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Universal constraint on nonlinear population
dynamics
Kyosuke Adachi 1,2✉, Ryosuke Iritani2,3 & Ryusuke Hamazaki 2,4

Ecological and evolutionary processes show various population dynamics depending on

internal interactions and environmental changes. While crucial in predicting biological pro-

cesses, discovering general relations for such nonlinear dynamics has remained a challenge.

Here, we derive a universal information-theoretical constraint on a broad class of nonlinear

dynamical systems represented as population dynamics. The constraint is interpreted as a

generalization of Fisher’s fundamental theorem of natural selection. Furthermore, the con-

straint indicates nontrivial bounds for the speed of critical relaxation around bifurcation

points, which we argue are universally determined only by the type of bifurcation. Our theory

is verified for an evolutionary model and an epidemiological model, which exhibit the tran-

scritical bifurcation, as well as for an ecological model, which undergoes limit-cycle oscilla-

tion. This work paves a way to predict biological dynamics in light of information theory, by

providing fundamental relations in nonequilibrium statistical mechanics of nonlinear systems.

https://doi.org/10.1038/s42005-022-00912-4 OPEN

1 Nonequilibrium Physics of Living Matter RIKEN Hakubi Research Team, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-
minamimachi, Chuo-ku, Kobe 650-0047, Japan. 2 RIKEN Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS), 2-1 Hirosawa, Wako
351-0198, Japan. 3 Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
4Nonequilibrium Quantum Statistical Mechanics RIKEN Hakubi Research Team, RIKEN Cluster for Pioneering Research (CPR), 2-1 Hirosawa, Wako 351-
0198, Japan. ✉email: kyosuke.adachi@riken.jp

COMMUNICATIONS PHYSICS |           (2022) 5:129 | https://doi.org/10.1038/s42005-022-00912-4 |www.nature.com/commsphys 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-022-00912-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-022-00912-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-022-00912-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-022-00912-4&domain=pdf
http://orcid.org/0000-0002-8108-1740
http://orcid.org/0000-0002-8108-1740
http://orcid.org/0000-0002-8108-1740
http://orcid.org/0000-0002-8108-1740
http://orcid.org/0000-0002-8108-1740
http://orcid.org/0000-0003-3793-6016
http://orcid.org/0000-0003-3793-6016
http://orcid.org/0000-0003-3793-6016
http://orcid.org/0000-0003-3793-6016
http://orcid.org/0000-0003-3793-6016
mailto:kyosuke.adachi@riken.jp
www.nature.com/commsphys
www.nature.com/commsphys


Nonlinear dynamics appears in a variety of fields, including
classical mechanics, chemical reaction systems, and
population biology, to name a few1. Nonlinearity can

trigger complex temporal and spatial patterns and even chaotic
behaviors, making it challenging to find universal relations within
the properties of dynamics. In particular, slight perturbations in
external parameters can result in qualitative changes in the
dynamical property through a bifurcation such as the Hopf
bifurcation, where self-sustained oscillation emerges. It is of
pivotal importance to explore universal relations shared by a
broad class of dynamical phenomena with nonlinearity.

Ecological and evolutionary processes often exhibit nonlinear
population dynamics2,3 such as temporal oscillation in popula-
tion sizes and irreversible extinction of certain species4. Typical
biological systems consist of identifiable units such as genotypes
and species (called “types” in this paper), and intra-type and
inter-type interactions cause nonlinear dynamics2,4. Besides
interactions, type-dependent growth rates determined by natural
selection lead to nonlinear dynamics of the proportions of each
type. In evolutionary theory, Fisher’s fundamental theorem of
natural selection5,6 establishes a simple relation between the
variance of the growth rate and the temporal increase in the
average growth rate. The theorem has been extended to evolu-
tionary models with mutation7,8 and ecological models9.

