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Inelastic electron scattering at a single-beam
structured light wave
Sven Ebel 1✉ & Nahid Talebi 1,2✉

In free space, electrons undergo inelastic scattering in the presence of ponderomotive

potentials generated by light pulses and standing light waves. The resulting modulated

electron energy spectrum can exhibit the formation of discrete energy sidebands when

multiple light beams are employed. Here, we demonstrate the inelastic scattering of slow-

electron wavepackets at a propagating Hermite-Gaussian light beam. The pulsed Hermite-

Gaussian beam thus forms a ponderomotive potential for the electron with sufficient

momentum components, leading to the inelastic scattering and subsequent formation of

discrete energy sidebands. We show that the resulting energy-gain spectra after the inter-

action are strongly influenced by the self-interference of the electrons in this ponderomotive

potential. This effect is observable across various wavelengths, and the energy modulation

can be controlled by varying the electron velocity and light intensity. By utilizing the vast

landscape of structured electromagnetic fields, this effect introduces an additional platform

for manipulating electron wavepackets.
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The scattering of electrons1–3, atoms4, and molecules5 at
light has been the subject of intensive research activities for
many decades. All these works are based on the prediction

made by Kapitza and Dirac1 that the matter wave is diffracted
from a grating that is formed by two counterpropagating light
waves. The thereby acting physics can be understood equiva-
lently either from a particle or matter-wave point of view6. In
the particle picture, a photon is absorbed by the electron and a
second photon is emitted simultaneously via a stimulated pro-
cess. The required momentum conservation leads to a change in
the transverse momentum distribution of the electron. The
matter-wave interaction in this case is mediated by the pon-
deromotive potential forming from the optical standing wave. In
the classical force picture, the resulting ponderomotive force
pushes the electron out of the high-intensity region leading to a
change in the transverse momentum distribution of the electron
beam. The experimental realization of the Kapitza-Dirac effect,
nearly 70 years after its theoretical prediction2,3, and the interest
in the quantum-coherent control of the electron wavepacket in
ultrafast electron microscopes7–13 lead to a generalization of the
Kapitza-Dirac effect in various scenarios. These include the
expansion to the multiphoton regime of intense laser fields14,
including relativistic corrections15, generalization to include two
different wavelengths for light beams16, and the demonstration
of quantum-path interferences in the Kapitza-Dirac scattering17.
Beyond this elastic electron-light interaction, there has been an
effort to achieve inelastic electron-light interaction in free space.
Works in this direction proposed the generalizing of the
Kapitza-Dirac effect to laser fields with two frequency compo-
nents propagating along different directions, thereby realizing
inelastic electron scattering from standing bichromatic18, and
traveling bichromatic fields10–12,19,20. The second scheme uti-
lized two inclined laser beams with different wavelengths that
causes a dispersive propagation of the electron wavepacket in
the potential landscape generated by the optical waves. This
kind of interaction was recently demonstrated in two challen-
ging experiments. The first experiment shows the possibility of
accelerating the electron beam in vacuum with free-space
light10, while the second experiment demonstrates the mod-
ulation of the longitudinal momentum of the electron wave-
packet and the formation of an attosecond pulse train12.
Emerging from the concept of an inelastic Kapitza-Dirac effect,
Huang et al.21 proposed the possibility of creating non-Gaussian
matter waves.

Photon-induced near-field electron microscopy (PINEM) is
an alternative technique for the energy and momentum
transfer between electron wavepackets and light7,8,22. PINEM
is the result of the inelastic scattering of electrons from optical
near fields, where the electrons experience a spectral modula-
tion that shows symmetric quantized sideband peaks. This
interaction opened up possibilities for attosecond control of
free-electron quantum wavepackets23 and electron pulse
manipulation24.

Altogether these works tried to overcome the gap in energy-
momentum conservation for free-space electron-light
interaction22. So far, all the considered inelastic free-space
electron-light interactions leading to the PINEM-like effects and
bunching of the electron wavepacket are requiring at least two
waves at different frequencies and did not consider structured
light, although inelastic electron scattering and temporal com-
pression of the electron wavepacket, to reach femtosecond elec-
tron pulses with structured light, have been intensively
studied25–28. In this letter we propose an interaction scheme
where a structured light wave is used for achieving energy
modulation of an electron wavepacket, resulting in a PINEM-like
electron spectrum.

Results and discussion
We study the propagation of an electron through a traveling
time-harmonic electromagnetic light wave, which is represented
by its vector potential ~A~r; tð Þ. The vector potential in this work is
a time-harmonic transverse electromagnetic wave in the shape of
a Hermite-Gaussian (HG) beam, a well-known exact solution of
the free-space paraxial wave equation in Cartesian coordinates.
The considered time-harmonic x-polarized HG beam that is
propagating along the y-axis is given by29,
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where ω ¼ 2πc=λ is the angular frequency of the light wave and

A0 the amplitude of the vector potential.WðyÞ ¼ w0
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q
denotes the in y-direction evolving beam waist with w0 and yr ¼
πw2

0nm=λ as the beam waist and Rayleigh range respectively.
RðyÞ ¼ y ½1þ ðy=yrÞ2� is the radius of curvature. Hn and Hm are
the Hermite polynomials.

