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Ultimate speed limits to the growth of operator
complexity
Niklas Hörnedal 1,2✉, Nicoletta Carabba 1, Apollonas S. Matsoukas-Roubeas 1 & Adolfo del Campo 1,3

In an isolated system, the time evolution of a given observable in the Heisenberg picture can

be efficiently represented in Krylov space. In this representation, an initial operator becomes

increasingly complex as time goes by, a feature that can be quantified by the Krylov com-

plexity. We introduce a fundamental and universal limit to the growth of the Krylov com-

plexity by formulating a Robertson uncertainty relation, involving the Krylov complexity

operator and the Liouvillian, as generator of time evolution. We further show the conditions

for this bound to be saturated and illustrate its validity in paradigmatic models of

quantum chaos.
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Quantum speed limits (QSL) impose fundamental con-
straints on the pace at which a physical process can
unfold. Since their conception1,2, they have been for-

mulated as bounds on the minimal time at which a distance
between quantum states can be traversed. The freedom in the
choice of the distance can be used to sharpen the discrimination
between quantum states, and with it, the notion of the speed of
evolution3,4. Additional efforts have been devoted to exploring
the role of the underlying dynamics, generalizing early results
from isolated systems to open5–8 and classical processes9,10. The
resulting speed limits have become a useful tool in various
branches of physics, ranging from information processing11 to
many-body physics12, quantum control13, and quantum
metrology14. However, traditional QSL are too conservative in
estimating the relevant time scales in many processes, such as
thermalization15. This has motivated the development of speed
limits suited for specific measures and observables16, as in the
pioneering work by Mandelstam and Tamm1. In this sense,
certain speed limits follow from generalized uncertainty relations
such as those derived by Heisenberg and Robertson17.

In parallel with the study of QSL, quantifying the complexity of
a physical process is a central task for the advancement of fun-
damental physics and quantum technologies. Lloyd pointed out
that the computational complexity of physical processes is limited
by QSL18. Analogously, the circuit complexity of a quantum
state19, defined as the number of elementary operations required
to generate it from a reference state, can be characterized in terms
of conventional QSL20–23. A complementary approach for many-
body quantum systems focuses on the buildup of complexity in
the time evolution of an initial local observable, known as
operator growth24–28. The intuition is that simple operators
unitarily evolve into increasingly complex ones. Quantum infor-
mation initially encoded in a few degrees of freedom is thus
scrambled over the system in the course of evolution, making it
impossible to recover it through local measurements and giving
rise to thermalization. The unambiguous description of this
scrambling process remains an open problem. One possibility is
to probe it via an out-of-time-ordered correlator29,30 that may be
used to identify an analog of the Lyapunov exponent, providing a
connection with classical chaos, e.g., the butterfly effect. Such
quantum Lyapunov exponent obeys a universal upper bound30,
which helps refine the notion of maximal chaos, is saturated by
black holes and is further tied to the eigenstate thermalization
hypothesis31,32. A related approach, which we shall pursue in this
work, is to study the dynamical evolution of operators in Krylov
space, exploited in numerical techniques such as the recursion
method33. In this context, operator growth is quantified by the
so-called Krylov complexity, a measure of the delocalization of
the time-dependent operator in the Krylov basis34–38. The
authors of34 made a conjecture on the universal operator growth,
namely, that Krylov complexity can grow at most exponentially,
and it does so in generic non-integrable systems. Remarkably, its
growth rate upper bounds the Lyapunov exponent, establishing a
connection with the bound on out-of-time-ordered
correlators30,39. Further studies have shown that exponential
operator growth is possible in free and integrable systems40, while
the role of the interaction graph in a quantum network has been
explored in41.