Bifurcations and associated critical dynamics play significant
roles in biological processes10. In ecological11,12 and
epidemiological13 systems, critical slowing down around bifur-
cation points has been discussed as an early warning signal for
catastrophic shifts. In evolutionary systems, bifurcation points
can appear as critical mutation rates beyond which heredity does
not persist14,15, and the self-organized criticality has also been
discussed as a possible mechanism of mass extinction of species16.
Since such critical dynamics reflects instabilities behind nonlinear
systems17, fundamental relations near bifurcation points are
crucial in predicting dramatic changes in ecological and evolu-
tionary processes.

We here derive a general constraint on nonlinear population
dynamics by extending the formulation developed for stochastic
processes18,19 to nonlinear dynamical systems. In particular,
Fisher’s fundamental theorem of natural selection is a special case
of the constraint. As a unique consequence of the constraint, we
show that the critical scaling exponents of speeds near the
bifurcation point should have nontrivial bounds that are uni-
versally determined by the type of bifurcation. We verify our
theory for an evolutionary model with mutation and the
susceptible-infected-recovered (SIR) model with birth and death,
which show the transcritical bifurcation, as well as for the com-
petitive Lotka–Volterra model, which undergoes limit-cycle
oscillation.

Results
Constraint on general population dynamics. We consider a
general population dynamics described by

∂tNi ¼ FiðN1; :::;NLÞ; ð1Þ
where i is the label for each type, L is the total number of types,
and Ni(t) is the density of type i at time t. If there are interactions
between types, Fi(N1, . . . ,NL) is generally a nonlinear function.
Defining the proportion P :¼ fPigLi¼1 :¼ fNi=N totgLi¼1 with the
total population density N tot :¼ ∑L

i¼1 Ni, we obtain equations
for Pi and Ntot as

∂tPi ¼
FiðN totP1; :::;N totPLÞ

N tot
� Pi ∑

L

j¼1

FjðN totP1; :::;N totPLÞ
N tot

ð2Þ

and ∂tN tot ¼ ∑L
i¼1 FiðN totP1; :::;N totPLÞ, respectively. Even if

Fi(N1, . . . ,NL) is a linear function for all i, Eq. (2) can be a
nonlinear equation, and bifurcations can occur as we discuss
later.

Applying the Cauchy-Schwarz inequality to the Price
equation20,21, which is derived from the conservation of the total
proportion (∑L

i¼1 Pi ¼ 1), we obtain the speed-limit inequality
(Supplementary Method 1):

vA ≤ vlim :¼
ffiffiffiffi
IF

p
:¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð∂tP=PÞ2
� �q

: ð3Þ

Note that an inequality whose expression is the same as Eq. (3)
has been discussed for stochastic processes18,19, and the relation to
the Price equation has been pointed out21. Here, we define the Fisher
information IF22,23 and the speed vA :¼ j∂t Ah i � h∂tAij=ΔA, which
characterizes the temporal change rate of a type-dependent quantity
A :¼ fAigLi¼1 that can depend on time in general [Supplementary
Method 1, Fig. 1(a)]. Also, the average and standard deviation are

defined as Ah i :¼ ∑L
i¼1 PiAi and ΔA :¼ ðhA2i � Ah i2Þ1=2, respec-

tively. The inequality [Eq. (3)] provides a universal upper bound on
the speed of population dynamics, independent of the choice of
quantity A [Fig. 1(b)]. We stress that Eq. (3) applies to nonlinear
dynamics though the expression is equivalent to that for Markov
processes18,19, where the probability distribution follows linear
dynamics. For example, vlim in Eq. (3) can be a non-monotonic
function of time, in contrast to Markovian relaxation processes,
where vlim decays monotonically18. Note that Eq. (3) is different
from the previously obtained speed-limit inequalities in nonlinear
systems24,25, which have been discussed mainly for chemical
reaction networks. Following Nicholson et al.19, we can interpret
Eq. (3) as the uncertainty relation between the timescale of
dynamical quantities (vA

�1) and the information of dynamics
(

ffiffiffiffi
IF

p
).

