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Polarization behavior in a compositionally graded
relaxor–ferroelectric crystal visualized by angle-
resolved polarized Raman mapping
Shinya Tsukada 1,2✉, Yasuhiro Fujii 3✉, Akari Kanagawa2, Yukikuni Akishige1 & Kenji Ohwada 4✉

Explaining the properties and functions of materials in terms of their atomic arrangements

and inhomogeneous structures is a fundamental challenge for the development of ferro-

electric oxides. Dielectric response, a fundamental property of matter, can be explained by

long-wavelength polar lattice vibrations and dipole relaxations capable of responding

to electrical bias; therefore spectroscopic methods, such as Raman spectroscopy, can be used

to investigate its origin. Herein, we used angle-resolved polarized Raman mapping to

investigate how phase boundaries and giant dielectric responses are related in a relaxor-

Pb(Mg1/3Nb2/3)O3–ferroelectric-PbTiO3 (PMN-xPT) solid-solution system using a composi-

tionally graded crystal, with gradual changes in polarization direction visualized by Raman

mapping. The variation of the width of quasielastic light scattering with position reveals the

following: The huge dielectric response observed in PMN-xPT is ascribable to the slowing

down of a relaxation related to mesoscopic ferroelectric domains near the phase boundary,

which is characteristic of relaxor–ferroelectric solid-solution systems and differentiates them

from other ferroelectrics.
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The properties of a functional crystal are not always
explained by its atomic arrangement (i.e., crystal struc-
ture). For example, local symmetry breaking sometimes

leads to the “forbidden” enhancement of material properties.
Perovskite ABO3-type ferroelectrics are typical functional mate-
rials with a large response to electric fields and show large
dielectric or piezoelectric properties; these large responses are
closely associated with polar inhomogeneity (i.e., regions in which
local symmetry breaks). For example, local symmetry breaking
due to polar correlation along [111]C in BaTiO3 has been
observed over several nanometers in an average tetragonal
structure, with polar correlation through reorientation of the local
dipoles leading to large dielectric responses1–9. Pb-based B-site
complex perovskites, such as Pb(Mg1/3Nb2/3)O3, which are
referred to as “relaxors”, exhibit dielectric responses that are one
order of magnitude larger than those of BaTiO3 due to its more
complex structure10–14. Relaxors are characterized by several
types of local symmetry breaking. One involves one-to-two
nanometer cation disorder at B-sites that are referred to as
“chemical ordered regions” (CORs) that lead to random electric
and elastic fields15,16. Random fields induce polar nanoregions
(PNRs) that are several nanometers in size, depending on the
temperature, and PNR arrays form micrometer-scale ferroelectric
domains17–23. In addition, micrometer-scale ferroelectric
domains are arranged according to the electric poling
direction24–27. Therefore, achieving a unique understanding of
relaxors is challenging because inhomogeneous structures and
their dynamics are widely spread across various length and time
scales.

Furthermore, piezoelectric and dielectric responses are enhanced
near morphotropic phase boundaries (MPBs) that are parallel to the
temperature axis in the composition–temperature phase diagram of a
relaxor-ferroelectric solid-solution single crystal22,28–30. A relaxor-
Pb(Mg1/3Nb2/3)O3–ferroelectric-PbTiO3 (PMN-xPT) solid solution
(mixing ratio= 100−x:x; x mol%) exhibits an MPB between a fer-
roelectric rhombohedral (R: R3m) phase in a Ti-poor region and a
ferroelectric tetragonal (T: P4mm) phase in a Ti-rich region at an x
value of approximately 30mol%. Monoclinic B (MB: Cm) and C (MC:
Pm) phases are widely recognized to form bridges that connect R and
T phases, as shown in Fig. 1a31,32. The energy states of every phase
compete around the MPB, and relaxor-ferroelectric solid-solution
single crystals become unstable to external electric fields. The “ease of
polarization rotation via monoclinic phases” concept, which is based
on phenomenological and first-principles calculations, has been
proposed around MPBs to explain the large responses of relaxor-
ferroelectric solid solutions by considering the instabilities of ferro-
electric phases33,34. Here, spontaneous polarization can easily rotate
in the (10�1) planes in theMB phase and in the (010) planes in the MC

phase. In addition to the polarization rotation mechanism, several
qualitative mechanisms have been proposed, including the “critical
phenomenon in composition–temperature–electric field phase dia-
gram”, “adaptive domain structure”, and “domain engineering”
mechanisms, among others24,29,35.