Here, we characterize the growth of Krylov's complexity by
deriving a fundamental limit on its rate of change and by studying
analytically the conditions under which this bound is saturated.
Our results show that saturation, which is also found to corre-
spond to a particular notion of minimum uncertainty, occurs
whenever the dynamical evolution of the system has the under-
lying structure of a three-dimensional complexity algebra, which
was introduced by42. In this setting, the unitary evolution of an

operator can be represented as the displacement of generalized
coherent states42, which display classical-like behavior43. As
demonstrated in several paradigmatic examples, the saturation of
the growth rate may be possible in some chaotic systems, but
quantum chaos is not required for it.

Results and discussion
Quantum dynamics in Krylov space. Consider an isolated
quantum system in which the time evolution of an observable O
is generated by a time-independent Hamiltonian H according to
the Heisenberg equation of motion ∂tOðtÞ ¼ i½H;OðtÞ�, setting
ℏ= 1. The solution to this equation with the initial condition
Oð0Þ ¼ O is given by OðtÞ ¼ eitHOe�itH . In terms of the Liou-
villian superoperator given by L ¼ ½H; ��, the Taylor expansion of
the time-evolving observable OðtÞ ¼ ∑1

n¼0
ðitÞn
n! LnO shows that its

dynamics is contained in the complex linear span of the operators
fLnOg1n¼0. This span is completely determined by the Hamilto-
nian and the initial observable and is known as the Krylov space.

From now on, we consider the restriction of each operator and
superoperator to the Krylov space. To highlight the vector space
structure, we make use of the bracket notation Aj Þ when
expressing operator A in an equation. We choose to equip the
Krylov space with an inner product satisfying the properties

1. ðAjLBÞ ¼ ðLAjBÞ, ∀A, B.
2. ðAjLAÞ ¼ 0, when A is Hermitian.

An example of a family of inner products satisfying these two
properties is given by ðAjBÞ ¼ eβH=2Aye�βH=2B

� �
β
. The bracket

�h iβ denotes the thermal expectation value with respect to the
equilibrium Gibbs state e−βH/Z and thus (A∣B) reduces to the
Hilbert-Schmidt inner product when β= 0, up to a normalization
factor. It follows from the second property of the inner product
that the operators O and LO are orthogonal. Let b0 ¼kOk and
b1 ¼kLOk, where ∥⋅∥ is the norm induced by the inner product.
By starting from the normalized vectors O0 ¼ O=b0 and
O1 ¼ LO=b1, we can construct an orthonormal basis fOngD�1

n¼0
for the Krylov space by applying the Lanczos algorithm. This
algorithm works as follows: given the first n+ 1 basis vectors, one
constructs the orthogonal vector jAnþ1Þ ¼ LjOnÞ � bnjOn�1Þ,
where bn= ∥An∥ and then normalize it to obtain jOnþ1Þ. We call
the constructed basis the Krylov basis. It is possible that the
Krylov dimension D is infinite, in which case the Lanczos
algorithm never halts. We remark that the Lanczos algorithm is
only guaranteed to construct an orthonormal basis if the
Liouvillian is self-adjoint, i.e., the first property of the inner
product is satisfied. Generally, the Lanczos algorithm involves a
third term on the right-hand side of the equation for jAnþ1Þ. This
term is, however, always zero whenever the second property of
the inner product is satisfied. Thus, with our chosen inner
product, the action of the Liouvillian on the Krylov basis takes a
specific form LjOnÞ ¼ bnþ1jOnþ1Þ þ bnjOn�1Þ. As pointed out in
ref. 42, this motivates one to consider abstract raising and
lowering operators that we denote by Lþ and L�, respectively.
Their action on the Krylov basis is given by LþjOnÞ ¼
bnþ1jOnþ1Þ and L�jOnÞ ¼ bnjOn�1Þ. The Liouvillian can then
be expressed as their sum.

