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Signatures of optical phase transitions in
superradiant and subradiant atomic arrays
Christopher D. Parmee1✉ & Janne Ruostekoski 1✉

Resonant light interacting with matter supports different phases of a polarisable medium, and

optical bistability where two phases coexist. Such phases have previously been actively

studied in cavities. Here, we identify signatures of optical phase transitions and optical

bistability mapped onto scattered light in free-space planar arrays of cold atoms. Methods on

how to explore such systems in superradiant and extreme subradiant states are proposed.

The cooperativity threshold and intensity regimes for the intrinsic optical bistability, sup-

ported by resonant dipole-dipole interactions alone, are derived in several cases of interest

analytically. Subradiant states require lower intensities, but stronger cooperativity for the

existence of non-trivial phases than superradiant states. The transmitted light reveals phase

transitions and bistability that are predicted by mean-field theory as large jumps in coherent

and incoherent signals and hysteresis. In the quantum solution, traces of phase transitions are

identified in enhanced quantum fluctuations of excited level populations.
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Resonant emitters in regular planar arrays have attracted
considerable attention from classical circuit resonators
forming metamaterials1 and metasurfaces2 to plasmonics3

and quantum systems, such as superconducting SQUID rings4

and cold atoms5. Such surfaces can be utilised for manipulation of
electromagnetic fields, including phase-holography6 and sensing7.
In systems where the radiative interactions between closely-
spaced emitters are particularly strong, the entire array has been
driven to a giant subradiant state5,8. In arrays of closely-spaced
cold atoms, the strong light-mediated dipole-dipole interactions
arise naturally, as atoms do not absorb light, their resonances are
well defined, and the atoms can respond to light quantum-
mechanically. Atomic arrays have been proposed as constituents
of metamaterials9, for quantum information processing10–12,
atomic clocks13–15, emission of nonclassical light16–18 and
entanglement19–21, and a way to realise topological phases22,23. In
most experiments so far, the efforts to observe collective optical
responses of cold atoms, in both random atomic ensembles24–34

and in arrays5 and chains35, have focused on the limit of low light
intensity (LLI), where the full quantum model can, under
appropriate conditions, be reduced to a linear system of N har-
monic oscillators36. Beyond the LLI regime with multiple exci-
tations, atomic arrays start experiencing saturation, and the rich
phenomenology of long-range interactions and collective beha-
viour can lead to the full many-body quantum solutions deviating
from the semiclassical models that neglect quantum fluctua-
tions20. The differences between quantum and classical solutions
in nonlinear systems are widely studied in the context of phase
transitions, and in optics one of the best-known phase transitions
is optical bistability37 in atomic systems. Optical bistability and
phase transitions have been actively studied in systems without
the spatial correlations and structure of the sample38–45, e.g.,
in cavities where the feedback mechanism is provided by the

cavity mirrors46–48. Intrinsic bistability is a process where phase
transitions are generated by the self-interactions of the sample,
and despite having been observed in highly-excited Rydberg
atoms in the microwave regime49, intrinsic bistability was for a
long time considered unachievable for atoms with light-mediated
interactions. Recent theoretical studies that also take into account
the spatial structure of the many-body systems suggest that
intrinsic bistability and phase transitions are more generic and
could occur in a variety of systems with short- and long-range
interactions50–52.

For optical systems, it is natural to ask what are the observable
signatures of phase transitions and optical bistability, and how
these are mapped onto the scattered light. In this paper, by
studying light emission from radiatively strongly coupled atoms
in planar arrays of subwavelength spacing, we identify optical
signatures of phase transitions in collective atomic excitations. To
do so, we employ periodic boundary conditions and a mean-field
approximation which closes the spectral gap in the system,
representing a decohered quantum state where the correlations
are absent, and compare our results to the full quantum model.
We develop a simple analytic theory for an intrinsic optical
bistability due to radiative interactions between atoms in planar
arrays and derive the cooperativity parameter, indicating a bist-
ability threshold ka < (π/3)1/2, with the lattice spacing a and
resonance wavenumber k. We find that multiple mean-field-
theoretical stable phases, including ones with spontaneous sym-
metry breaking and persistent oscillations, and optical bistability
are identifiable in the transmitted light as large jumps in coherent
and incoherent signals and hysteresis upon sweeping of the laser
frequency. If the corresponding changes in dipole amplitudes are
small, the signal of phase transitions and hysteresis in the
coherent transmission is sometimes much weaker than in the
incoherent photon count, which still provides sharp peaks, e.g.,
when moving into regions of antiferromagnetic and oscillatory
phases. In the quantum solution, the phase transitions and bist-
ability are absent, but traces of them can be seen by peaks and
angular dependence of the incoherent photon count rate, and
most clearly in fluctuations of the excited level populations. We
find that the response sensitively depends on the underlying LLI
collective excitation eigenmode of the corresponding linear sys-
tem that is targeted by incident light. Bistability can even exist
between subradiant and superradiant modes, providing a method
for also preparing subradiant excitations via a laser frequency
sweep. For subradiant modes, bistabilities occur at lower inten-
sities and the existence of phase transitions requires smaller lat-
tice spacings, ka≲ 0.34π, compared to the one for a superradiant
mode, ka≲ 0.44π. We propose methods on how to drive such
eigenmodes by manipulating the atomic level shifts and consider
two examples: a uniform mode that was recently experimentally
studied in subradiant transmission measurements5, which at
smaller lattice spacings, considered here, becomes superradiant,
and an extreme subradiant checkerboard eigenmode that can
exist outside the light cone, decoupled from the environment.