In this work we focus on the HG mode of the order HG10.
Applying this in Eq. (1), we obtain the following equations for the
vector potentials in two dimensions,
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We consider an electron wavepacket ψ ~r; tð Þ propagating
through such a shaped laser field, experiencing a spatially varying
ponderomotive potential along its trajectory on the x-axis (Fig. 1).
The generation of time-harmonic shaped light pulses have been
achieved with a variety of well-established techniques in a broad
optical spectral range30–33. For understanding the physics of this
system, we utilize a previously developed numerical toolbox that
solves the time-dependent Schrödinger equation within the
minimal-coupling Hamiltonian formalism13,17,34. This method
allows for retrieving the interaction dynamics by capturing the
modulation of the electron wavepacket and momentum-space
probability amplitude jeψð~kÞ| at each time step during the inter-
action. For this we define the transversal momentum ky;el and
longitudinal momentum kx;el. The electron parameters for con-
trolling the strength of the interaction are the electron initial

Fig. 1 Inelastic electron scattering from a traveling Hermite-Gaussian
optical beam. Inelastic scattering of a free-electron wavepacket with the
center group velocity vel at a traveling Hermite-Gaussian optical beam. The
electron is scattered by the resulting Hermite-Gaussian shaped
ponderomotive potential and experiences a self-interference phenomenon
during this process, along the longitudinal direction, that leads to the
modulation of the electron kinetic energy after the interaction.
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velocity (vel), longitudinal (WL) and transverse (WT) broadening
(Full width at half maximum (FWHM)) of the electron wave-
packet. We first investigate the propagation of a Gaussian elec-
tron wavepacket withWL ¼ 250 nm, WT ¼ 60 nm and the center
kinetic energy of 1 keV through a time-harmonic HG10 beam (see
Eq. (2)) with central wavelength of λ ¼ 700 nm, temporal
broadening (FWHM of the laser pulse) of 28 fs and the beam
waist of w0 ¼ 2λ (Fig. 2a). During the interaction with the HG10
beam, the phase of the electron wavepacket undergoes a wiggling
motion, which is most prominently visualized in the momentum
space (Fig. 2b). We observe distinct motions along both x and y
directions, i.e., perpendicular and along the propagation direction
of the optical beam, respectively. Within the time frame of
0–80 fs, the wiggling motion is most pronouncedly directed
towards the positive and negative x axis. This oscillating motion
of the electron beam within this time frame resembles the motion
of the electron in a pure HG00 Gaussian beam, which allows the
electron to occupy the higher order transverse momentum states,
only spontaneously35. For the case of HG00 beam, this transverse
phase modulation though is averaged out after the interaction
and does not lead to a pure momentum modulation, neither in
the longitudinal nor in the transverse direction. However, in the
case of the HG10 beam considered here, this transverse wiggling
motion is subsequently followed by a longitudinal oscillation
within the time frame of 80–140 fs, when the electron travels
within the low-intensity region of the optical beam, and thereafter
again a wiggling motion along the transverse direction is occur-
red, until t ¼ 180 fs, when the electron leaves the interaction
region (See Supplementary Movie 1 for a better visualization of
the wiggling motion of the electron beam). The final longitudinal
momentum spectrum of the electron shows a modulation in the
shape of an energy comb. This energy comb reveals distinct
sidebands for both positive and negative longitudinal momen-
tums. This is an indicator for both energy loss and gain processes
on the electron wavepacket during the interaction. The final
transverse momentum remains unchanged during the interaction,
as one would expect for a single-beam electron-light scattering
experiment35. Thus, the intermediate time steps visualize the
dynamics of the electron populating transversal and longitudinal

momentum states, spontaneously. Thereby we observe an oscil-
lation in the momentum state population of the electron. This
oscillation alternates between transversal and longitudinal
momentum state population. The remained populated momen-
tum orders appear as a pattern of thin maximum and minimum
fringes that reassemble an interference pattern. The final long-
itudinal momentum comb leads to a final energy modulation of
the electron wavepacket and reassembles the PINEM spectrum
observed for the interaction of electron wavepackets with the
near-field light distributions and therefore showing a state
population that is similar to a quantum walk36. The spacing
between the observed sidebands cannot be explained through the
absorbed and emitted photon energy or momentum recoil,
leaving an open question for the physics behind this observed
interaction.