The science in the vicinity of an MPB is complex and still
under debate because several crystal structures share the same
energy state, and show aspects that depend on their morphology
(such as crystals, ceramics, and thin films) and the experimental
technique used (such as X-ray and neutron diffractometry) near
the MPB. For example, X-rays and neutrons with different
degrees of penetration produce different Bragg diffractions from
Pb(Zn1/3Nb2/3)O3 and (1− x)Pb(Zn1/3Nb2/3)O3-xPbTiO3 (PZN-
xPT: x= 4.5 and 8.0 mol%) crystals because the surface has a
higher crystal symmetry than the interior36. Consequently, a
systematic study involving the preparation of many crystal sam-
ples with different compositions is essential when investigating
the origins of electrical responses near the MPB. Instead of

preparing multiple crystals, we investigated a single PMN-xPT
crystal with a Ti composition gradient37 that ranges between
x= 29.0 and 37.7 mol% using X-ray diffraction38 and inelastic
X-ray scattering mapping39 techniques. The crystal coherence
length, determined by the pseudo-cubic (400) Bragg reflection
width, is smallest just below the MPB composition, leading to
nano-domains (i.e., static PNRs) that rotate more easily, and
enhanced electric responses near the MPB38. From a dynamics
viewpoint, the transverse acoustic phonon perpendicular to the
spontaneous polarization was found to become unstable in the
MC phase39.

Since long-wavelength lattice vibrations are associated with
ferroelectric interactions, Raman scattering techniques, which
probe much longer wavelengths than inelastic X-ray and neutron
scattering methods, have revealed instabilities near phase transi-
tions from a dynamics viewpoint40. Raman spectroscopy also
provides information on crystal symmetry because Raman scat-
tering from a crystal depends on the Raman tensors derived from
the point symmetry of the crystal41. Our angle-resolved polarized
Raman spectroscopy technique effectively uses Raman tensor
information: The relationship between Raman peak intensity and
the angle between the polarization direction of the incident and
scattered light, θ, provides information about the crystal sample,
such as the point group and optical axis direction, in addition to
the frequencies and damping constants associated with lattice
vibrations obtained by usual Raman spectroscopy42,43. Here,
mapping the Ti-composition-gradient PMN-xPT crystal is
expected to provide information about lattice vibrations in the
vicinity of the MPB. In this study, we added a mapping device to
this spectroscopic method. Angle-resolved polarized Raman
spectra were acquired at each position of the Ti-composition-
gradient PMN-xPT crystal to understand the dielectric response
in terms of the atomic arrangements and inhomogeneous struc-
tures present. This experiment clarified the spatial arrangement of
polarization and relaxation dynamics, and the origin of the giant
dielectric response in the vicinity of the MPB was discussed.