It is further convenient to introduce the real-valued functions
φn(t), which appear in the expansion of OðtÞ as
jOðtÞÞ ¼ 1

kOk∑
D�1
n¼0 i

nφnðtÞjOnÞ. We will refer to these functions
as the amplitudes of the observable. These amplitudes evolve
according to the recursion relation ∂tφn(t)= bn−1φn−1(t)− bnφn
+1(t) with the initial conditions φ0(0)= 1 and φn(0)= 0 for n > 0.
Thinking of the Krylov basis vectors as forming the sites of a one-
dimensional lattice, bn can be interpreted as a hopping amplitude,
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see, e.g.,34,35. In this sense, one can think of O as a one-
dimensional discrete wave function that is initially localized and
then spreads out over the lattice as time evolves. An increase in
the population of the sites further away from the origin reflects a
greater increase of complexity of the observable. In order to
quantify this, it is natural to consider the Krylov complexity of
OðtÞ, defined to be

KðtÞ ¼ ∑
D�1

n¼0
n φnðtÞ
�� ��2: ð1Þ

The main task of our work is to bound the growth of Krylov's
complexity. Due to unitary dynamics, the norm of the evolution
is preserved and the Krylov complexity is unchanged if one
normalizes the operators studied. We will, therefore, without loss
of generality, consider O to be normalized. By introducing the
complexity operator K ¼ ∑D�1

n¼0 njOnÞðOnj, which plays the role
of the position operator in the Krylov lattice, it is possible to
express Krylov complexity as the “expectation value” of K with
respect to OðtÞ. More precisely, if Kh it � ðOðtÞjKOðtÞÞ then
KðtÞ ¼ Kh it .

Dispersion bound on Krylov complexity. If the Krylov space
forms an inner product space in which A and B are self-adjoint
superoperators, then there ought to exist a Robertson uncertainty
relation given by ΔAΔB ≥ 1

2 jh½A;B�ij, where ΔA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hA2i � hAi2

p
is the dispersion of A with respect to some state Aj Þ. When the
Krylov dimension is infinite, it is necessary that Aj Þ is contained
in the intersection between the domains of AB and BA, other-
wise the inequality might not hold44. Letting A ¼ OðtÞ, A ¼ L,
B ¼ K and noting that ΔL ¼ b1, we can rewrite the uncertainty
relation as

∂tKðtÞ
�� ��≤ 2b1ΔK: ð2Þ

In other words, the growth of Krylov complexity is upper
bounded by a constant times the dispersion of the complexity
operator. By defining a characteristic time scale
τK ¼ ΔK= ∂tKðtÞ

�� ��, one obtains τKb1≥1/2, which takes the form of
a Mandelstam-Tamm bound, and emphasizes the role of
b1 ¼kLOk as a norm of the generator of evolution in Krylov
space. To avoid confusion with the uncertainty relation for
observables, we will refer to this bound as the dispersion bound.
We note that no bound tighter than (2) can be found by con-
sidering the more general Schrödinger uncertainty relation, as the
extra term given by the anticommutator identically vanishes, as
shown in Methods.

It is not self-evident that saturation of the dispersion bound
can be achieved under the unitary dynamics of the observable.
There are very specific relations between L, O and K that need to
hold: the Liouvillian is required to be tridiagonal in the eigenbasis
of the complexity operator and the initial state of the observable is
required to be parallel to the eigenvector with the lowest
eigenvalue. The conditions for the saturation of the dispersion
bound are thus highly constrained and differ from those known
for saturation of a Robertson uncertainty relation in general. The
required conditions admit a geometrical interpretation, elabo-
rated in Methods. The bound is saturated if and only if the
evolution curve moves along the gradient of the Krylov
complexity. This requires that the dynamics is directed along
the direction that maximizes the local growth of complexity; see
Methods. The only exception involves extremal points in which
any direction away from the extremal point leads to saturation.
This is indeed the case for t= 0. Indeed, there exists Liouvillians
of the form L ¼ Lþ þ L� for which the tangent of the generated
path will be parallel with the gradient for all times.