Inelastic electron scattering by light-pulse-generated ponder-
omotive potentials. The first observation of inelastic electron
scattering from a single pulsed laser beam was made by Bucks-
baum et al.25. This work attributes the observed energy exchange
between the light field and the electron to the ponderomotive
scattering from the temporal pulse envelope. As the pulsed laser
beam scatters the electrons inelastically, the electrons acquire
energy when scattered from the leading edge, but lose a similar
amount of energy from the trailing edge. The energy exchange
thereby depends on the pulse duration. However, only a sig-
nificant and symmetric broadening of the electron wavepacket
due to the inelastic scattering were observed, in contrast with the
bunching effects we observe here. Our calculations so far con-
sidered a fixed laser pulse duration (FWHM). To investigate the
effect of pulse duration on the inelastic interaction, we have
varied this parameter as well. As depicted in Fig. 3, our findings
clearly indicate a robust correlation between the observed
inelastic scattering and the laser pulse duration (for the role of the
wavelength and the pulse synchronization see Supplementary
Note 1). Further the calculations reveal a correlation between the
pulse duration and the strength of inelastic energy exchange,
indicating that shorter pulses result in more intense exchange.

Fig. 2 Interaction dynamics in spatial and momentum space. Dynamics of the evolution of a Gaussian electron wavepacket in the spatial and momentum
space through a Hermite-Gaussian (HG10) pulsed laser beam (the laser electric-field-amplitude, its wavelength, and its temporal full width at half
maximum (FWHM) are E0 ¼ 15 ´ 109Vm�1, 700 nm and 28 fs, respectively) at different selected time steps. The electron wavepacket has an initial kinetic
energy of 1 keV. The electron wavepacket has initial longitudinal and transverse broadenings (FWHM) of 250 nm and 60 nm, respectively. a The x-
component of the vector potential representing the Hermite-Gaussian structured light field (gray background) at depicted time steps, with the insets
demonstrating the amplitude of the electron wavepacket. b Electron momentum distribution at the corresponding time steps.
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It is worth noting that the formation of bunching is only
noticeable when the pulse duration supports a strong interaction.
Following a rather periodic dependence of the energy spectra on
the temporal duration of the laser pulse and as well on the
interaction time, further self-trapping of the electron wavepacket
in the energy domain might be observable37,38. However, the
position of these bunches in the final electron energy-gain spectra
remains constant across different pulse durations. For very short
pulses, the interaction strength is weakened, due to the insuffi-
cient interaction time between the electron wavepacket and the
electromagnetic field. A comparison with calculations for an
unstructured HG00 laser pulse (see Supplementary Note 2 and
Supplementary Movie 2) though suggests that the observed
interactions in this work can neither be solely explained by
inelastic scattering of the electron wavepacket at the temporal
envelope of the laser pulse, nor two-frequency ponderomotive
interactions10.

Inelastic electron-light scattering defined by electron self-
interference. A known interaction scheme, arising from the
ponderomotive force in single beam structured electromagnetic
fields, was elaborated by Hilbert et al.27. They proposed that the
ponderomotive force originating from a Laguerre-Gaussian beam,
which can be approximated by a harmonic potential around its
origin, acts as a temporal lens on the electron, by compressing the
wavepacket. While this type of harmonic oscillation of the elec-
tron wavepacket in the potential landscape can be considered as
inelastic and similar to our interaction geometry, the analytical
discussion provided is insufficient to explain the observed mod-
ulation of the electron energy-gain spectrum reported here,
within the parameter sets considered in our interaction scenario.
Starting from the observation of the interference phenomena, and
that electron-light interactions can be treated as an optical phase
modulation of the electron wave function within the Volkov
approximation17, we derive here an analytical expression for the
estimation of maximum longitudinal momentum gain for the
electron in the optical field. The spatial profile of the HG10 beam
in direction of the electron propagation leads to a double barrier
ponderomotive potential acting on the passing electron. The
observed interference pattern indicates that the electron acquires
a phase change induced by the ponderomotive potential creating
a Fabry-Perot like geometry for the electron wavepacket—this

created system is described visually in Fig. 1. The phase mod-
ulation the electron would experience in such a geometry is
determined by Δϕ ¼ 2kHGd. Here d is the distance between the
reflecting potential planes and kHG is the maximally supported
momentum component by the light interferometer. Further we
consider that the phase change that a free electron acquires in an
electromagnetic field, in the special case of eikonal approximation
is given by the Volkov phase39 ΦV ¼ e2

2_m0

R t
0 j ~Að~r; τÞ j2 dτ. When

simplifying the problem within the 1D case along the x-direction,
we can insert the vector potential of the time-harmonic HG10-
beam as described by Eq. (3) into this phase expression and by