Results
Quantum system of atoms and light. We consider a two-level
system of cold atoms trapped in a two-dimensional (2D) array
with one atom per site, illuminated by an incident plane wave
EþðrÞ ¼ E0ê expðikzÞ; Fig. 1a. We take the polarisation and the
direction of the atomic dipoles to be ê ¼ �ðx̂ þ ŷÞ= ffiffiffi

2
p

along the
diagonal of the lattice. Light-induced resonant dipole-dipole
interactions mediate strong interactions between the atoms. The
atomic systems are subject to periodic boundary conditions to
simulate an infinite lattice and, for simplicity, we vary the para-
meters of N= 4 atoms in a square array. However, we also discuss

Fig. 1 A 2D array of atoms illuminated by incident light and resulting
stable phases. a The array has a lattice spacing a= 0.1λ and is illuminated
by an incident field, E, with only the central four atoms (green)
independent, while the remaining array is obtained by periodic boundary
conditions. Calculations in a system with nine (blue and green) instead of
four independent atoms result in qualitatively similar phases. Phases for
b uniform and c alternating profiles of level shifts as a function of incident
intensity, I/Isat, and laser frequency detuning from the atomic resonance,
Δ/γ. Spatially uniform (U), antiferromagnetic (AFM), oscillatory (OSC) and
phases that are not uniform or AFM in nature (BD) emerge.
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briefly the system with a N= 9 atom variation to study finite-size
effects from the N= 4 system. We also assume that the atoms are
sufficiently tightly confined, such that the spatial fluctuations can
be neglected. The standard many-body quantum master equation
for the atoms in the rotating-wave approximation for slowly
varying amplitudes reads53

dρ̂
dt

¼ � i
_

Ĥ �
X
jlðj≠lÞ

_Ωjlσ̂
þ
j σ̂

�
l ; ρ̂

2
4

3
5

þ
X
jl

γjl 2σ̂�j ρ̂σ̂
þ
l � σ̂þl σ̂

�
j ρ̂� ρ̂σ̂þl σ̂

�
j

� �
;

ð1Þ

where the square brackets represent a commutator and σ̂þj ¼
ej ijj gh j ¼ ðσ̂�j Þy the raising operator, where ej ij and gj ij are the
excited and ground state of the two-level atom on site j, respec-
tively. The dispersive and dissipative parts of the light-induced
dipole-dipole interaction terms are Ωjl and γjl, respectively (see
Methods for details). The Hamiltonian is given by

Ĥ ¼ �
X
l

deg � EþðrlÞσ̂þl þ dge � E�ðrlÞσ̂�l þ _Δl σ̂
ee
l

h i
; ð2Þ

where σ̂eel ¼ σ̂þl σ̂
�
l , Δl ¼ ω� ωðlÞ

eg is the detuning, ω= kc the laser

frequency, ωðlÞ
eg the transition frequency of an atom on site l, and

deg the dipole matrix element, with dge ¼ d�eg . We express the

incident light intensity I ¼ 2ϵ0cjE0j2 in units of the saturation
intensity, Isat = ℏc4π2γ/3λ3, or the Rabi frequency,
Rl ¼ deg � EþðrlÞ=_, as I=Isat ¼ 2ðR=γÞ2, where the single-atom
linewidth γ = ∣deg∣2k3/(6πϵ0ℏ).

Mean-field approximation. In addition to the full quantum
many-body dynamics, we also consider the Gutzwiller mean-field
approximation, ρ̂ � �ρ̂i, where quantum fluctuations between
the atoms are neglected. This corresponds to the factorisation of
internal level correlations, hσ̂αi σ̂βj i � hσ̂αi ihσ̂βj i (α ≠ β), since we
assume atoms are at fixed positions with no spatial fluctuations,
and therefore there are no light-induced correlations20,36 between
the atoms after the factorisation. The dynamics then obey the
nonlinear equations

_ρðlÞge ¼ iΔl � γð ÞρðlÞge � ið2ρðlÞee � 1Þ Rl þ
X
j≠l

ðΩjl þ iγjlÞρðjÞge

2
4

3
5;
ð3Þ

_ρðlÞee ¼ �2γρðlÞee þ 2Im½R�
l ρ

ðlÞ
ge � þ 2Im

X
j≠l

ðΩjl � iγjlÞρðlÞge ðρðjÞge Þ
�

2
4

3
5;
ð4Þ

where ρðlÞge ¼ Trfσ̂�l ρ̂ðtÞg and ρðlÞee ¼ Trfσ̂eel ρ̂ðtÞg. We will use
Eqs. (3) and (4) to determine the long-time phases and optical
bistability that can occur in the system.

Scattered light. The total light amplitude is the sum of the
incident and scattered fields Ê

± ðrÞ ¼ E ± ðrÞ þ Ê
±
s ðrÞ, with the

scattered electric field given by the sum of the contributions from
all the atoms

ϵ0Ê
þ
s ðrÞ ¼

X
l

Gðr� rlÞdgeσ̂�l ; ð5Þ

where Gðr� rlÞ is the dipole radiation kernel (Eq. (16) in
Methods). We will compare the optical responses obtained from

the full quantum dynamics of Eq. (1) with those calculated from
the mean-field Eqs. (3) and (4). We consider coherently trans-
mitted light in the forward direction,
Tcoh ¼ jê � hÊ�ðrÞij2= ê � E�ðrÞj j2, expressed in terms of the
optical depth OD ¼ �ln ðTcohÞ. We also calculate the rate of
scattered photons

n ¼ 2ϵ0c
_ω0

Z
hÊ�

s ðrÞ � Ê
þ
s ðrÞidS; ð6Þ

where hÊ�
s ðrÞ � Ê

þ
s ðrÞi ¼ hÊ�

s ðrÞi � hÊ
þ
s ðrÞi for the coherent and

hÊ�
s ðrÞ � Ê

þ
s ðrÞi � hÊ�

s ðrÞi � hÊ
þ
s ðrÞi for the incoherent photon

count-rate (ICR) (Eq. (18) in Methods). The ICR that we will use
under the mean-field description (Eq. (19) in Methods) is dif-
ferent from the usual semiclassical approximation for the inco-
herent scattering. The atom-light dynamics is solved from the
mean-field Eqs. (3) and (4), but the single-atom quantum
description of emitted light hσ̂eel i is now included20 for the scat-
tered light, and the ICR no longer vanishes for atoms at fixed
positions54.