Relation to Fisher’s fundamental theorem. Our general con-
straint includes Fisher’s fundamental theorem as a special case
when applied to an evolutionary model with natural selection. We
take Fi= siNi in Eq. (1), where si > 0 is the type-dependent growth
rate. In such systems, Fisher’s fundamental theorem of natural
selection asserts that the increase in the average growth rate is
equal to the variance of the growth rate5,7, i.e., ∂t sh i ¼ ðΔsÞ2. As
shown in Supplementary Method 2, we find that Fisher’s fun-
damental theorem is a special case of Eq. (3), vs ¼ vlim. Note that
vlim in Eq. (3) is equivalent to Crow’s index of opportunity for
selection, which provides an empirical estimate of the maximum
strength of natural selection acting on a given population26,27.

Furthermore, even when the growth rate depends on time and
densities, we show that an extended version of the fundamental
theorem6,9 is a special case of Eq. (3), where the equality in Eq.
(3) is satisfied (Supplementary Method 2). Our result therefore
covers a variety of previous results established in population
biology in light of information theory and statistical physics. For
more general dynamics with mutation, the speed-limit inequality
[Eq. (3)] is satisfied for any quantity A, including the growth rate
s, and thus regarded as a generalization of the fundamental
theorem. For instance, if we take the typical length of type i as Ai

(e.g., length of bacteria for several types of mutants), the average
length can potentially change more quickly as the variance of the
length is larger, according to Eq. (3). Note that other types of
extensions of the fundamental theorem to evolutionary models
with mutation has been formulated7,8.

Speed limit for evolutionary dynamics. We next consider
another evolutionary model with natural selection and mutation
[Fig. 1(d)] by taking Fi ¼ siNi þ∑L

j¼1 mijNj in Eq. (1)14,28. Here,
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si > 0 is the growth rate and mij ≥ 0 (i ≠ j) is the mutation rate
from type j to i. To demonstrate the inequality [Eq. (3)], we take
L= 3 with s2 ¼ s3 ¼ �s and examine a situation where type 1 will
survive (become extinct) after a long time if the growth rate
s1 ¼ �sþ r is larger (smaller) than a critical value �sþ rc (Sup-
plementary Method 3). The extinction transition at r= rc corre-
sponds to the transcritical bifurcation1.

Figure 2(a) shows typical time dependence of the proportion
Pi. As shown in Fig. 2(b–d), regardless of the value of r/rc, the
speed of the growth rate vs (black solid lines) is bounded by the
speed limit vlim (red dashed lines), which verifies Eq. (3). To
confirm the generality of Eq. (3), we introduce the Shannon
entropy IS :¼ Ih i with I :¼ fIigLi¼1 :¼ f� ln PigLi¼1

23 as the
(logarithm of) diversity of population (see Supplementary Fig. 1
for typical time dependence of IS). We show that the speed of
change in diversity, vI (gray solid lines), is also bounded by vlim.

Universal constraint around transcritical bifurcation point. Let
us examine a consequence of the speed limit at the transcritical

bifurcation point (r= rc), where an observable A typically exhibits
critical slowing down10,13 with a power-law decay of the speed,
vA � t�αA . While αA can vary for different A, the inequality [Eq.
(3)] indicates that αA is bounded by a universal factor αlim
determined by the Fisher information [Fig. 1(c)]. Note that the
power-law decrease in the Fisher information has also been dis-
cussed for the transient dynamics in nonlinear oscillator
models29. In the evolutionary model with natural selection and
mutation, we find P1 ~ t−1 (Supplementary Method 3) and thus

vlim �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð∂tP1Þ2=P1

q
� t�αTClim ð4Þ

with αTClim ¼ 3=2. Then, we have

αA ≥ α
TC
lim ¼ 3=2 ð5Þ

for arbitrary A in this process.
In addition, if the parameter is slightly off the bifurcation point,

the system can exhibit dynamical scaling, in a manner similar to
critical phenomena30–32. Assuming that the relaxation times of
the speed and the speed limit diverge at the bifurcation point as