Saturation of the dispersion bound. Time evolutions saturating
the dispersion bound are characterized by a unique algebraic
structure. Define the superoperator B ¼ Lþ � L�. Following42,
we consider their simplicity hypothesis: namely, the assumption
that L, B and the commutator ~K ¼ ½L;B� close an algebra with
respect to the Lie bracket. It was shown in42 that this forces ~K to
be related to the complexity operator via ~K ¼ αKþ γ, where
α; γ 2 R. We show in Supplementary Note 2 that γ is a positive
number and α is a real number satisfying the condition α ≥ 0 for
infinite Krylov dimension and α ¼ � 2γ

D�1 for finite Krylov
dimension. Moreover, the only possible closure of the algebra is
given by the commutation relations

½L;B� ¼ ~K; ½~K;L� ¼ αB; ½~K;B� ¼ αL: ð3Þ
Given this algebra, the evolving observable can be interpreted

as a curve of generalized coherent states evolving according to the

displacement operator DðξÞ ¼ eξLþ�ξL� , where ξ= it. Moreover,
the initial state is the highest weight state of the representation,
which is annihilated by L� by construction. Coherent states can
be viewed as the states closest to the classical ones in the sense
that they typically minimize an uncertainty relation. It is for
example known that coherent states of the Harmonic oscillator
saturate the Robertson uncertainty relation for the pair of
observables of position and momentum. Building on this
intuition, we could expect that the dispersion bound is saturated
for the simplicity hypothesis. It turns out that this intuition is
indeed correct. In fact, as we show in Supplementary Note 2, the
dispersion bound is saturated if and only if the simplicity
hypothesis holds. The saturation of the dispersion bound dictates
the evolution of the Krylov complexity, where three different
scenarios are possible, as shown in Fig. 1a. The growth of
complexity at the speed limit is described by the differential
equation

∂2t KðtÞ ¼ αKðtÞ þ γ; ð4Þ
with the conditions that K(0)= 0 and K(− t)= K(t). For finite
Krylov dimension, saturation of the dispersion bound sets the
complexity growing according to KðtÞ ¼ ðD� 1Þsin2ωt, where
ω ¼

ffiffiffiffiffiffiffiffiffiffiffi
γ

2ðD�1Þ
q

. In this, case, the corresponding complexity algebra

(3) reduces to the SU(2) algebra. By contrast, for infinite Krylov

Fig. 1 Growth of Krylov complexity at the speed limit. Saturation of the
dispersion bound occurs in three different scenarios, each of which is
associated with a different complexity algebra that is specified by the sign
of α. a Time-dependence of the Krylov complexity. b The corresponding
growth of the Lanczos coefficients in the Krylov lattice. The plots are
representative of the three different scenarios. The Krylov dimension in the
SU(2) case is D= 100, and infinite in all other cases. In b we choose α= 4
and −4 for the SLð2;RÞ and SU(2) algebras, respectively, while α is always
zero in the HW case. Finally, the parameter γ in b is chosen in each case
such that the corresponding Lanczos coefficients share the same behavior
near the origin of the Krylov lattice. Specifically, γ= 202, 200, and 198 for
the SLð2;RÞ, HW and SU(2) algebras, respectively.
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dimension there are two distinct scenarios for the complexity

growth: for α > 0 one finds KðtÞ ¼ 2γ
α sinh

2
ffiffi
α

p
t

2 , while for α= 0 the
solution reads KðtÞ ¼ γ

2 t
2. The complexity algebra in these two

cases reduces to SLð2;RÞ and the Heisenberg–Weyl algebra
(HW), respectively. Reference examples maximizing the Krylov
complexity growth rate at all times are discussed in Supplemen-
tary Note 1. One such example with α > 1 is the Sachdev-Ye-
Kitaev (SYK) model45, a paradigm of quantum chaos. However,
the saturation of the bound does not require quantum chaos and
can indeed be achieved by a single qubit, with α= 0
(Supplementary Note 1). Together with the time-dependence of
K(t) and the complexity algebra, the value of α also determines
the growth of the Lanczos coefficients in the Krylov lattice. As
proven in Supplementary Note 2, the dispersion bound is
saturated if and only if the Lanczos coefficients grow according to

bn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
αnðn� 1Þ þ 1

2
γn

r
; ð5Þ

exhibiting three different scalings as a function of α, see Fig. 1b.
That the simplicity hypothesis implies (5) has already been
pointed out in42. For α > 1 and large n, this dependence captures
the linear growth bn ¼

ffiffiffi
α

p
n conjectured by Parker et al. to hold

in generic non-integrable systems, maximizing the Krylov
complexity growth34.