Collective low light intensity eigenmodes. In the limit of LLI,
ρðlÞee ¼ 0, and the mean-field Eqs. (3) and (4) coincide with the
coupled-dipole model of classical linear oscillators driven by light.
In this regime we may analyse the optical response using LLI
collective radiative excitation eigenmodes and the complex
eigenvalues, which represent the collective line shifts (from the
resonance of an isolated atom) δq and linewidths υq, where q
denotes the wavevector of the LLI eigenmodes. Collective modes
with υq > γ (υq < γ) are termed superradiant (subradiant). The
two-level transition resonance wavelength defines the light cone,
ωa/c= 0.2π, where modes with ∣q∣a > 0.2π are completely dark in
an infinite lattice.

We focus on two LLI eigenmodes (see Methods): the spatially
uniform superradiant mode vun(rl) (υun= 25γ) and a subradiant
mode with a checkerboard-patterned phase variation with every
atom oscillating π out-of-phase from its nearest-neighbour vcb(rl)
(υcb= 2 × 10−4γ). To simulate an infinite system, we use periodic
boundary conditions by adding repeat images of the system to the
boundaries. We truncate to 101 images along the x̂ and ŷ
direction, which gives an effective lattice size of 406 × 406, and
non-zero linewidth for the checkerboard mode.

The uniform eigenmode vun directly couples to the normally
incident light of uniform phase profile, resulting in a broad
resonance in the OD, shown in Fig. 2a. The checkerboard
eigenmode vcb is particularly interesting as it is outside the light

Fig. 2 Driving superradiant and subradiant low light intensity modes by
uniform and checkerboard atomic level shifts. a Optical depth,
OD ¼ �ln ðTcohÞ, for uniform (dashed line) and alternating level shifts of 2γ
(solid line) as a function of laser frequency detuning from the atomic
resonance, Δ/γ. Alternating level shifts give a Fano resonance between the
uniform and checkerboard eigenmodes. b The corresponding eigenmode
populations, Lα (Eq. (26) in Methods) for the uniform, υun, and
checkerboard modes, υcb, with alternating level shifts present, show that
the checkerboard subradiant mode is strongly populated at the Fano
resonance.
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cone for small lattice spacings. In the following, we propose a
protocol to excite vcb and, in principle, prepare coherent strongly
subradiant excitations that exist outside the light cone. This can
be achieved by breaking and restoring the symmetry with ac Stark
shifts55 of lasers (or microwaves) that form a checkerboard
pattern of atomic level shifts from a standing-wave,
cos2½5kðx þ yÞ= ffiffiffi

2
p �, with the intensity varying along the lattice

diagonal x̂ þ ŷ and the intensity maxima separated by
ffiffiffi
2

p
a.

Alternating blue- and red-detuned atomic transitions for adjacent
atoms cause them to oscillate π out-of-phase, resulting in the
excitation of the checkerboard subradiant eigenmode. The
relative angle between the field generating the ac Stark shift and
the lattice can be adjusted to control the periodicity. An example
of an atomic transition particularly suitable for closely-spaced
atoms is 3P0 → 3D1 in 88Sr56, which can have a resonance
wavelength of λ≃ 2.6 μm and spacing of 206.4 nm, resulting in
the effective lattice spacing a≃ 0.08λ.

Figure 2a, b shows how checkerboard-patterned alternating
level shifts of 2γ lead to a coupling to the checkerboard
subradiant mode, producing a Fano resonance in the OD at
Δ = 10.8γ, with the corresponding large population of the
checkerboard eigenmode at this resonance (Fig. 2b). The ac Stark
shifts break the symmetry of the lattice, which allows the
checkerboard mode to couple to the incident field. Upon
removing the level shifts, the symmetry is restored and the
subradiant eigenmode completely decouples from the incident
field again, but there is now an excitation stored in the subradiant
mode outside the light cone.

Analytic results for optical bistability. Classifying the steady
states of the mean-field solutions of Eqs. (3) and (4) determines
the phases that emerge as a function of detuning and incident
intensity. We calculate the general phase diagram numerically.
However, it is important to understand the collective effects in
optical bistability by first deriving solutions in some special cases
analytically. In order to do so, we consider the uniform case by
substituting ρðlÞge ¼ ρge, ρ

ðlÞ
ee ¼ ρee, and Δl = Δ into Eqs. (3) and (4).

We then obtain the stationary states

ρge ¼ Reff
�Δþ iγ

Δ2 þ γ2 þ 2jReff j2
; ð7Þ

ρee ¼
jReff j2

Δ2 þ γ2 þ 2jReff j2
; ð8Þ

where we have defined

Reff ¼ Rþ ð~Ωþ i~γÞρge; ð9Þ
which, with ~Ω ¼Pj≠lΩjl and ~γ ¼Pj≠lγjl , is the total external
electric field (incident plus scattered field from all the other
atoms, given in terms of the Rabi frequency) driving an arbitrary
atom l in the ensemble. Equations (7) and (8) are equivalent to
the familiar solutions of the independent-atom optical Bloch
equations (Eqs. (30) and (31) in Methods), but with the Rabi
frequency R replaced by Reff . As ρge appears on the both sides of
Eq. (7) via Reff , we generally have multiple solutions. For two
different coexisting stable solutions, we have optical bistability.