further inserting it in the rearranged expression kHG ¼ e2
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Thereby we used E0 ¼ ωA0 and related the time delay τ to the
propagation distance x by x ¼ velτ with vel being the electron
velocity. According to our proposed model we should expect a
quadratic dependency from the electric field strength and an inverse
proportionality from the electron velocity for the observed
momentum exchange. Therefore, we further numerically studied
the proposed system shown in Fig. 1 for different field strengths and
electron velocities. Due to the large computational size for the
system investigated in Fig. 2, we simplified the calculation by
solving the Schrödinger equation for a 1D wave function in a 1D
external vector potential. The applied algorithm for solving this
problem stayed unchanged compared to the 2D solver. To verify
these results, we compare the 1D calculation with 2D calculations
for selected field strengths and electron velocities. For this we
considered a time-harmonic HG10 beam with a 200 nm wavelength,
temporal broadening of 8 fs and beam waist of w0 ¼ 2λ. The
electron wavepacket parameters were adjusted accordingly toWL ¼
150 nm and WT ¼ 60 nm. The investigated dependence on the
electric field strength (Fig. 4) clearly shows a quadratic trend leading
to an increased energy exchange for strong electric fields. For field
strengths below 20 GVm−1, there is no modulation of the electron
energy spectrum. Field strengths above 20GVm−1 show the
sidebands in the electron energy spectrum. These sidebands thereby
seem to follow a quadratic trend with increased field strength. To
review this observed trend, we retrieve the exchanged maximal
momentum from Fig. 4a at each considered field value. These are
then used to fit the expression for the momentum exchange
(Eq. (4)) (see Fig. 5) with the distance d as the fit parameter. The
resulting fit function (dfit ¼ 1083 nm) is in good agreement with
the numerically calculated maximal momentum exchange. Further
noticeable is that the obtained value of d, is close to the node to
node distance (d ¼ 900 nm) between the peak amplitudes of the
HG10 profile. The comparison between 1D and 2D calculations
further support the observed trends, but indicate that the
interaction in 2D leads to additional and more sharp sidebands
(Fig. 4b). This is due to additionally available transverse momentum
states in the 2D geometry. When reconsidering the dynamics of the
interaction (Fig. 2b) we observe a gradual occupation of transverse
momentum states. These transverse momentum states open up
additional quantum paths for the electron wavepacket. These paths
thereby can interfere with the direct longitudinal transition paths
(see Supplementary Movie 1 and Supplementary Note 3), leading to
additionally occupied momentum states in the 2D system.

The strength of the momentum exchange versus the initial
electron kinetic energy shows the expected inverse proportion-
ality (Fig. 6). This means that by decreasing the electron kinetic
energy, we observe an increase in the order of the momentum

Fig. 3 Dependence of inelastic scattering on the light pulse duration. Final
electron energy-gain spectra ΣðEÞ under the influence of a varied pulse
duration (full width at half maximum (FWHM) in fs). The electron
wavepacket has an initial carrier energy of 1.2 keV and longitudinal and
transversal broadening of 150 nm and 60 nm respectively. The HG10 laser
pulse electric-field-amplitude and wavelength are E0 ¼ 20 ´ 109Vm�1 and
200 nm, respectively.
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exchange. The enhanced momentum exchange at lower electron
kinetic energies does not just affect the width of the energy-gain
spectrum it also leads to the appearance and sharpening of two
distinct sidebands. The 2D simulations again show additional
sidebands. The investigation of the kinetic energy dependence
further demonstrates the limitations of the proposed phenomen-
ological model here for low electron kinetic energies. In this
specific case we observe the upper interaction limit for electron
kinetic energies of around 1.5 keV for a laser field with
λ= 200 nm and E0 ¼ 20 ´ 109 Vm�1. Note that a slow electron
also experiences a longer interaction time with the structured
electromagnetic field. All together we conclude to have a good
agreement between our numerical calculations of the maximum
momentum exchange and the analytical estimate given by Eq. (2).

Conclusion
In summary, our numerical calculations lead to a deeper under-
standing of free-space electron-light interaction in structured
light fields. In this work the interaction of an electron wavepacket
with a first-order Hermite-Gaussian laser pulse leads to the
observation of a PINEM-like electron energy-gain spectrum by
showing distinct sidebands. The exchange of longitudinal
momentum is heavily influenced by both ponderomotive

scattering from the laser pulse envelope and self-interference of
the electron wavepacket. In addition, the interfering quantum
paths in the transverse and longitudinal directions significantly
impact the final momentum spectra. This interaction therefore
demonstrates significant differences from so far known free-space
inelastic electron-light interactions. Our studies further showed
that the electron kinetic energy and the strength of the electric
field are the key parameters in controlling the described inter-
action scheme. Furthermore, we were able to calculate the max-
imum momentum transfer based on a matter-wave Fabry-Perot
model. We obtained these results using quantum mechanical
calculations, but it’s worth noting that a classical explanation for
the observed interaction might also be possible. Indeed, the
existing understanding of electron-light scattering phenomena
frequently encompasses both classical and quantum mechanical
descriptions10,19,37.