Results and discussion
Evaluating a Ti-composition-gradient PMN-xPT crystal and its
placement in the Raman microscope. An as-grown Ti-
composition-gradient PMN-xPT crystal was cut to provide a
62.7 × 15.0 × 0.3 mm {100} plane, of which two large surfaces
were optically polished37. Figure 1b shows an optical image and
Ti-Kα and Nb-Kα X-ray fluorescence intensity maps of the crystal
acquired by analytical X-ray microscopy. The Ti-Kα and Nb-Kα
fluorescence intensity are uniform in the longitudinal direction.
In contrast, the Ti-Kα fluorescence intensity increases, and the
Nb-Kα fluorescence intensity decreases toward the right-hand
side of the image. In the same way, Pb was determined to be
uniformly distributed. To quantitatively determine the com-
position, x, of the Ti-composition-gradient PMN-xPT crystal in
the transverse direction, Ti fluorescence (Kα: 4.51 keV) inten-
sities were examined together with those of reference PMN-xPT
samples with x= 0 and 38.7 mol%. Figure 1c shows the posi-
tional dependence of x, with x observed to change from 27.0 to
38.0 mol% over the 62.7-mm sample length. The relationship
between the composition range of the sample and the phase
diagram is also represented in Fig. 1a. The space groups within
the crystal confirmed in our previous studies are shown in
Fig. 1d38. The cloudy-to-transparent change in appearance in
the optical image corresponds to the boundary between MB and
MC phases. The crystal was positioned on the Raman micro-
scope such that the boundary between the two phases was
placed at X= 13 mm on the stage, after which angle-resolved
polarized Raman mapping was performed.
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Probing static properties by Raman mapping. Raman spectra
were collected at various spatial positions (X, Y) at a constant
light polarization angle θ. Figure 2a shows one spectrum obtained
at X= 2 mm (in the MB phase), Y= 7 mm, and θ= 131°, indi-
cating Stokes and anti-Stokes scattering, and several characteristic
peaks can be seen. The origin of the peaks has been considered in
various ways, including local and average structures, some of
which will be discussed later based on their light polarization
angle dependence. As a first step in the analysis of the spectra, the
corresponding X-Y Raman image of the crystal is shown in
Fig. 2b. The spectrum obtained at each position is reduced to only
one value for the corresponding area around the peak at 50 cm−1

to represent the spatial distribution of the peak intensity. This
figure contains both spectral and spatial information. Dis-
continuous colors are seen at phase boundaries at X values
of ~13.2 and ~39.9 mm that correspond to x= ~29.2 and
34.5 mol%, respectively31,32. The weak scattering intensity area
observed at the bottom of the figure is not intrinsic and is due to
the Kapton tape used to fix the specimen. Determining the origin
of each peak is difficult due to average and various local struc-
tures. Nevertheless, the apparent anomalies observed at the two-
phase boundaries indicate that while such mapping provides
average structural information, it does not detect details related to
changes in polarization, local structure, or dynamics in phases
near the MPB.

The spontaneous polarization direction in the Ti-composition-
gradient PMN-xPT crystal should rotate continuously with
changing positions in the MB and MC phases. Consequently,
Raman tensor information acquired by angle-resolved polarized
Raman spectroscopy is expected to be important because Raman
spectra obtained from a crystal are usually dependent on the
polarization direction of the light. Angle-resolved polarized
Raman spectra obtained at different θ values at constant position
(X= 2 mm, Y= ~ 7mm) are shown in Fig. 2c, which reveals that
the shape of the spectrum is θ-dependent. The Raman spectrum
at each angle is shown along the horizontal direction of this
contour map, whereas the angular dependence of each frequency
shift is displayed in the vertical direction. The prominent peaks
located at −49 and 49 cm−1 are most intense at θ= 0° and 90°,
with minimum values of almost zero observed at θ= 45° and
135°. These two peaks are anti-Stokes and Stokes Raman
scattering, originating from the same origin. According to
previous studies on Raman spectroscopy of PMN, the peaks
observed for PMN are mainly attributable to CORs with 1:1 Mg:
Nb chemical ordering and Fm�3m symmetry44–46 (the x-
dependence of this peak for PZN-xPT is discussed in detail by
Kanagawa et al.47). In a similar manner, the peak at around
750 cm−1 is attributable to light scattering from the R3m crystal
structure, which is related to local PNR structures19 and the
average structure of the R phase of PMN44. Based on the pair

Fig. 1 Evaluating the Ti-composition-gradient (1− x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-xPT) crystal. a Phase diagram of PMN-xPT obtained by X-ray
powder diffraction31,32. C, R, MB, MC, and T denote cubic, rhombohedral, monoclinic (type B), monoclinic (type C), and tetragonal crystal structures,
respectively. The horizontal red thick line at 396K indicates the compositional range of a Ti-composition-gradient PMN-xPT crystal used in this study.
b Optical image and Ti-Kα and Nb-Kα X-ray fluorescence mapping of PMN-xPT with Ti composition gradient. Relative composition could be evaluated by
measuring X-ray fluorescence from each element using an X-ray analytical microscope. c Position dependence of x in PMN-xPT crystal obtained by
synchrotron X-ray fluorescence. d Schematics of sample setting in Raman microscope with relationships between average crystal structure and
polarization direction. It also shows how the polarization direction of light is controlled by a half-wave plate.
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distribution functions of PMN19,48 and PZN-xPT49, the average
structures of the relaxor-ferroelectric solid solutions are deter-
mined by the arrangement of the PNRs (R3m): For example, a
fractional combination of local polarization along [111]C and that
along [1�11]C can reproduce polarization direction in the MB