We can eliminate from Eqs. (7) and (9) the atomic variables
and obtain an equation for the incident light field R ¼ RðReff Þ.
The bistability threshold is then found when djRj2=djReff j2 ¼ 0.
This gives a cubic polynomial for jReff j2 (see Eq. (33) in
Methods) in terms of γ, Δ, ~Ω, and ~γ. Simple analytic expressions
for the optical bistability threshold can then be obtained for
Δ=γ ¼ ~Ω=~γ, yielding ~γ> 8γ, and for Δ=γ ¼ �~γ=~Ω, yielding

~Ω
2
> 27γ2. Below these values, there is no bistability for any

intensity. We can also obtain analytic forms for the bistable
solutions of the external field Reff acting on an atom, for
~Ω; ~γ � Δ2,

Reff ¼
R
C

1

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2punsat=jCj2

q ; ð10Þ

Reff ¼
R
2

1� 2iIm½C�
punsat

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

Re½C�
punsat

� 2Im½C�
punsat

� �2
s2

4
3
5; ð11Þ

where we have defined the single-atom excited state occupation
for unsaturated drive, punsat ¼ jRj2=ðΔ2 þ γ2Þ, and the coopera-
tivity parameter,

C ¼ 1
2

~Ωþ i~γ
Δþ iγ

: ð12Þ

The two solutions represent very different responses to the
incident light. The first solution (10), termed the cooperative
solution (in an analogy with the terminology of optical bistability
in cavities40), exists for punsat < ∣C∣2/2 and arises due to the atoms
behaving collectively, creating a field that counteracts the incident
light and resulting in the atoms absorbing strongly, with
enhanced absorption for larger atom density. The second
solution (11), termed the single-atom solution, exists when
punsat > 2ðjCj þ Re½C�Þ, and arises when the atoms react to the
incident light almost independently, with R � Reff when
jRj ! 1. The atoms now saturate and absorption is weak, with
the medium becoming transparent.

The simplest system exhibiting collective interactions is that of
two atoms (~Ω ¼ Ω12, ~γ ¼ γ12). In this case, we can satisfy
~Ω
2
> 27γ2 for closely spaced atoms for Δ=γ ¼ �~γ=~Ω. Approx-

imating the resonant dipole-dipole coupling by Ω12 ~ 1/(ka)3,
where a denotes the atom separation, results in the bistability
threshold of roughly ka ≲ 1, with the precise value depending on
the orientation of the dipoles (see Supplementary Note 1).

Analytic expressions can be obtained for atomic chains and
arrays for Δ=γ ¼ ~Ω=~γ, where the bistability threshold is
independent of ~Ω. For an infinite 1D chain, we can sum the
series of dissipative dipole-dipole interaction terms over the
atoms to obtain the collective resonance linewidth

~γ1D ¼
X
j≠l

γjl ¼
3γπ
4ka

ðr̂ � êÞ2 þ 1
� �� γ; ð13Þ

where r̂ indicates the atomic chain orientation. The bistability
threshold ~γ> 8γ is met when ka < π/6 (a≲ 0.08λ) or ka < π/12
(a≲ 0.04λ) for dipoles parallel and perpendicular to the chain,
respectively. For an infinite 2D array, with a uniform distribution
of atomic dipoles in the plane, we obtain57 (see also ref. 58) for the
collective linewidth ~γ2D=γ ¼ 3π=ðkaÞ2 � 1; which allows for
larger lattice spacings, ka < (π/3)1/2 (a≲ 0.16λ), for the bistability
threshold than a 1D chain. For dipoles normal to the plane,
~γ ¼ �γ, and so ~γ≯ 8γ and bistability is not possible.

The analogy between the optical bistability in atom arrays and
in cavities38–42,44,45 can now be most easily illustrated, and our
adapted terminology motivated, at the specific value of Δ=γ ¼
~Ω=~γ for which C ¼ ~γ=2γ in Eq. (12) is real. The expression for
the incident light field (Eq. (32) in Methods) then has a similar
form as that in cavity systems, with the same formulaic
dependence on the cooperativity parameter in atom arrays as
that for optical bistability in cavities40.

In cavity quantum electrodynamics (QED), the cooperativity
parameter represents recurrent interactions of an atom with light
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reflecting between the cavity mirrors. In atom arrays for
Δ=γ ¼ ~Ω=~γ, the bistability condition C ≳ 4 then translates to
the density threshold ka ~ 1 – equivalent to the requirement for
the existence of substantial recurrent and correlated light
scattering, where the light is scattered more than once by the
same atom36,59,60. Moreover, as ~γ in atom arrays takes the role of
the atom-cavity coupling coefficient, the condition C ≳ 1 then
also corresponds to the strong coupling regime of cavity QED.

Figure 3a shows the upper and lower intensity thresholds for
bistability as a function of lattice spacing, along with the
bistability region and solutions in Fig. 3b, c. Numerical solutions
of the phase diagram in a planar array agree well with the analytic
result of the optical bistability ka < (π/3)1/2 for the uniform phases
when driving the superradiant eigenmode, and for ka ≳ 0.44π,
only one phase persists and no phase transitions occur. When
specifically targeting the subradiant eigenmode by using alter-
nating checkerboard-patterned level shifts, optical bistability can
only be predicted by numerically solving the equations of motion,
with a much smaller spacing ka≲ 0.34π needed for the optical
bistability and phase transitions to occur. Bistability also occurs at
lower intensities, with bistability in the range 0.07≲ I/Isat≲ 190
when driving the subradiant mode compared to 2≲ I/Isat≲ 406
when driving the superradiant eigenmode.

Uniform level shifts: mean-field phases and optical signatures.
So far we have studied the coupling of light in the limit of LLI and
the emergence of optical bistability for a uniform atom array.
Next we determine the entire phase diagram of atoms coupled by
light-mediated interactions beyond the LLI regime by finding the
steady-state solutions of Eqs. (3) and (4) for ka= 0.2π. Here the
coupling of atoms is to the full free-space electromagnetic spec-
trum, but different optically-induced phases can also occur in
systems with a periodic lattice where the light-atom coupling is
just to a single mode of a cavity61,62, and phase transitions could
additionally be induced, e.g., by feedback63.