The accuracy of our obtained calculations must be considered
in light of the paraxial approximation utilized for the HG10 vector
potential. This approximation, while suitable for many scenarios,
loses accuracy when dealing with tightly focused beam experi-
ments, as it fails to consider longitudinal field components that
may alter the results40,41. To address this, we utilized a Maxwell-
Schrödinger solver (details in ref. 13) to excite a higher-order
Gaussian TM10 beam with an Hermite-Gaussian phase source in
a finite-difference time-domain-based Maxwell solver. The
resulting electron wavepacket exhibited a similar energy-gain
spectrum as the calculations performed under the paraxial
approximation (see Supplementary Note 4). We therefore con-
clude that our approximated calculations suffice for describing
the main features in the interaction of the electron wavepacket
with structured light fields. Hence, the longitudinal modulation of
the electron wavepacket and the energy transfer from single-beam
structured light to the electron wavepacket is valid for both cases.

For an experimental observation of the effect described here,
the generation of high intense Hermite-Gaussian laser pulses is a
key experimental parameter. The generation of intense Hermite-
Gaussian pulses is realistic in today’s laboratory settings30–33. To
further determine experimental feasibility, it is important to
keep in mind that the calculations in this work consider a

Fig. 4 Field dependence of the inelastic scattering. The influence of the electric field amplitude E0 on the strength of the inelastic scattering. a Electron
energy-gain spectrum Σ(E) versus the electric-field amplitude of the incident laser field (the laser wavelength, and its temporal full width at halfmaximum
(FWHM) are 200 nm and 8 fs, respectively). The spectra were numerically calculated for a simplified one-dimensional (1D) system. b The comparison between
1D and two-dimensional (2D) systems at selected field strength of 20GVm−1 (yellow), 50 GVm−1 (green), and 80GVm−1 (red). The electron wavepacket has
an initial center kinetic energy of 1.2 keV. The wavepacket has initial longitudinal and transverse broadenings (FWHM) (2D) of 150 nm and 60 nm, respectively.

Fig. 5 Analytical model describing the electron self-interference. Fit of the
analytical model for the maximal energy exchange to the numerically
obtained values from Fig. 4. The fitting parameter is d with d= 1083 nm.
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highly-coherent electron wavepacket with a spatial wavepacket
broadening (FWHM) which is directly related to the electron
energy spread and its pulse duration (see Supplementary Note 5).
This assumption translates to an electron pulse of high temporal
coherence, which essentially refers to the self-similarity of the
electrons in the electron pulse. Consequently, a successful
experiment would require a short electron pulse with high tem-
poral coherence.

The state-of-the-art ultrafast scanning electron microscopy
(USEM) setups42,43 are at the limit of this working parameters, by
offering electron pulses with suiting electron energy spread but
pulse durations of around 200 fs from photoemission tips. These
pulses are known to have temporal coherence lengths of a few
laser cycles44 but still have demonstrated the ability of coherent
electron-light interactions. A more feasible candidate for
demonstrating the self-interference effect in interaction with the
structured light might be an experiment based on flat photo-
emission cathodes, that are known to produce single electron
pulses with pulse duration below 100 fs45. Another approach
would be the adjustment of the laser pulse parameters to longer
pulse durations to overlap the available coherence lengths in
ultrashort electron pulses. Hence, the visibility of the interference
fringes described here emerges as a potential experimental
method for assessing the temporal coherence characteristics of an
electron beam, as it demonstrates a high sensitivity to the tem-
poral coherence and synchronization between the electron and
laser pulses. Besides the current achievements in coherent ultra-
short electron pulse generation, the results of this work might get
more accessible with future developments in ultrafast electron
sources. Already today there is a variety of new concepts in
electron field emission including single cooled atoms46, single-
atom tip sources47, single-crystalline surfaces48, and super-
conducting niobium field emission tips49. Finally, it should be
mentioned, that our results indicate that any structured light
beam is feasible for this interaction when being able to support
the self-interference of the electron wavepacket in the ponder-
omotive potential landscape of the interacting light beam. Fea-
sible candidates might be Laguerre-Gaussian beams, Ince
Gaussian beams and Bessel beams50. This variety of structured

light fields as well as the application of this effect together with
the Kapitza-Dirac effect might lead to full quantum control of the
electron wavepacket via single structured light beams.

Methods
Time-dependent Maxwell-Schrödinger scheme13,17,34. For simulating the
dynamics of the electron wavepacket, we have used the minimal-coupling
Hamiltonian including the temporally and spatially varying vector potential. The
time-dependent Schrödinger equation including the minimal-coupling Hamilto-
nian is given by:

i_
∂

∂t
ψð r!; tÞ ¼ � _2

2m0
∇2 þ e2

2m0
A
!ð r!; tÞ
��� ���2 � i_e
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� 	
ψð r!; tÞ: ð5Þ

Here we applied the coulomb gauge ~∇ �~A ¼ 0 and ψð~r; tÞ is the time-
dependent electron wave function. Further, ~Að~r; tÞ is the vectorpotential, m0 is the
electron mass, ℏ is the reduced Planck’s constant, and e is the electron charge.