phase. Thus, peaks from the average PMN-xPT structures (MB,
MC, and T phases) also overlap with those from PNRs (R3m)
and CORs (Fm�3m) at room temperature50, which is more
complicated than the PMN situation at room temperature;
although this idea has not reached settlement yet, the PMN
mode assignment44–46 is very helpful in interpreting spectra in
this study.

We performed angle-resolved polarization Raman mapping
(X-θ mapping), which was developed by incorporating θ
information into the Raman mapping process using a rotating
half-waveplate placed in the microscope (Fig. 1d). The contour
map for the peak at 750 cm−1 is shown in Fig. 2d (other peak-
intensity maps are shown in Supplementary Fig. S1 in Supple-
mentary Note 1). The following relationship between θ and
intensity at each X was observed: θmax, the angle corresponding to
the maximum value in the angular-dependent Raman peak-
intensity map (shown in red in Fig. 2d), is almost constant at each
X in the MC (13 mm < X < 40 mm) and T (40 mm < X) phases,
whereas it changes continuously with X in the MB phase

(X < 13 mm). While θmax was observed to decrease linearly (from
88° to 74°) with increasing X (from 4.6 to 7.1 mm), θmax changed
abruptly from 74° at X= 4.6mm to 35° at X= 5.6 mm, and then
back to 74° at X= 7.1 mm; it increased linearly (from 74° to 89°)
as X was increased 7.1–11.6 mm.

The relationship between θ and Raman peak intensity
associated with changes in the direction of spontaneous
polarization is shown in the Supplementary Information
(Supplementary Figs. S2–S5 in Supplementary Note 2). The
observation that θmax is independent of X (X > 13 mm in Fig. 2d)
is well-reproduced when the polarization directions in the MC

and T phases change, as shown in Fig. 2e. However, θmax should
increase or decrease monotonically when the polarization in the
MB phase rotates from the R phase to the O phase, as shown in
Fig. 2e, which is not observed for X < 13 mm in Fig. 2d. The
polarization direction must change by about 90° when viewed
from above to explain the experimentally observed decreasing-to-
increasing shift in θmax at X= 5.6 mm. The direction in which
polarization rotates reverses in moving from the R phase to the O
phase (See MB phase in Fig. 2e); as a result, the X-dependent θmax

switches from a decreasing trend to an increasing one. While the
switching θmax trend can be reproduced as shown in Supple-
mentary Figs. S2 and S3, the magnitude of the change cannot be
explained here since a simple polarization rotation in the MB

Fig. 2 Raman maps of the Ti-composition-gradient (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-xPT). a Raman spectrum in the monoclinic (type B, MB)
phase acquired at a polarization direction of the incident light, θ, equal to 131° with a backward-scattering geometry with vertical to horizontal (VH)
polarization. b X-Y Raman map colored by the intensity in the area around 50 cm−1 in the spectra acquired at θ= 131°. c Angle-resolved polarized Raman
spectra at X= 2mm and Y ~ 7 mm, shown at three θ values (upper) and as a contour plot colored by intensity (lower). d X-θ Raman map colored by the
intensity in the area around 750 cm−1 of the spectra acquired at Y ~ 7 mm. e Relationship between the direction of spontaneous polarization and the
pseudo-cubic axis in each ferroelectric phase (average structure). R, O, T, and MC in the figure represent the rhombohedral, orthorhombic, tetragonal, and
monoclinic (type C, MC) phases, respectively. f X dependence of the spontaneous polarization in the MB phase, as interpreted in panel d.
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phase would only change θmax by 30°. Therefore, we suggest that
the polarization rotation shown in Fig 2f, which connects the
change in the polarization direction by about 90°, is required to
explain the abrupt shift in θmax observed in the 4.6–7.1 mm X
range. Analyzing the relationship between X and θmax is
complicated using the Raman tensor in the polarization-
rotation process shown here because the crystal structure is
different from that of MB or MC. However, the crystal structure is
expected to be identical to that of the MC phase when polarization
is oriented horizontally during rotation; θmax changes toward 0°
at X= 5.6 mm in Fig. 2d, which is the same as that of the MC

phase. We consider that the experimental results also support our
interpretation, as shown in Fig. 2f.