Competition

(a) (b)
Prohibited

Around bifurcation points(c)

(f)(d) (e)

Birth

Death
Selection

Mutation

Infection Recovery

Death Death

Fig. 1 Speed-limit inequality in ecological and evolutionary dynamics. a For a quantity A, the inverse of the speed, vA
�1, represents the time required for

the instantaneous average Ah i to change by the instantaneous standard deviation ΔA. The proportion of type i (density of type i divided by the total
density), Pi, changes as the time vA

�1 passes. In a, we assume A1 < A2 < A3 < A4 < A5 without loss of generality, and the black and gray lines are the guides
for the eye. b For a quantity A at any time t, any speed (black solid line) faster than vlim (red dashed line) is prohibited. This applies to any quantity, as
illustrated by the gray solid line for another quantity B. c Around bifurcation points, the speed for a quantity A (black solid line) and the speed limit (red
dashed line) show power-law decays as vA � t�αA and vlim � t�αlim with a constraint αA � αlim, where αlim is universally determined by the bifurcation type.
This applies to any quantity, as illustrated by the gray solid line for another quantity B. In this study, we mainly consider three models: d the evolutionary
model with natural selection and mutation (with growth rate si and mutation rate mij), e the epidemiological model called susceptible-infected-recovered
(SIR) model (with birth and death rates 1, infection rate λ, and recovery rate γ), and f the ecological model called competitive Lotka–Volterra model (with
competitive interaction cij).

(a) (b) (c) (d)

Fig. 2 Speed limit for the evolutionary dynamics with natural selection and mutation. a Typical dependence on time (t) of the proportion of type i
(density of type i divided by the total density), Pi, for r/rc= 0.8. Here, r is the growth rate for type 1 relative to that for type 2 or 3, and rc is the value of r at
the transcritical bifurcation point. b–d The speed-limit inequality [Eq. (3)] holds, regardless of the parameters (r/rc) and quantities (growth rate s or
diversity I). The speed of the growth rate vs (black solid line) and that of change in diversity vI (gray solid line) are compared with the speed limit vlim (red
dashed line) for b r/rc= 0.8, c r/rc= 1, and d r/rc= 1.2. See Supplementary Method 3 for the other parameters used.
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�jr � rcj�βA and �jr � rcj�βTClim , respectively, we obtain the
dynamical scaling laws as

vAðr � rc; tÞ ’ t�αA f ±A ðt1=βA jr � rcjÞ; ð6Þ

vlimðr � rc; tÞ ’ t�αTClim f ±limðt1=β
TC
lim jr � rcjÞ; ð7Þ

where f þA and f þlim (f �A and f �lim) are scaling functions for r− rc > 0
( < 0). Combining the inequality [Eq. (3)] and the scaling laws
[Eqs. (6) and (7)], we derive another constraint on the exponents
as βA ≤ β

TC
lim (Supplementary Method 3). In the numerical

simulations, we have only found the case with βA ¼ βTClim (see
below), which suggests that the diverging relaxation time of any
speed should be proportional to the relaxation time of a single
quantity (i.e., P1 in the present model) in a similar way to critical
phenomena30,31.

To confirm the above argument, we demonstrate the long-
time relaxation of vlim, vs, vI, and a speed vb for the type index
b :¼ fbigLi¼1 :¼ figLi¼1 at the bifurcation point (r= rc) [Fig. 3(a)].
We find vlim � t�3=2 [red dotted line in Fig. 3(a)], which is
consistent with Eq. (4). We also obtain vs ~ t−3/2, vI � t�2 ln t,
and vb ~ t−2 (see Supplementary Method 3 for the derivation),
and the corresponding exponents are αs= 3/2, αI= 2 (neglect-
ing the logarithmic dependence), and αb= 2, which indeed
satisfy the inequality [Eq. (5)]. Moreover, slightly off the
bifurcation point, we find the expected scaling laws [Eq. (6)
and Eq. (7)] of vs, vb (Supplementary Fig. 2), and vlim [Fig. 3(b)
and (c)] with βs ¼ βb ¼ βTClim ¼ 1.