In general, we find the system can exhibit spatially uniform
phases, antiferromagnetic (AFM) phases and persistent oscilla-
tions (OSC), as well as different optical bistabilities. The detailed
phase diagrams in Fig. 1b, c are calculated for a square array of
N= 4 atoms with periodic boundary conditions. However,
analogous behaviour is anticipated to emerge for different
independent atom numbers, with additional phases due to the
presence of more LLI eigenmodes. We have explicitly simulated a
square array of N= 9 atoms with periodic boundary conditions
and found a qualitatively similar phase diagram, with spatially

uniform phases, OSC phases and regions of bistability, but
instead of an AFM phase, we have found a spin density wave
(SDW) phase with three-site periodicity, due to the obvious
constraints of the lattice length. Transitions between different
phases can result in small dips in the OD, and lead to large peaks
in the ICR. Phase bistabilities are identified in large jumps in the
OD and ICR, as well as hysteresis upon varying the laser
frequency. For larger independent atom numbers, the AFM
phases will re-emerge and coexist with the SDW phase, with
additional SDW phases that have different periodicities as larger
scale fluctuations are allowed in the system. We have found the
region of U1/U2 bistability to remain the same without any
additional fluctuation-induced phase instabilities. Therefore, our
analysis of two independent atom numbers indicates our results
presented here are generic features of large lattices, i.e., peaks and
dips in the ICR, OD and excited state population around mean-
field phase transitions and bistabilities.

We first consider the case where the atomic level shifts are all
equal; Fig. 1b. Beyond the obvious phases representing uniform
low and high excitation numbers, labelled U1 and U2 (the q = 0
case of Eq. (27) in Methods), respectively, we interestingly also
find stable phases with spontaneously broken translational
symmetries and regions of two coexisting stable phases. Different
phases can be distinguished from one other via the staggered level
population order parameter, m ¼Pje

iQ�rjð2ρðjÞee � 1Þ, where each
phase has a specific value of Q which will maximise m and
identify the phase, e.g., Q = 0 for the spatially uniform phase. The
coherent and incoherent optical responses, OD and ICR, from the
mean-field analysis are shown in Fig. 4a–d.

While the uniform phases U1 and U2 vary smoothly into one
another (white regions of Fig. 1b), there also exists a U1/U2

bistability due to two possible values of ρee, where the state of the
system depends on the initial condition (dark blue region). This
bistability region is largely well described by our earlier analytics
and contours in Fig. 3 (derived from Eq. (32) in Methods).
However, differences occur due to one of the uniform phases
becoming unstable at positive detunings. The resonances of U1,2

for I/Isat= 100 in Fig. 4a–d are both broad and correspond to the
superradiant LLI uniform excitation eigenmode (Eq. (23) in
Methods) at low intensities, appearing at the detuning Δ=−25γ.
For the U1/U2 bistability at I/Isat= 200, we find hysteretic
behaviour upon sweeping the resonance from either red- or blue-
detuned side. This demonstrates how crossing a region of
bistability results in a large jump in both the OD and ICR, with
the jump point depending on the initial condition.

Fig. 3 Optical bistability in a planar array of atoms. a Maximum and minimum intensities of the bistability region for a driven superradiant mode as a
function of lattice spacing scaled by the wavevector, ka. Both decrease with increasing lattice spacing, with bistability lost for lattice spacings a≳ 0.16λ, in
agreement with our analytic estimate. b The region of bistability (from Eq. (32) in Methods) as a function of incident intensity, I/Isat, and laser frequency
detuning from the atomic resonance, Δ/γ, (solid blue line) for a lattice spacing a= 0.1λ; c jReffj2=γ2 as a function of incident intensity for Δ=γ ¼ ~Ω=~γ
(indicated by the blue dashed line in b). In between the lower and upper intensity thresholds, three solutions emerge. The lower (upper) dashed black curve
shows the cooperative (single-atom) solution, Eq. (10) (Eq. (11)). In b, c, the red-dotted and orange-dot-dashed lines show the approximate intensity
thresholds (Eq. (34) in Methods), with the analytic estimate for the single-atom solution (11) vanishing at the red-dotted line. In c, the black-dotted line
shows the intensity where the analytic estimate for the cooperative solution (10) vanishes.
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Despite the uniformly excited atoms, stable phases with
spontaneously broken translational symmetries emerge with the
atomic dipoles oscillating π out of phase in the neighbouring sites
(red regions in Fig. 1b). These AFM phases appear at detunings
resonant with the LLI excitation eigenmodes u±,cb (Eqs. (24) and
(25) in Methods), and have the same underlying spatial variation,
with a striped AFM± phase originating at Δ= 4.65γ and a
checkerboard AFMcb phase originating at Δ= 10.8γ. They can be
distinguished by the staggered level population order parameter,
m, with Q= (π/a, π/a) for the AFMcb phase, and Q=
(π/a, 0), (0, π/a) for the AFM± phase, which reflect the symmetry
of the corresponding LLI eigenmodes. The AFM phases
materialise as nonlinear interactions between the atoms allow
small fluctuations to populate the spatially nonuniform modes in
the system, causing phase instabilities. Two narrow peaks for
I/Isat= 100 in Fig. 4c in the ICR at Δ= 3.8γ and 8.7γ signal
spontaneous symmetry breaking and a phase transitioning from
U1 to the AFM± and AFMcb, respectively. In general, we find the
peaks for the AFM phases are always far narrower than those for
uniform phases, which distinguishes the uniform and AFM
phases in the ICR. No clear signature of this transition can be
seen in the OD. We find that the AFMcb phase is bistable with the
U1 phase (yellow regions of Fig. 1b). Switching off the incident
drive, the uniform phase decays superradiantly, and the AFMcb

phase decays subradiantly. Therefore, AFMcb/U1 bistability
represents an interesting situation where either a superradiant
or subradiant phase can be populated depending on the initial

condition. This also explains why AFM phases result in narrower
peaks than uniform phases due to their underlying subradiant
nature. The hysteresis associated with the bistability could be
utilised as a possible method for preparing subradiant excitations,
when a steady-state superradiant mode is transformed into a
subradiant one by a laser frequency sweep.