No anomalies were observed at X= 5.6 mm in our previous
XRD mapping of the same crystal38, which implies that the
average crystal structure maintains MB-phase symmetry. There-
fore, local polarization in the average crystal structure of MB

exists as a set of dipoles smaller than the laser focus (about 10
micrometers in diameter), such as static PNRs, and the local
polarization positionally rotates as shown in Fig. 2f. Uncertainty
still exists when determining the polarization configuration in the
depth direction; therefore, complementary experiments, such as
Raman spectroscopy in other scattering configurations and
crystal structure analyses, are necessary. However, the excellent
progress afforded by angle-resolved polarized Raman spectro-
scopy can be used to study polarization-rotation behavior at
about 2.5 mm, from X= 4.6 to 7.1 mm, which cannot be
examined using ordinary Raman mapping techniques (Fig. 2b),
polarized light microscopy, or optical microscopy.

Probing lattice dynamics around the MPB. Typically, spectra
are acquired at each position at constant θ when studying the
positional dependence of lattice vibrations in a single crystalline
sample, with positional dependence compared. However, com-
paring spectra acquired from the Ti-composition-gradient PMN-
xPT at constant θ is difficult because the θ-dependence of spectra
changes in the MB phase, as shown in Fig. 2d. Therefore, this
angle-resolved polarized Raman spectroscopic method, which
acquires spectra at various θ values, is decisive for comparing
dynamics at each position. Since angle-resolved polarized Raman
data composed of 20 spectra were obtained at each position in
this study, extracting a spectrum (or a few spectra) that are
representative of a single position is necessary. For this reason, we
used the multivariate curve resolution-alternating least squares
(MCR) matrix-factorization technique, a schematic of which is
displayed in Fig. 3a, which shows that a matrix with polarization
angle as the vertical axis and frequency shift as the horizontal axis
is decomposed into two angular profiles and two spectra51. The
number of decompositions (i.e., two) was determined by singular
value decomposition and is the same for all positions in the MB

phase. In this decomposition, the number of decompositions was
also tried in the case of three, but the third component was not
properly identified. Therefore, it was confirmed that the decom-
position with two components was accomplished without exces-
ses or deficiencies. The contour map displayed in Fig. 3b shows
angle-resolved polarized Raman spectral data at X= 5 mm, with
the MCR results shown in Fig. 3c. Here, two spectra, I1(ν) and
I2(ν), and two angle profiles, p1(θ) and p2(θ), are the features of
the contour map. p1(θ) and p2(θ) are numbers representing the

Fig. 3 Matrix factorization results. aMultivariate curve resolution (MCR) concept for angle-resolved polarized Raman spectroscopy, where the number of
components, k, was determined to be two in the monoclinic (type B, MB) phase by singular-value decomposition (SVD). The data consist of a 20 × 1024
matrix, which can be decomposed into a 20 × 2 matrix (two angle profiles, p1(θ) and p2(θ)) and a 2 × 1024 matrix (two base spectra, I1(ν) and I2(ν)).
b Angle-resolved polarized Raman spectra at X= 5mm and Y ~ 7 mm, shown as a contour plot colored by intensity. c MCR data showing that p1(θ) and
p2(θ) are numbers representing the proportion of I1(ν) and I2(ν), respectively, in the spectra at each θ.
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proportion of I1(ν) and I2(ν), respectively, in the spectra at each θ;
consequently, the sum of I1(ν)･p1(θ) and I2(ν)･p2(θ) approxi-
mately reproduces the initial contour-map matrix. Here, p1(θ)
clearly shows maxima at 60° and 150° and minima at 10° and
110°, whereas p2(θ) is characterized by maxima at 5° and 100°,
and minima at 50° and 140°. The peak at 49 cm−1 is the most
remarkable feature of I2(ν) because it reveals that it contains
significant COR scattering. On the other hand, I1(ν) shows var-
ious peaks, such as the peak at 750 cm−1 that reflects ferroelectric
fluctuations of BO6 oxygen octahedra in the average crystal
structure (MB symmetry) containing static PNRs (R symmetry).