Beyond specific dynamics, we conjecture that the exponents for
the power-law decay of the speeds at the bifurcation point in
population dynamics are bounded by a universal constant αlim
that only depends on the type of bifurcation. Similarly, the
exponent βlim is also conjectured to be determined by the
bifurcation type. These conjectures are plausible because critical
properties associated with the bifurcation can be essentially
described by the normal form for each bifurcation type1,32. This
universal constraint on the exponents is a unique property of
nonlinear dynamics, in contrast to the previous works on speed
limits for linear dynamics18,19.

As a primary example, the inequality [Eq. (5)] can be
generally applied to nonlinear dynamics that undergoes an
extinction transition through the transcritical bifurcation. We
consider the SIR model with birth and death [Fig. 1(e)], where
N1, N2, and N3 are the densities of susceptible, infected, and
recovered individuals, respectively33 (Supplementary
Method 4). This model is genuinely nonlinear in that
Fi(N1, N2, N3) in Eq. (1) is a nonlinear function. In this model,
the transcritical bifurcation occurs as an extinction transition
of the infected and recovered individuals, i.e., a transition
between the disease-free and endemic states, and the critical
slowing down occurs (P2 ~ P3 ~ t−1) at the bifurcation point
(Supplementary Method 4). In Supplementary Fig. 3, we show
typical time dependence of the proportion at the bifurcation
point. We find that the speed of change in diversity vI and the
speed limit vlim follow the same power-law decay as vI �
vlim � t�3=2 [Fig. 3(d)], satisfying the Eqs. (4) and (5).

(a)

(d)
SIR

Selection & mutation
(b)

0.999 1.001

(c)

Fig. 3 Universal bounds for the critical scaling exponents at the transcritical bifurcation. a Power-law decay of the speed of the growth rate (vs, black
solid line), the speed of the change in diversity (vI, dark-gray solid line), the speed of the type index (vb, light-gray solid line), and the speed limit (vlim, red
dashed line) at the transcritical bifurcation point (r= rc) of the evolutionary model with selection and mutation. Here, t is the time, r is the growth rate for
type 1 relative to that for type 2 or 3, and rc is the value of r at the transcritical bifurcation point. The asymptotic forms (vlim � t�3=2 and vb� t−2) are shown
with dotted lines. b Time and parameter dependence of vlim and c the corresponding scaling plot near the bifurcation point (0.999≤ r/rc≤ 1.001). The
exponents at the transcritical (TC) point are given as αTClim ¼ 3=2 [see Eq. (4)] and βTClim ¼ 1 [see Eq. (7)]. d Power-law decay of vI (black solid line) and vlim
(red dashed line) at the transcritical bifurcation point of the susceptible-infected-recovered (SIR) model. The asymptotic form (vlim � t�3=2) is shown with
a dotted line. For a–c, we use the same parameters as those for Fig. 2. See Supplementary Method 4 for the parameters used for d.
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Universal constraint around Hopf bifurcation point. To verify
our conjecture for other types of bifurcations, we focus on the
Hopf bifurcation, at which a limit cycle starts to appear1.
According to the normal form of the supercritical Hopf bifur-
cation, the deviation from the steady state decays with oscillation
as � t�1=2 cosωt at the bifurcation point (Supplementary
Method 5). Thus, for population dynamics undergoing the
supercritical Hopf bifurcation, the proportion follows
Pi � const:þ t�1=2 cosωt, and the speed limit decays as

vlim ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
L

i¼1
ð∂tPiÞ2=Pi

s
� t�αHopf

lim ; ð8Þ

with αHopf
lim ¼ 1=2, where we only consider the amplitude relaxa-

tion by neglecting the oscillatory component. Correspondingly, if
we assume a power-law decay of the speed amplitude as
vA � t�αA , αA should satisfy

αA ≥ α
Hopf
lim ¼ 1=2: ð9Þ

As an ecological model that undergoes the supercritical Hopf
bifurcation, we consider the competitive Lotka–Volterra model
[Fig. 1(f)] by taking Fi ¼ siNi �∑L

j¼1 cijNiNj in Eq. (1)4,34. Here,
si is the growth rate, cij > 0 represents the competitive interaction
between type i and j, and these parameters are set around the
Hopf bifurcation (Supplementary Method 6).