Krylov complexity in generic systems. We next discuss the
Krylov complexity growth in generic systems not fulfilling the
simplicity hypothesis. We can use Eq. (5) to estimate when and at
what time scale a generic system deviates from the bound. By
expanding Krylov complexity up to fourth order, we find that
KðtÞ ¼ b21t

2 þ 1
6 b

2
1ð2b22 � b21Þt4 þ Oðt6Þ. Since we can always find

a value on α and γ such that b1 and b2 satisfy (5), we conclude
that the bound (2) is saturated up to the third order in time. By
expanding the Krylov complexity up to sixth order, we find that
the Lanczos coefficient b3 will appear in the last term, and since
we are not guaranteed to be able to find a value on α and γ such
that b1, b2, and b3 satisfy(5), we conclude that the system can only
start deviating from the bound (2) as a result from fifth-order
terms in the expansion. We can estimate this time scale by finding
the value of t for which the third order coefficient of ∂tK(t) is
equal to its fifth-order coefficient. We will call this time the
deviation time, denoted by τd, and it is explicitly given by

τd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
3 b

2
1ð2b22 � b21Þ

1
20 b

2
1ðb21 þ b22Þ � 1

5 b
2
2ðb21 þ b22 þ b23Þ þ 1

2 b
2
2b

2
3

s
: ð6Þ

To get an understanding of the complexity growth in a generic
setting, we next illustrate the Krylov dynamics of a system described
by a random matrix Hamiltonian. Specifically, we consider the
Krylov complexity of an ensemble EðHÞ of random matrix
Hamiltonians, a paradigm of quantum chaos46. We sample the
Hamiltonian matrices H from the Gaussian Orthogonal Ensemble
GOE(d), where d is the dimension of the Hilbert space. We then
calculate the Lanczos coefficients {bn} with partial re-
orthogonalization36,47. Specifically, we consider samples of real
matrices H= (X+X⊺)/2, where all elements x 2 R of X are
pseudo-randomly generated with probability measure given by the
normal distribution, expð�x2=ð2σ2ÞÞ=ðσ ffiffiffiffiffi

2π
p Þ. In order to study

the general behavior of Lanczos coefficients, we choose an initial
observable, which is represented as the normalized vector
jOÞ ¼ ð1=d; 1=d; ¼ ; 1=dÞT , expressed in a fixed eigenbasis of
the Liouvillian. However, the following results do not depend
strongly on the choice ofO, provided it is dense in the eigenbasis of
the Hamiltonian. Figure 2a shows the squares of the Lanczos
coefficients for a single realization and the average hfbngiEðHÞ over

100 different Hamiltonians of dimension d= 32, sampled from
GOE(d) with standard deviation σ= 1. Operator growth is
displayed by the time-dependent amplitudes, which are found by
solving the recursion relation and exhibit diffusion-like dynamics
on the Krylov basis, shown for a single realization in Fig. 2b. The
corresponding time evolution of Krylov complexity and its growth
rate are shown in panels c and d, respectively. Hamiltonians
sampled from GOE(d) behave as a generic system, given that the
Lanczos coefficients do not, in general, grow according to (5), as
shown in Fig. 2a. As a result, the growth rate starts deviating from
the dispersion bound around the time scale τd in Eq. (6), indicated
by the vertical line in Fig. 2 c, d. In short, while GOE Hamiltonians
provide a useful paradigm in the description of quantum chaotic
systems, the dynamics generated by them do not maximize the
growth of Krylov's complexity for t > τd.