Figure 4a, b displays the X-dependences of p1(θ) and p2(θ) and
reveal that p1(θ) exhibits the same polarization-rotation behavior
discussed above, while p2(θ) is independent of X, which means
that I1(ν) in Fig. 4c reflects ferroelectric instability and I2(ν) in
Fig. 4d reflects nonpolar vibrations, including those in the CORs.
The observation that the peak at ±49 cm−1, which corresponds to
the COR contribution44–46, dominates I2(ν) (Figs. 3c and 4d)
supports this interpretation. The enlargement of the low-
frequency region displayed in Fig. 4c shows that I1(ν) is
significantly more dependent on X in the region near 0 cm−1 at
an X value of ~10 mm, while an abrupt change is observed at
X= 13.6 mm at the MPB. Since changes in low-frequency polar
vibrations are closely related to the electric field response, the
low-frequency regions of the spectra were least-squares fitted by
assuming five damped harmonic oscillators and one Lorentzian
function centered at 0 cm−1 that represents Debye-type relaxa-
tion (Fig. 4e). The X-dependences of the determined parameters
of each peak are shown in Fig. 4f, which reveals that the
frequency shifts of the four modes do not change. On the other
hand, the width of the Lorentzian function (Δν), which represents
quasielastic scattering, shows a minimum at X= 10.0 mm; this

position corresponds to PMN-28.6PT, which has a lower PbTiO3

concentration than the MPB (PMN-29.0PT). Electric-dipole
relaxation is responsible for the quasielastic scattering observed
for a relaxor ferroelectric52–58. Peak narrowing corresponds to
slower polarization relaxation as determined using: π·Δν·τ= 1
assuming Debye relaxation with relaxation time τ. The deter-
mined values τ are shown in Fig. 5a, with a possible electric-
dipole relaxation process shown in Fig. 5b, which is based on the
ease of polarization rotation in the MB phase. Such slow
relaxation might reflect competing mesoscopic domains formed
by the arrangements of static PNRs. Mesoscopic domain
relaxation increases the dielectric response at this position
(composition). Our previous diffraction experiments38 showed
that the correlation length, determined from the width of the
Bragg peak, is the smallest (~70 nm) at the exact location, which
suggests that smaller mesoscopic domains can readily fluctuate
compared with larger domains, thereby enhancing the electric
field response. The mechanism responsible for how composi-
tional changes affect correlation length and relaxation time
remains to be solved. One possible interpretation of the short
correlation and slow relaxation at the MPB involves phase
instability due to competing MB-phase and MC-phase energy
states. Because the ferroelectric domains become smaller and
fluctuate more slowly when the temperature approaches the
ferroelectric transition temperature –due to competing energy
states between paraelectric and ferroelectric phases–, the meso-
scopic domains in the MB phase of our Ti-composition-gradient
PMN-xPT crystal become smaller and relax more slowly as the
composition approaches the MPB. Here, the MB/MC phase
boundary is unique in that it is easily polarized in various
directions and is more unstable to external electric fields than
other phase boundaries.

Fig. 4 Scanning results. a–d X dependence of two angle profiles (p1(θ) and p2(θ)) and two base spectra (I1(ν) and I2(ν)). The low-frequency regions related
to the dielectric constant are expanded for I1(ν) and I2(ν). e I1(ν) fitted to determine peak anomalies induced by changing X. f Fitted results. The full width at
half maximum (FWHM) of the quasielastic scattering clearly shows narrowing at X ~ 10mm. The error bars represent standard errors determined by least-
squares fitting.
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Butterfly-shaped diffuse scattering at the Brillouin zone center
(q= 0), a cut of the diffuse scattering in the reciprocal lattice
(HK0) plane59–62, has been reported to arise from complex
mesoscopic domains and to exhibit a maximum intensity at
around the MPB composition (PMN-30PT)63, which indicates
that this diffuse scattering is related to a significant electric field
response; however, the static nature of diffuse scattering itself
cannot explain the electric field response41. Our findings on I1(ν)
relaxation provide a dynamic perspective on polar mesoscopic
domains and establish a link between the existence of mesoscopic
domains and (di)electric responses.