For the calculations used to obtain the results outlined in the manuscript
Figs. 1–5 and Supplementary Note 1, 2, 5, and parts of Supplementary Note 4 the
vectorpotentials were calculated analytically as the solutions to the paraxial
Helmholtz equation and updated for each time step of the simulation accordingly
with:
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For the HG10 beam and with:
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for the HG00 beam. The variable τ denotes the FWHM of the laser pulse. Further
terms are defined in the main text. The size of the discretization units of the spatial
and temporal simulation domain are selected with δx ¼ δy ¼ 1:8 nm and δt ¼
0:4δx=c respectively.

The time propagator is approximated using a second-order differencing
scheme, while spatial differentiation is achieved through consecutive steps of
Fourier transformation, multiplication by appropriate transfer functions, and
inverse Fourier transformation. This method, commonly referred to as the Fourier
method, offers the advantage of stability and faster convergence compared to finite
differentiation in molecular dynamics simulations34,51. Moreover, the accuracy of
the results is validated by maintaining the norm of the wave function as close as
possible to N ¼ R

d3rjψð~r; tÞj at each given time. The overall longitudinal
momentum distribution is given by an integration of the form PðkyÞ ¼R
dkxjeψðkx ; kyÞj for each time step. This can be related with energy momentum

Fig. 6 Electron kinetic energy dependence of the inelastic scattering. The influence of the electron kinetic energy Uel on the strength of the inelastic
scattering. a The final electron energy-gain spectra Σ(E) versus the initial electron kinetic energy. The spectra were numerically calculated for a simplified
1D system. b The comparison between 1D and 2D systems at selected electron kinetic energies of 40 eV (blue), 500 eV (yellow), and 1200 eV (red). The
considered Hermite-Gaussian light field has the electric-field-amplitude, wavelength, and temporal full width at halfmaximum (FWHM) of E0 = 20 × 109

Vm−1, 200 nm and 8 fs, respectively. The wavepacket has initial longitudinal and transverse broadenings (FWHM) (for the 2D case) of 150 nm and 60 nm,
respectively.

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01300-2

6 COMMUNICATIONS PHYSICS |           (2023) 6:179 | https://doi.org/10.1038/s42005-023-01300-2 | www.nature.com/commsphys

www.nature.com/commsphys


relation E ¼ _2k2y=ð2m0Þ to the overall electron energy-gain spectrum ΣðEÞ. The
initial electron state is modeled by an analytical expression for a Gaussian
wavepacket34:

ψ0ðx; y; t ¼ 0Þ ¼ expðikix;elxÞ
1

2πWTWL
exp � 1

2
ðx � x0Þ2

W2
L


 �
exp � 1

2
ðy � y0Þ2

W2
T


 �� �1
2

: ð8Þ

For this WL and WT define the longitudinal and transverse broadening (Full
width half maximum (FWHM)) of the electron wavepacket. The wavepacket is
initially centered around (x0,y0) and has the initial electron momentum of
kðiÞx;el ¼ m0vel=_.

The solutions presented in Supplementary Note 4 demonstrate a comparison
between calculations based on numerical solutions of Maxwell’s equations and the
analytical approach discussed earlier. To obtain the numerical solution of Maxwell’s
equations, we employed a finite difference time-domain method within a MATLAB
environment using a custom-written numerical code52. The electromagnetic field was
calculated in each time step and related to the vectorpotential with ~B ¼ ~∇ ´~A and
~E ¼ �∂t~A. The vector potentials from the Maxwell’s simulation domain were than
mapped onto the Schrödinger simulation domain. Both domains were discretized
using piecewise linear unit cells, although the size of the discretization units could
vary. In Supplementary Note 4, we used δx ¼ δy ¼ 3 nm for the Maxwell domain,
and δx ¼ δy ¼ 1:8 nm for the Schrödinger domain. Through our experience with
this scheme, we have identified the limiting factors that influence the achievement of
numerically convergent results. These factors include the Courant number of the
finite-difference time-domain method (Sc ¼ cδt=δx) and the relative size of the unit
cells in the simulation domains. Therefore, it is crucial to achieve a balance between
accuracy and convergence to ensure reasonable simulation times.

Data availability
The Supplementary Movie 1 and Supplementary Movie 2 are supporting the conclusions
of the paper. Additional data that support the findings presented in the main text and the
Supplementary Information are available from the corresponding authors upon
reasonable request.

Code availability
The computer codes that support the findings presented in the main text and the
Supplementary Information are available from the corresponding authors upon
reasonable request.