Our results establish the ultimate speed limit to operator growth
in isolated quantum systems. Specifically, the dispersion bound
governs the growth rate of Krylov complexity, playing the role of a
Mandelstam-Tamm uncertainty relation in operator space. This
bound is saturated by quantum systems in which the Liouvillian
governing the time evolution fulfills a simple algebra. The latter
arises naturally in certain quantum chaotic systems, such as the SYK
model. However, other paradigmatic instances of quantum chaos,
such as random matrix Hamiltonians, do not maximize the growth
of Krylov complexity. Indeed, a saturation of the bound does not
require quantum chaos and can be achieved, e.g., by a single qubit.

Methods
Vanishing of the anticommutator contribution in the Robertson uncertainty
relation for K and L. We establish a universal feature of Krylov complexity, valid
for any physical system: namely, that its anticommutator with the Liouvillian L has

Fig. 2 Growth of Krylov complexity in a generic system. a Squares of the
Lanczos coefficients for a single realization (gray points) and an average
over 100 random Hamiltonian matrices (black line). b Operator growth in
the Krylov lattice as displayed by the dynamics of the amplitudes ∣φn(t)∣2

for a single random matrix realization. c Krylov complexity (green solid
lines) together with the deviation time (gray dashed line) for three
independent random matrix realizations. d The corresponding absolute
value of the growth rate of the Krylov complexity (blue solid lines), together
with the dispersion bound (red dashed lines), Eq. (2). In all figures, the
random Hamiltonian matrices are sampled from GOE(d) with standard
deviation σ= 1, maximal Krylov dimension D= 993 and a uniform initial
observable operator O.
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vanishing expectation value over the evolved operator jOðtÞÞ. The relevance of this
result relies on the fact that this quantity enters the Schrödinger uncertainty
principle for the two operators K and L

4ðΔKΔLÞ2 ≥ OðtÞð
��½K;L� OðtÞ

�� Þ
�� ��2

þ OðtÞð
��fK;Lg OðtÞ

�� Þ
�� ��2; ð7Þ

from which one can bound the complexity rate ∂tK. We have that�OðtÞ
��½K;L���OðtÞ� ¼ 2i Im OðtÞ

��KL��OðtÞ� � ð8Þ
and �OðtÞ

��fK;Lg��OðtÞ� ¼ 2Re OðtÞ
��KL��OðtÞ� �

; ð9Þ
where

KL ¼ ∑
D�1

n¼0
bnþ1 n On

�� � Onþ1

� ��þ ðnþ 1Þ Onþ1

�� � On

� ��� 	
: ð10Þ

Let us now demonstrate that the anticomutator term in Eq. (9) is identically
zero. By expanding jOðtÞÞ over the Krylov basis, we obtain

�OðtÞ
��KL��OðtÞ� ¼ ∑

D�1

m;n;k¼0
ð�iÞmikφmφkbnþ1

�
nδmnδnþ1;k

þ ðnþ 1Þδm;nþ1δnk
�
;

ð11Þ

which, by performing the sums over k and n, yields

�OðtÞ
��KL��OðtÞ� ¼ i ∑

D�1

m¼0
mφmðφmþ1bmþ1 � φm�1bmÞ

¼ �i ∑
D�1

m¼0
mφm∂tφm:

ð12Þ

Since the amplitudes φn and the coefficients bn are real quantities, comparing
Eqs. (9) and (12) we immediately conclude that

OðtÞð
��fK;Lg OðtÞ

�� Þ ¼ 0 8t: ð13Þ
Let us note that the key condition to obtain this result is the fact that the

Liouvillian connects only states that are nearest neighbors on the Krylov lattice so
that we are left with a purely imaginary phase (−i)m(i)m±1= ±i. It is this peculiar
property that allows the Liouvillian to be interpreted as a sum of generalized ladder
operators L±

42. However, let us point out that here we are not making any
assumption regarding the commutation rules between these operators: we are
considering the structure of Krylov space in full generality.