Conclusions
Angle-resolved polarized Raman mapping of a Ti-composition-
gradient PMN-xPT crystal revealed positional changes in spon-
taneous polarization direction and the relaxation dynamics in the
MB phase. By acquiring Raman spectra of various light polar-
ization directions at each position, in addition to the usual X-Y
mapping, subtle changes in spontaneous polarization direction
could be detected, and a positional polarization rotation is sug-
gested. Furthermore, by simplifying the 20 spectra at one position
with MCR, the relaxation time of polarization fluctuations could
be extracted from the quasielastic light scattering. The position
dependence of the relaxation time shows the slowing down in the
MB phase as it approaches the MPB. And the following consistent
and straightforward story that connects the local structure with
the dielectric response is provided: Local polarization relaxes
more slowly, leading to an enhanced dielectric response because
the mesoscopic domains become smaller near the MPB.

These experimental results and their interpretation deepen our
understanding of the relationship between the complex structure
of a crystal and its material properties, and can be applied to
other ferroelectric relaxor systems.

Methods
Evaluating a Ti-composition-gradient PMN-xPT crystal. An as-grown Ti-
composition-gradient PMN-xPT crystal was provided by JFE Mineral37 and cut to
provide a 62.7 × 15.0 × 0.3 mm {100} plane in which two large surfaces were
optically polished. Compositional mapping was qualitatively performed using
X-ray fluorescence spectroscopy with an analytical X-ray microscope (XGT-5000,
Horiba), and quantitatively using a 200 × 100 μm X-ray beam at the BL22XU
beamline of the SPring-8 facility using reference PMN and PMN-38.7PT crystals.

Angle-resolved polarized Raman mapping. Raman scattering data were acquired
using our system, which comprises a polarization rotation system installed in a
microscope42,43. A Ti-composition-gradient PMN-xPT crystal was placed on an
XYZ mapping stage (Tokyo Instruments) installed in the microscope (BH-2,
Olympus). Linearly polarized incident light from a 200-mW single-frequency
diode-pumped solid-state laser (Spectra Physics) operating at 532 nm was passed to
the sample through a polarization rotation device (Sigma Koki) equipped with a
broadband half-waveplate (Kogakugiken) in the microscope. Using a 10× objective
lens, the focus was about 10 μm in diameter on the sample. Two-volume Bragg
gratings (i.e., ultra-narrow-band notch filters; OptiGrate) were used to eliminate
strong elastic scattering. The inelastically scattered light was dispersed by a single
monochromator (Lucir), and the dispersed component was detected using a
charge-coupled device (Andor). A crossed-Nicols polarization (vertical–horizontal:
VH) backscattering geometry was adopted because a vertical–vertical configuration
includes quasielastic scattering from thermal diffusion unrelated to polarization
relaxation64. A schematic of the system has previously been reported43.

The obtained contour maps contained shot noise, which was eliminated using
the median filter.

Matrix factorization (multivariate curve resolution, MCR)65–68. MCR was
performed using the Unscrambler X multivariate statistical analysis software
(Camo Analytics). MCR is a matrix factorization technique that uses linear com-
binations of a prescribed number, k, of spectral components and their constrained
angle dependence. An m × n nonnegative data matrix containing Raman spectra
acquired at different θ values at constant position X is decomposable into an m × k
matrix (k base spectra) and a k × n matrix (k angle profiles) under the condition
that the matrix elements are nonnegative51. The prescribed number, k, is deter-
mined by singular value decomposition. The data matrix was also analyzed by
assuming k ± 1 to ascertain possible excesses or deficiencies in the base spectra and
angle profiles to reproduce the data matrix.

Data availability
The datasets generated during the current study are available from the corresponding
author (S.T.) on reasonable request.
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