Both AFM phases also can become unstable (via Hopf
bifurcations) resulting in an OSC phase. Such phases appear as
additional peaks at I/Isat= 100 and I/Isat= 200. Due to oscilla-
tions in the OSC phase, the signal is noisy as the stationary state is
no longer well defined, and this allows the OSC phase to be
distinguished from the AFM phases as the signal from the OSC
phase will vary over a typical timescale of the order τ ~ 5–10/γ.
There are also regions of OSC and U1 bistability. For the OSC/U1

bistability at I/Isat = 100, clear hysteresis can be seen in the ICR,
but hysteresis in the OD is very small. This is due to the
alternating out-of-phase dipoles, which, when summed together
to calculate the OD, nearly cancel. The ICR always shows clear
peaks and hysteresis as it depends on the excitation strength and
not the phase. There are small regions (not marked) near this
OSC/U1 bistable region where a new phase emerges which is
neither spatially uniform or AFM in nature, where two dipoles
are out of phase to one another, and the two remaining ones in
phase with one other.

Uniform level shifts: quantum fluctuations. In the full quantum
theory, there is no bistable behaviour or phase transitions. While

Fig. 4 Signatures of phase transitions in the observables of an array of strongly coupled atoms with uniform level shifts. a, b Optical depth of the
coherent transmission, OD ¼ �ln ðTcohÞ, c, d incoherent photon count rate (ICR) (Eq. (18) in Methods), and e, f total excited level population, Pee ¼

P
lρ
ðlÞ
ee,

as a function of laser frequency detuning from the atomic resonance, Δ/γ, for incident intensities I/Isat = 100 and I/Isat = 200. We show hysteresis curves
for a negative detuning sweep (dark red) and positive detuning sweep (blue), with arrows showing the sweep direction. The insets highlight key features on
their respective plot. Coloured bars indicate the spatially uniform (U), antiferromagnetic (AFM) and oscillatory phases (OSC).
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generally at high intensities the mean-field and quantum results
are in closer agreement20 as the atoms start to scatter more, at
intermediate intensities we find in Fig. 4a–f considerable devia-
tions where the mean-field solutions display bistability. In the full
quantum description, due to quantum correlations between dif-
ferent atoms, the ICR no longer represents the excited level
population as in the single-atom quantum description that is
incorporated in the analysis of the mean-field dynamics. How-
ever, the ICR still shows a resonance near the detunings where
mean-field AFM transitions occur. Furthermore, this resonance
depends on the collection angle of the photons (see Supplemen-
tary Note 2), while the broad resonance in the ICR where there
are uniform phases in the mean-field shows no angular
dependence.

It is generally known from past bistability studies43–45,48,52,64

that mean-field bistabilities coincide with enhanced quantum
fluctuations, which can be understood as tunnelling between the
two mean-field solutions. The corresponding quantum distribu-
tion is then bimodal. The calculated incoherently scattered
photon number fluctuations IoDn ¼ ðhn̂2i � hn̂i2Þ=hn̂i, where n̂
is the operator form of Eq. (6) with all the light collected over a
closed surface, however, shows no signatures of enhanced
fluctuations (Fig. 5a) but we find that the fluctuations of the
excited level population (Fig. 5b),

IoDee ¼
P

i;j hσ̂eei σ̂eej i � hσ̂eei ihσ̂eej i
� �

P
ihσ̂eei i

; ð14Þ

are strongly enhanced around the U1/U2 and AFMcb/U1 phase
bistabilities. This corresponds to large variations in the excitation
strength between the different mean-field solutions, and could be
detected by resonantly transferring excited atoms to another level.
This behaviour is also present for N= 9 independent atoms (see
Supplementary Note 3) for U1/U2 and SDW/U1 bistabilities, and
indicates that enhanced fluctuations around regions of bistability
should be a general feature for larger independent atom numbers.

Alternating level shifts: mean-field phases and optical sig-
natures. By engineering a checkerboard pattern of alternating

atomic level shifts, detailed earlier in the discussion of the LLI
modes, we are able to drive collective excitations where the atoms
oscillate π out-of-phase with respect to their nearest-neighbour,
and whose LLI limit (with removed level shifts) represents sub-
radiant checkerboard eigenmode (Eq. (25) in Methods) existing
outside the light cone. Here we are interested in a continuous
driving of the system, such that we will not restore the symmetry
by removing the level shifts after exciting the mode. A weak level
shift of 2γ is maintained to couple the eigenmodes and even the
LLI eigenmode outside the light cone is radiating, instead of
completely trapping the excitation. We now analyse how alter-
nating level shifts influence the phase diagram beyond the
LLI limit.

The alternating level shifts explicitly break the translational
symmetry of the lattice. The spatially uniform phases U1,2 of
Fig. 1b now transform to checkerboard AFMcb phases in Fig. 1c,
but can still be distinguished as having low and high excitations,
labelled AFM1 and AFM2. The coherent and incoherent optical
responses, OD and ICR, from the mean-field analysis are shown
in Fig. 6a–d. One key difference from the uniform level shifts is
that the bistability now occurs at lower intensities, as discussed
earlier when analysing the bistability analytics. No bistability is
found for I/Isat= 200, so instead we look at I/Isat= 180.
Deviations from the LLI model and the emergence of nonlinear
response depend on the linewidth of the corresponding LLI
eigenmode, with subradiant modes being more sensitive at lower
intensities than superradiant ones65. Therefore, for non-uniform
level shifts, the intensities at which non-trivial phases emerge are
lower due to the checkerboard subradiant mode (Eq. (25) in
Methods) being populated.