Moreover, from Eq. (8), we immediately obtain the relation between the
anticommutator ½K;L� and the complexity rate ∂tK:

�OðtÞ
��½K;L���OðtÞ� ¼ �2i ∑

D�1

m¼0
mφm∂tφm ¼ �i∂tK: ð14Þ

Therefore, the Schrödinger uncertainty relation (7) can be recast as the
dispersion bound (2) on the growth of Krylov complexity:

j∂tKj≤ 2b1ΔK: ð15Þ

Geometrical interpretation of the saturation of the bound. For the geometrical
interpretation of the saturation of the bound, we assume the Krylov space to be of
finite dimension. However, the results could potentially be extended to infinite-
dimensional Krylov spaces as well.

The Krylov space is isomorphic to a 2D-dimensional real vector space, and we
can therefore consider the Euclidean metric g, given by the real part of the inner
product. The evolution curve of O will then be restricted to the unit sphere of the
Krylov space. This unit sphere forms a Riemannian manifold and we can consider
the Krylov complexity as a function on this manifold defined by KðAÞ ¼ ðAjKAÞ;
for any element Aj Þ in the Krylov space with a unit norm. In this sense, when we
write K(t) we simply mean KðOðtÞÞ which is consistent with how we defined
complexity for the evolution. The differential of Krylov complexity will be denoted
by dK and its action on any tangent vector _A at A is given by dKð _AÞ ¼ ð _AjAÞþ
ðAj _AÞ. This differential together with the metric can be used to define the gradient
of Krylov complexity. It follows from the theory of differential geometry that the
gradient of Krylov complexity at A, denoted by ∇KðAÞ, is the unique vector
satisfying the expression gð∇KðAÞ; _AÞ ¼ dKð _AÞ for all tangent vectors _A at A48. It
can be checked that the gradient must then be given by ∇KðAÞ ¼ 2ðK� Kh iÞA,
which indeed is tangent to the unit sphere at A. The change of Krylov complexity
along the curve OðtÞ, generated by the Liouvillian, is given by
∂tKðtÞ ¼ gð∇KðtÞ; ∂tOðtÞÞ, where∇ K(t) is the gradient at OðtÞ. Applying the
Cauchy-Schwarz inequality on the right-hand side gives us the inequality

∂tKðtÞ
�� ��≤ k∇KðtÞkk∂tOðtÞk : ð16Þ

The right-hand side of this inequality is exactly 2b1ΔK and we note that it is
saturated if and only if the tangent vector of OðtÞ is parallel to the gradient of

Krylov complexity. We also note that the gradient is the zero vector at time zero
and so the dispersion bound is always initially saturated.

The unitary orbit of O is the set of all points UyOU , where U is a unitary
operator. We emphasize that this is a proper subset of the unit sphere in Krylov
space which, in contrast, is the set of all points UO, where U is a unitary
superoperator. The gradient we have considered is with respect to the unit
sphere, and it is therefore not obvious that this gradient will ever be tangential
to the unitary orbit of O. However, the gradient is indeed tangential to the
unitary orbit at time zero and at all times, provided the simplicity algebra is
fulfilled.

On the closure of the complexity algebra. Here we show the proof that the only
possible closure of the complexity algebra introduced by42 is given by Eq. (3). The
(anti-Hermitian) operator B ¼ Lþ � L� “conjugated” to the Liouvillian can be
expanded in Krylov space as

B ¼ ∑
D�1

n¼0
bnþ1 Onþ1

�� � On

� ��� On

�� � Onþ1

� ��� 	
: ð17Þ

We note that one can establish a formal analogy with the harmonic oscillator: L
plays the role of the position of the harmonic oscillator, while iB corresponds to its
momentum. However, in general, the commutator between L and B is not pro-
portional to the identity, indeed:

~K ¼ 2½Lþ;L�� ¼ 2 ∑
D�1

n¼0

�
b2nþ1 � b2n

� On

�� � On

� ��; ð18Þ

where it is understood that b0 has to be replaced with 0. Let us now investigate the
conditions under which L, B and ~K form a closed algebra with respect to the
operation [,]: the so-called complexity algebra42. This happens if and only if the
commutators ½L; ~K� and ½B; ~K� can be written as linear combinations of the
operators L, B and ~K themselves. These commutators can be expanded over the
Krylov basis as follows:

