).

26. Anderson, P.W. Absence of diffusion in certain random lattices.Phys.
Rev. 109, 1492 (1958).

27. Wang, X. R. Localization in fractal spaces: exact results on the
sierpinski gasket. Phys. Rev. B 51, 9310 (1995).

28. Tang, H. et al. Experimental two-dimensional quantum walk on a
photonic chip. Sci. Adv. 4, eaat3174 (2018).

29. Razzoli, L., Paris, M. G. A. & Bordone, P. Continuous-time quantum
walks on planar lattices and the role of themagnetic field.Phys. Rev. A
101, 032336 (2020).

30. Haake, F. Quantum Signatures of Chaos (Springer-Verlag, Berlin,
Heidelberg, 2006)

https://doi.org/10.1038/s42005-024-01747-x Article

Communications Physics |           (2024) 7:259 7



31. Pal, B. & Saha, K. Flat bands in fractal-like geometry.Phys. Rev. B 97,
195101 (2018).

32. Geisel, T., Ketzmerick, R. &Petschel, G.Newclass of level statistics in
quantum systems with unbounded diffusion. Phys. Rev. Lett. 66,
1651 (1991).

33. Sire, C., Passaro, B. & Benza, V. G. Electronic properties of 2d
quasicrystals: level spacing distribution and diffusion. J. Non-
Crystalline Solids 153-154, 420 (1993).

34. Fleischmann, R., Geisel, T., Ketzmerick, R. & Petschel, G. Quantum
diffusion, fractal spectra, and chaos in semiconductor
microstructures. Phys. D: Nonlinear Phenom. 86, 171 (1995).

35. Skinner, B., Ruhman, J. & Nahum, A. Measurement-induced phase
transitions in the dynamics of entanglement. Phys. Rev. X 9,
031009 (2019).

36. Yi, H. Quantum critical behavior of the quantum isingmodel on fractal
lattices. Phys. Rev. E 91, 012118 (2015).

37. Xu, Y.-L., Kong, X.-M., Liu, Z.-Q. & Yin, C.-C. Scaling of entanglement
during the quantum phase transition for ising spin systems on
triangular and sierpiński fractal lattices. Phys. Rev. A 95,
042327 (2017).

38. Krcmar, R. et al. Tensor-network study of a quantum phase transition
on the sierpiński fractal. Phys. Rev. E 98, 062114 (2018).

39. Manna, S., Pal, B., Wang,W. & Nielsen, A. E. B. Anyons and fractional
quantum Hall effect in fractal dimensions. Phys. Rev. Res. 2,
023401 (2020).

40. Manna, S., Duncan, C.W., Weidner, C. A., Sherson, J. F. & Nielsen, A.
E. B. Anyon braiding on a fractal lattice with a local Hamiltonian.Phys.
Rev. A 105, L021302 (2022).

41. Li, X., Jha,M.C.&Nielsen,A. E.B. Laughlin topologyon fractal lattices
without area law entanglement. Phys. Rev. B 105, 085152 (2022).

42. Koch, G. & Posazhennikova, A. Loop current states and their stability
in small fractal lattices of bose-einstein condensates (2024), https://
arxiv.org/abs/2401.08393 [cond-mat.quant-gas].