There is still a region of OSC phase and also a small region of
AFM1/OSC bistability, indicated by several corresponding peaks
in the ICR (and also a dip in the OD for I/Isat= 180). There are a
few cases where the OSC phase becomes unstable and only the
AFM1 phase persists, which are not marked. Subradiant
excitations in the limit of LLI lead to narrow Fano resonances
when interfering with broader-resonance modes, as shown in
Fig. 2a. Some of these transform to bistable regions, such as
AFM1/AFM2, which again displays large jumps and hysteresis
upon sweeping the detuning.

Finally, there are regions (green) where phases emerge that are
not spatially uniform or AFM in nature (labelled BD1,2), and are
bistable with the AFM2,1 phase, respectively. For the BD1 (BD2)
phase, the atoms along x̂ þ ŷ are in-phase (out-of-phase) with
respect to each other, while the atoms along x̂ � ŷ are out-of-
phase (in-phase) with respect to each other, and have different
dynamics to the atoms atoms along x̂ þ ŷ. Small regions of the
BD2 phase were found for the uniform shift case. Within the
AFM/BD2 bistability region, the BD2 phase can become unstable
and only the AFM1 phase remains. BD1,2 phases occur because of
the striped subradiant modes (Eq. (24) in Methods), which have a
spatial variation that does not match with the level shift profile,
but are populated by nonlinear interactions even though they do
not couple to the drive. There is a small peak in the ICR at Δ=
0.9γ in Fig. 1c for the AFM1 to BD1 transition, which is similar to
the U1 to AFM± transition peak of Fig. 1b.

Alternating level shifts: quantum fluctuations. The effects of the
quantum treatment are similar to those found for uniform level
shifts. The quantum system now always exhibits an AFMcb phase
as the alternating level shifts explicitly break the translational
symmetry. The ICR for the quantum model shows peaks around
the mean-field phase transitions and we again find enhanced
fluctuations in the excitation number around regions of bist-
ability, but not in the photon number; Fig. 5. The enhanced

Fig. 5 Quantum theory of incoherently scattered light. Fluctuations of (a)
scattered photon number, IoDn ¼ ðhn̂2i � hn̂i2Þ=hn̂i, and (b) excited level
population, IoDee (Eq. (14)), as a function of laser frequency detuning from
the atomic resonance, Δ/γ, and incident intensity, I/Isat, for uniform level
shifts and (c, d) alternating level shift profiles. The purple lines show the
mean-field stability contours and black-dotted regions show the mean-field
bistability contours. Fluctuations in excited level population, but not in
photon number, are enhanced in regions of mean-field bistability.
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fluctuations appear to agree much better with the mean-field
contours, especially around the resonance of the checkerboard
mode. Interestingly, there is a large decrease in fluctuations
around the resonance of the checkerboard subradiant mode.

Discussion
In the limit of LLI, two-level atoms respond to light as linear
classical oscillators66. Although atom-by-atom simulations of
such systems, especially in large randomly-distributed ensembles
with light-induced positions correlations between the atoms, can
be demanding on numerical resources59, the number of equations
scales linearly with the atom number. Finding full quantum
solutions in large systems, however, becomes quickly prohibi-
tively challenging as the size of the density matrix in Eq. (1) scales
exponentially with the atom number ~22N. In this paper, we have
approximated the quantum dynamics of a large array by sub-
jecting it to periodic boundary conditions and varying parameters
of only four atoms. This approach, however, provides a useful
comparison with the corresponding mean-field dynamics of
Eqs. (3) and (4) by unambiguously identifying quantum effects in
the differences between the responses of the two cases. Simula-
tions of nine atoms give similar results to the four-atom case, but
with the emergence of an SDW phase with higher periodicity due
to an increasing number of LLI modes in the system. The optical
signatures of the SDW phase is similar to the AFM phases, with
narrow peaks in the ICR and dips in the OD, so our analysis of

the four-atom system provides key insight into the dynamics and
signatures of large systems.

While identifying light-established quantum correlations is
interesting on its own right, this leads to practical implications as
the number of equations in the mean-field dynamics scales lin-
early with the atom number. Determining the limits of validity of
mean-field models can therefore provide a range of useful com-
putational tools for the appropriate regimes. There is also a more
philosophical point of view: As experiments with pristine quan-
tum control of small atomic systems with genuine multimode
dynamics are improving, the interface between quantum
mechanics and classical physics, and the transition to classical
physics due to decoherence or quantum stochastic nonlinear
phenomena, is becoming ever more relevant in many-body sys-
tems. When a classical system exhibits the most dramatic con-
sequences of nonlinearity, such as phase transitions or bistability,
also the most recognisable differences between the quantum and
classical theories arise. Instability in a classical phase transition
represents exponentially growing deviations from the unstable
solution to a new stable one, and bistability the simultaneous
existence of two stable solutions. Quantum mechanics typically
cannot favour either of the corresponding solutions. Instead the
dynamics are determined by the initial conditions and the evo-
lution can also emerge as a superposition state, resulting in an
enhanced fluctuations of measurement observables, as those
identified in our study.

Fig. 6 Signatures of phase transitions in the observables of an array of strongly coupled atoms with alternate level shifts. a, b Optical depth of the
coherent transmission, OD ¼ �ln ðTcohÞ, c, d incoherent photon count rate (ICR) (Eq. (18) in Methods), and e, f total excited level population, Pee ¼

P
lρ
ðlÞ
ee,

as a function of laser frequency detuning from the atomic resonance, Δ/γ, for incident intensities I/Isat= 100 and I/Isat= 180. We show hysteresis curves
for a negative detuning sweep (dark red) and positive detuning sweep (blue), with arrows showing the sweep direction. The insets highlight key features on
their respective plot. Coloured bars indicate the spatially uniform (U), antiferromagnetic (AFM) and oscillatory phases (OSC), and phases that are not
uniform or AFM in nature (BD).
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Methods
Model for light-atom coupling. We express the electrodynamics in the length
gauge, obtained by the Power–Zienau–Woolley transformation67, such that
E ± ðrÞ ¼ D±