½L; ~K� ¼ 2 ∑
D�1

n¼0
f ðnÞbnþ1 Onþ1

�� � On

� ��� On

�� � Onþ1

� ��� 	
; ð19Þ

½B; ~K� ¼ 2 ∑
D�1

n¼0
f ðnÞbnþ1 Onþ1

�� � On

� ��þ On

�� � Onþ1

� ��� 	
; ð20Þ

where we have defined

f ðnÞ ¼ b2nþ1 � b2n �
�
b2nþ2 � b2nþ1

� ¼ ~Knn � ~Knþ1;nþ1

2
: ð21Þ

Now, it is clear that the commutator (19) between L and ~K cannot contain any
element of the complexity algebra other than
B ¼ ∑D�1

n¼0 bnþ1½jOnþ1ÞðOnj � jOnÞðOnþ1j�, while the commutator (20) can only
contain L ¼ ∑D�1

n¼0 bnþ1½jOnþ1ÞðOnj þ jOnÞðOnþ1j�. Moreover, the only possibility
for the algebra to be closed is that the discrete function f(n) is a constant. By
looking at Eq. (21), we conclude that f(n) is constant if and only if

2 b2nþ1 � b2n
� � ¼ αnþ 2γ; ð22Þ

for some constants α and γ (the factors 2 are included for convenience). Again, b0
has to be replaced with 0, so that Eq. (22) holds for n ≥ 1, while 2b21 ¼ αþ 2γ.
Then, the function f(n) takes the constant value f=−α/2, so that the only possible
closure of the complexity algebra is given by:

½L;B� ¼ ~K; ½~K;L� ¼ αB; ½~K;B� ¼ αL: ð23Þ
Moreover, from Eq. (22), we immediately conclude that

~K ¼ αKþ γ: ð24Þ
Therefore, if α ≠ 0, the Krylov complexity is related to ~K by a shift. Conversely,

if α= 0, there is no simple relation between the Krylov complexity and the operator
~K. In this case, ~K is proportional to the identity and the complexity algebra reduces
to the Heisenberg–Weyl algebra43, being ½Lþ;L�� ¼ γ1.

Possible scenarios under the closure of the complexity algebra. As already
discussed, if L, B and their commutator ~K closes an algebra, then the only possible
commutation relations are given by (23). This complexity algebra is then reduced
to the Heisenberg–Weyl algebra whenever α= 0. We next show that for the cases
α < 0 and α > 0, the complexity algebra reduces to the SU(2) algebra and the
SLð2;RÞ algebra, respectively. Let us introduce the operators J+ and J−, which are
defined by νJþ ¼ Lþ and νJ� ¼ L� , where ν is a strictly positive scaling para-
meter. We can then write L ¼ νðJþ þ J�Þ and B ¼ νðJþ � J�Þ. Let us also
introduce the operator J0 defined by J0 ¼ � 1

2ν2
~K . By substituting these operators

into (23), one can rewrite the commutation relations as

½Jþ; J�� ¼ J0; ½J0; J ± � ¼ � α

2ν2
J ± : ð25Þ
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By choosing the scaling parameter such that 2ν2= α, we find that the algebra (23)
is equivalent to

½Jþ; J�� ¼ J0; ½J0; J ± � ¼ ± J ± α< 0 SUð2Þ; ð26Þ

½Jþ; J�� ¼ J0; ½J0; J ± � ¼ �J ± α> 0 SLð2;RÞ: ð27Þ
What we have shown is that, whenever the simplicity hypothesis holds, then the
algebra generated by L, B and their commutator can always be reduced to either
SU(2), SLð2;RÞ or the Heisenberg–Weyl algebra, and for which of these it reduces
to depends on the value of α.

Data availability
The datasets generated during and/or analysed during the current study are available
from the corresponding author upon reasonable request.

Code availability
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