We first show typical limit-cycle oscillation of the proportion
[Fig. 4(a)]. Comparing vs, vI, and vlim within a single period
[Fig. 4(b)], we confirm that the inequality [Eq. (3)] holds even
when the limit cycle appears. By tuning the parameters to the
Hopf bifurcation point, we numerically find the power-law decay
of the speed amplitudes35 as vs � vI � vlim � t�1=2 [Fig. 4(c) and
Supplementary Fig. 4], verifying Eqs. (8) and (9). Then, changing
the parameters slightly off the bifurcation point, we find that the
counterparts of the scaling laws [Eqs. (6) and (7)] hold for the
speed amplitudes [Fig. 4(d) and Supplementary Fig. 5] with
βs ¼ βI ¼ βHopf

lim ¼ 1.

Conclusion
We have illustrated the applications of the dynamical constraint
[Eq. (3)] to ecological and evolutionary models. Focusing on the
bifurcation unique to nonlinear dynamics, we have argued that
the exponents of speeds at critical slowing down have the uni-
versal bounds that depend only on the bifurcation type. In par-
ticular, for the transcritical and supercritical Hopf bifurcations,
we have confirmed the theoretically obtained Eqs. (4)–(9) using
numerical simulations. Similar formulae are obtained for other
bifurcations, e.g., αA ≥ α

SN
lim ¼ 2 for the saddle-node bifurcation

(Supplementary Method 7), which appears in population
dynamics11,12,17.

(a) (b)

(c) (d)

0.999 1.001

Fig. 4 Universal bounds for the critical scaling exponents at the supercritical Hopf bifurcation. Limit-cycle oscillation of a the proportion of type i
(density of type i divided by the total density), Pi, and b the speed of the growth rate (vs, black solid line), the speed of change in diversity (vI, gray solid
line), and the speed limit (vlim, red dashed line) as a function of time t in the competitive Lotka–Volterra model. c Power-law decay of vlim (red line),
compared with vs (black line) at the Hopf bifurcation point. The asymptotic form of the amplitude relaxation (vlim � t�1=2) is shown with a dotted line. The
curves are rattling since the number of plotted points is finite; similarly to b, vs oscillates between zero and nonzero values, while vlim stays nonzero.
d Scaling plot of the time and interaction dependence of vlim near the bifurcation point (0.999≤ c21/cc≤ 1.001). The limit cycle appears for c21 < cc, while
the steady-state coexistence of three types appears for c21≥ cc, where c21 is the competitive interaction strength from type 1 to type 2, and cc is the value of
c21 at the Hopf bifurcation point (Supplementary Method 6). The exponents are given as αHopflim ¼ 1=2 and βHopflim ¼ 1. See Supplementary Method 6 for the
parameters used.
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Considering the probability18,19 instead of the proportion, we
may extend our argument to critical phenomena in many-body
stochastic systems, which can express nonequilibrium phenom-
ena different from ecological and evolutionary dynamics. For
instance, lattice gas models30, the contact process31, and biolo-
gical systems such as swarms36 are potentially subject to con-
straints corresponding to Eqs (5) or (9) with possibly irrational
lower bounds.

The methodologies of ecology and evolution have been
developed almost independently37. However, ecological and
evolutionary dynamics may not be separable in some situations.
For example, rapid evolution can occur on the same timescale as
that of ecological processes when there are drastic environmental
changes37. General relations such as Eq. (3) will be useful in
quantitative understanding of even inseparable eco-evolutionary
dynamics.

Data availability
All the data that support the plots and the other findings of this study are available from
the corresponding author upon reasonable request.
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