Received: 20 December 2022; Accepted: 6 July 2023;

References
1. Kapitza, P. L. & Dirac, P. A. M. The reflection of electrons from standing light

waves. Math. Proc. Camb. Philos. Soc. 29, 297 (1933).
2. Freimund, D. L., Aflatooni, K. & Batelaan, H. Observation of the

Kapitza–Dirac effect. Nat. (Lond.) 413, 142 (2001).
3. Freimund, D. L. & Batelaan, H. Bragg scattering of free electrons using the

Kapitza-Dirac effect. Phys. Rev. Lett. 89, 283602 (2002).
4. Gould, P. L., Ruff, G. A. & Pritchard, D. E. Diffraction of atoms by light: the

near-resonant Kapitza-Dirac effect. Phys. Rev. Lett. 56, 827 (1986).
5. Nairz, O., Brezger, B., Arndt, M. & Zeilinger, A. Diffraction of complex

molecules by structures made of light. Phys. Rev. Lett. 87, 160401 (2001).
6. Batelaan, H. Colloquium: illuminating the Kapitza-Dirac effect with electron

matter optics in. Rev. Mod. Phys. 79, 3 (2007).
7. Barwick, B., Flannigan, D. J. & Zewail, A. H. Photon-induced near-field

electron microscopy. Nat. (Lond.) 462, 902 (2009).
8. Feist, A. et al. Quantum coherent optical phase modulation in an ultrafast

transmission electron microscope. Nat. (Lond.) 521, 200 (2015).
9. Morimoto, Y. Y. & Baum, P. Diffraction and microscopy with attosecond

electron pulse trains. Nat. Phys. 14, 252 (2018).
10. Kozak, M., Eckstein, T., Schonenberger, N. & Hommelhoff, P. Inelastic

ponderomotive scattering of electrons at a high-intensity optical travelling
wave in vacuum. Nat. Phys. 14, 121 (2018).

11. Baum, P. & Zewail, A. H. Attosecond electron pulses for 4D diffraction and
microscopy. Proc. Natl Acad. Sci. USA 104, 18409 (2007).

12. Kozak, M., Schonenberger, N. & Hommelhoff, P. Ponderomotive generation
and detection of attosecond free-electron pulse trains. Phys. Rev. Lett. 120,
103203 (2018).

13. Talebi, N. Strong interaction of slow electrons with near-field light visited
from first principles. Phys. Rev. Lett. 125, 080401 (2020).

14. Fedorov, M. V. The Kapitza-Dirac effect in a strong radiation field. Sov. Phys.
JETP 25, 952 (1967).

15. Ahrens, S., Bauke, H., Keitel, C. H. & Müller, C. Spin dynamics in the Kapitza-
Dirac effect. Phys. Rev. Lett. 109, 043601 (2012).

16. Smirnova, O., Freimund, D. L., Batelaan, H. & Ivanov, M. Kapitza-Dirac
diffraction without standing waves: Diffraction without a grating? Phys. Rev.
Lett. 92, 223601 (2004).

17. Talebi, N. & Lienau, C. Interference between quantum paths in coherent
Kapitza–Dirac effect. N. J. Phys. 21, 093016 (2019).

18. Dellweg, M. & Müller, C. Kapitza-Dirac scattering of electrons from a
bichromatic standing laser wave. Phys. Rev. A 91, 062102 (2015).

19. Kozak, M. Nonlinear inelastic scattering of electrons at an optical standing
wave. Phys. Rev. A 98, 013407 (2019).

20. Baum, P. & Zewail, A. H. 4D attosecond imaging with free electrons:
diffraction methods and potential applications. Chem. Phys. 366, 2 (2009).

21. Huang, W. C.-W., Batelaan, H. & Arndt,, M. Kapitza-Dirac Blockade: a
universal tool for the deterministic preparation of non-Gaussian oscillator
states. Phys. Rev. Lett. 126, 253601 (2021).

22. Park, S. T., Lin, M. & Zewail, A. H. Photon-induced near-field electron
microscopy (PINEM): theoretical and experimental. N. J. Phys. 12, 123028
(2010).

23. Vanacore, G. M. et al. Attosecond coherent control of free-electron wave
functions using semi-infinite light fields. Nat. Commun. 9, 2694 (2018).

24. García de Abajo, F. J. & Konečná, A. Optical modulation of electron beams in
free space. Phys. Rev. Lett. 126, 123901 (2021).

25. Bucksbaum, P. H., Bashkansky, M. & McIlrath, T. J. Scattering of electrons by
intense coherent light. Phys. Rev. Lett. 58, 349 (1987).

26. Kong, Q. et al. Electron bunch trapping and compression by an intense
focused pulse laser. Phys. Rev. E 69, 056502 (2004).

27. Hilbert, S. A., Uiterwaal, C., Barwick, B., Batelaan, H. & Zewail, A. H.
Temporal lenses for attosecond and femtosecond electron pulses. Proc. Natl
Acad. Sci. USA 106, 10558 (2009).

28. Wong, L. J., Freelon, B., Rohwer, T., Gedik, N. & Johnson, S. G. All-optical
three-dimensional electron pulse compression. N. J. Phys. 17, 013051 (2015).

29. Saleh, B. E. A. & Teich, M. C. Fundamentals of photonics, (Wiley, New York,
1991).

30. Mariyenko, I. G., Strohaber, J. & Uiterwaal, C. J. G. J. Creation of optical
vortices in femtosecond pulses. Opt. Express 13, 7899 (2005).

31. Strohaber, J., Petersen, C. & Uiterwaal, C. J. G. J. Efficient angular dispersion
compensation in holographic generation of intense ultrashort paraxial beam
modes. Opt. Lett. 32, 2387 (2007).