43. Farhi, E. & Gutmann, S. Quantum computation and decision trees.
Phys. Rev. A 58, 915 (1998).

Acknowledgements
T.G. acknowledges funding by Gipuzkoa Provincial Council (QUAN-
000021-01), by the Department of Education of the Basque Government
through the IKUR strategy and through the project PIBA_2023_1_0021
(TENINT), by the Agencia Estatal de Investigación (AEI) through Proyectos
de Generación de Conocimiento PID2022-142308NA-I00 (EXQUSMI), and
that thiswork hasbeenproducedwith the support of a 2023LeonardoGrant
for Researchers in Physics, BBVA Foundation. The BBVA Foundation is not
responsible for the opinions, comments and contents included in the project
and/or the results derived therefrom, which are the total and absolute
responsibility of the authors. B.J.-D. and A.R.-F. acknowledge funding from
Grant No. PID2020-114626GB-I00 by MCIN/AEI/10.13039/5011 00011033
and ”Unit of ExcellenceMaría de Maeztu 2020–2023” award to the Institute
of Cosmos Sciences, Grant CEX2019-000918-M funded by MCIN/AEI/
10.13039/501100011033. We acknowledge financial support from the
Generalitat de Catalunya (Grant 2021SGR01095). A.R.-F. acknowledges
funding from MIU through Grant No. FPU20/06174. U.B. acknowledges
support from: ERC AdG NOQIA; MCIN/AEI (PGC2018-0910.13039/
501100011033, CEX2019-000910-S/10.13039/501100011033, Plan
National FIDEUA PID2019-106901GB-I00, Plan National STAMEENA
PID2022-139099NB-I00 project funded by MCIN/AEI/10.13039/
501100011033 and by the “European Union NextGenerationEU/PRTR”
(PRTRC17.I1), FPI); QUANTERA MAQS PCI2019-111828- 2; QUANTERA
DYNAMITE PCI2022-132919 (QuantERA II Programme co-funded by Eur-
opean Union’s Horizon 2020 program under Grant Agreement No
101017733), Ministry of Economic Affairs and Digital Transformation of the

Spanish Government through the QUANTUM ENIA project call - Quantum
Spain project, and by the European Union through the Recovery, Transfor-
mation, andResiliencePlan -NextGenerationEUwithin the frameworkof the
Digital Spain 2026Agenda; FundacióCellex; FundacióMir-Puig; Generalitat
de Catalunya (European Social Fund FEDER and CERCA program, AGAUR
Grant No. 2021 SGR 01452, QuantumCAT U16-011424, co-funded by
ERDF Operational Program of Catalonia 2014-2020); Barcelona Super-
computing Center MareNostrum (FI-2023-1-0013); EU Quantum Flagship
(PASQuanS2.1, 101113690); EU Horizon 2020 FET-OPEN OPTOlogic
(Grant No 899794); EU Horizon Europe Program (Grant Agreement
101080086— NeQST), ICFO Internal “QuantumGaudi” project; European
Union’s Horizon 2020 program under the Marie Sklodowska-Curie grant
agreement No 847648; “La Caixa” Junior Leaders fellowships, La Caixa”
Foundation (ID 100010434): CF/BQ/PR23/11980043. Views and opinions
expressed are, however, those of the author(s) only and do not necessarily
reflect those of the European Union, European Commission, European
Climate, Infrastructure and Environment Executive Agency (CINEA), or any
other granting authority. Neither the European Union nor any granting
authority can be held responsible for them. U.B. is also grateful for the
financial support of the IBM Quantum Researcher Program.

Author contributions
T.G. conceived and supervised the project. A.R.-F., P.P., and T.G.
developed the codesandperformednumerical simulations. A.R.-F., B.J.-D.,
T.G., and U.B. analyzed and interpreted the data. A.R.-F. and T.G. wrote the
manuscript with the feedback from all co-authors.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s42005-024-01747-x.

Correspondence and requests for materials should be addressed to
Tobias Grass.

Peer review informationCommunications Physics thanks the anonymous
reviewers for their contribution to the peer review of this work. A peer review
file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’sCreativeCommons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

https://doi.org/10.1038/s42005-024-01747-x Article

Communications Physics |           (2024) 7:259 8

https://arxiv.org/abs/2401.08393
https://arxiv.org/abs/2401.08393
https://arxiv.org/abs/2401.08393
https://doi.org/10.1038/s42005-024-01747-x
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Anomalous quantum transport in fractal lattices
	Results
	Quantum transport on Sierpiński fractals
	Spectral properties on the Sierpiński gasket
	Transport on interpolating lattices
	Role of disorder

	Discussion
	Methods
	Quantum transport
	Continuous-time classical random walk

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