32. Shapira, A., Shiloh, R., Juwiler, I. & Arie, A. Two-dimensional nonlinear beam
shaping. Opt. Lett. 37, 2136–2138 (2012).

33. Madan, I. et al. Ultrafast transverse modulation of free electrons by interaction
with shaped optical fields. ACS Photonics 9, 3215 (2022).

34. Talebi, N. Electron-light interactions beyond the adiabatic approximation: recoil
engineering and spectral interferometry. Adv. Phys. X 3, 1499438 (2018).

35. Talebi, N. Chapter 8.2.2, Near-field-mediated photon–electron interactions,
(Springer, 2019).

36. Dahan, R. et al. Imprinting the quantum statistics of photons on free electrons.
Science 373, 6561 (2021).

37. Kozak, M. & Ostatnicky, T. Asynchronous inelastic scattering of electrons at
the ponderomotive potential of optical waves. Phys. Rev. Lett. 129, 024801
(2022).

38. Eldar, M., Pan, Y. & Krüger, M. Self-trapping of slow electrons in the energy
domain, arXiv:2209.14850 (2022).

39. Wolkow, D. M. On a class of solutions to Dirac’s equation. Physik 94, 250
(1935).

40. Cicchitelli, L., Hora, H. & Postle, R. Longitudinal field components for laser
beams in vacuum. Phys. Rev. A 41, 3727 (1990).

41. Quesnel, B. & Mora, P. Theory and simulation of the interaction of
ultraintense laser pulses with electrons in vacuum. Phys. Rev. E 58, 3719
(1998).

42. Solà-Garcia, M. Electron-matter interaction probed with time-resolved
cathodoluminescence, Phd Thesis, University of Amsterdam (2021).

43. Shiloh, R., Chlouba, T. & Hommelhoff, P. Quantum-coherent light-electron
interaction in a scanning electron microscope. Phys. Rev. Lett. 128, 235301
(2022).

44. Tsarev, M., Ryabov, A. & Baum, P. Measurement of temporal coherence of
free electrons by time-domain electron interferometry. Phys. Rev. Lett. 127,
165501 (2021).

45. Aidelsburger, M., Kirchner, F. O., Krausz, F. & Baum, P. Single-electron pulses
for ultrafast diffraction. Proc. Natl Acad. Sci. USA 107, 19714 (2010).

46. Engelen, W. J., van der Heijden, M. A., Bakker, D. J., Vredenbregt, E. J. D. &
Luiten, O. J. High-coherence electron bunches produced by femtosecond
photoionization. Nat. Commun. 4, 1693 (2013).

47. Schütz, G. et al. Biprism electron interferometry with a single atom tip source.
Ultramicroscopy 141, 9 (2014).

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01300-2 ARTICLE

COMMUNICATIONS PHYSICS |           (2023) 6:179 | https://doi.org/10.1038/s42005-023-01300-2 | www.nature.com/commsphys 7

www.nature.com/commsphys
www.nature.com/commsphys


48. Karkare, S. et al. Ultracold electrons via near-threshold photoemission from
single-crystal Cu(100). Phy. Rev. Lett. 125, 054801 (2020).

49. Johnson, C. W. et al. Electron-beam source with a superconducting niobium
tip. Phys. Rev. Appl. 19, 034036 (2023).

50. Forbes, A., Olivera, M. D. & Denis, M. R. Structured light. Nat. Photon. 15,
253 (2021).

51. Talebi, N., Sigle, W., Vogelgesang, R. & van Aken, P. Numerical simulations of
interference effects in photon-assisted electron energy-loss spectroscopy. N. J.
Phys. 15, 053013 (2013).

52. Kosloff, R. Time-dependent quantum-mechanical methods for molecular
dynamics. J. Phys. Chem. 92, 2087–2100 (1988).

Acknowledgements
This project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme under grant
agreement no. 802130 (Kiel, NanoBeam) and grant agreement no. 101017720 (EBEAM).

Author contributions
N.T. initiated and supervised the project. S.E. conceived the idea and carried out
simulations, analytical work, and data analysis. S.E. and N.T. wrote the manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s42005-023-01300-2.

Correspondence and requests for materials should be addressed to Sven Ebel or Nahid
Talebi.

Peer review information Communications Physics thanks the anonymous reviewers for
their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01300-2

8 COMMUNICATIONS PHYSICS |           (2023) 6:179 | https://doi.org/10.1038/s42005-023-01300-2 | www.nature.com/commsphys

https://doi.org/10.1038/s42005-023-01300-2
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsphys

	Inelastic electron scattering at a single-beam structured light wave
	Results and discussion
	Inelastic electron scattering by light-pulse-generated ponderomotive potentials
	Inelastic electron-light scattering defined by electron self-interference

	Conclusion
	Methods
	Time-dependent Maxwell-Schrödinger scheme13,17,34

	Data availability
	References
	Code availability
	References
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information