F ðrÞ=ϵ0 correspond to the positive and negative frequency components
of the electric displacement in free space. The many-body quantum master Eq. (1)
is then expressed in the rotating-wave approximation in terms of slowly varying
field amplitudes and atomic variables, where Eþeiωt ! Eþ and σ̂�l e

iωt ! σ̂�l . The
dipole-dipole interaction term is given by the real and imaginary part of the dipole
radiation kernel,

1
_ϵ0

deg � Gðrj � rlÞdge
h i

¼ Ωjl þ iγjl ; ð15Þ

where γjj = γ is the single-atom linewidth. The dipole radiation kernel acting on a
dipole located at the origin yields the familiar dipole radiation expression

GðrÞd ¼ � dδðrÞ
3

þ k3

4π
r̂ ´ dð Þ ´ r̂ e

ikr

kr
� 3r̂ r̂ � dð Þ � d½ � i

ðkrÞ2 �
1

ðkrÞ3
" #

eikr
( )

;

ð16Þ
with r = ∣r∣, r̂ ¼ r=r.

For the observables, such as transmitted light intensity or the photon count rate,
the electric field product can be expanded in terms of incident and scattered fields
to give

hÊ�ðrÞÊþðr0Þi ¼E�ðrÞEþðr0Þ þ E�ðrÞhÊþ
s ðr0Þi þ hÊ�

s ðrÞiEþðr0Þ
þ hÊ�

s ðrÞihÊ
þ
s ðr0Þi þ hδÊ�

s ðrÞδÊ
þ
s ðr0Þi;

ð17Þ

where Ê
�
Ê
þ
is the dyadic product with elements EαE

�
β , with α and β denoting the

vector components. The first term in Eq. (17) gives the incident intensity, while the
next three terms are the coherent scattered light, which remain even in the absence
of quantum fluctuations. The last term,

hδÊ�
s ðrÞδÊ

þ
s ðr0Þi ¼ hÊ�

s ðrÞÊ
þ
s ðr0Þi � hÊ�

s ðrÞihÊ
þ
s ðr0Þi, is the incoherent scattering,

which is light scattered by disorder and quantum fluctuations. Because we consider
atoms at fixed positions, the incoherent scattering is determined purely by
quantum correlations. We measure the incoherent scattering from the ICR,

obtained by substituting hδÊ�
s ðrÞδÊ

þ
s ðr0Þi into the photon count rate expression,

Eq. (6), which gives

ICR ¼ 2ϵ0c
_ω0

XN
l;m

hσ̂þl σ̂�mi � hσ̂þl ihσ̂�mi
	 
 Z ½Gðr� rlÞdge� � ½Gðr� rmÞdge��dS:

ð18Þ
The ICR that we will use under the mean-field description reads20

ICR ¼ 2ϵ0c
_ω0

XN
l

hσ̂eel i � jhσ̂�l ij2
	 
 Z jGðr� rlÞdgej2dS: ð19Þ

As noted in the main text, this expression differs from the usual semiclassical
description of the incoherent scattering54 (which would vanish for fixed atomic
positions) due to the inclusion of hσ̂eel i terms. When calculating the photon count-
rate, we integrate the field over a solid angle with NA ¼ sin θ ¼ 0:24, except when
looking at photon fluctuations in Fig. 5a, c, where we integrate over a closed
surface.

Coherently transmitted light through a finite array can be approximated at a
point (0, 0, ξ) from the centre of the array from58,60,68,69

Ê
þ
j ðrÞ ¼ E0 êe

ikξ þ 2ik
Aϵ0

X
l

½dge � ðẑ � dgeÞẑ�eikðξ�zlÞσ̂ j; ð20Þ

when λ≲ ξ 	 ffiffiffiffiAp
, where A is the total area of the array and l is summed over all

images of the atom j that are included due to the periodic boundary conditions.

The total coherent field is then Ê
þðrÞ ¼P4

j Ê
þ
j ðrÞ. We have found numerically

this approximation works well.

Collective low light intensity eigenmodes. In the limit of LLI, the coupled-dipole
model or the classical linear oscillator model becomes exact for the two-level
atoms36,66. In the periodic lattice system, the LLI collective excitation eigenmodes
are obtained by diagonalising Eq. (15), and are the Bloch waves

vðþÞ
q ðrlÞ ¼ Aq cosðq � rlÞ; ð21Þ

vð�Þ
q ðrlÞ ¼ Aq sinðq � rlÞ; ð22Þ

where Aq ¼ ffiffiffiffiffiffiffiffiffi
2=N

p
except for Aq¼0;ðπ=a;π=aÞ ¼ 1=

ffiffiffiffi
N

p
. The wavevectors q have

components qx/y= 2πmx/y/Nx/ya, where mx/y= 0, 1, . . to Nx/y/2 or (Nx/y − 1)/2 for
an even or odd number of sites, respectively, and Nx/y is the number of sites along
the x/y direction. The corresponding eigenvalues, δq + iυq, represent the collective
line shifts (from the resonance of an isolated atom) δq and linewidths υq.

In our system there are four relevant LLI eigenmodes: the spatially uniform
mode,

vunðrlÞ 
 vðþÞ
q¼0ðrlÞ ¼

1
2
; ð23Þ

the spatially nonuniform modes with striped phase variation along x̂ ± ŷ,

v ± ðrlÞ 
 vð�Þ
q¼ðπ=2a; ± π=2aÞðrlÞ ¼

1ffiffiffi
2

p sin
π

2a
; ±

π

2a

� �
� rl

h i
; ð24Þ

and a checkerboard phase variation,

vcbðrlÞ 
 vðþÞ
q¼ðπ=a;π=aÞðrlÞ ¼

1
2
cos

π

a
;
π

a

� �
� rl

h i
: ð25Þ

To simulate an infinite system, we use periodic boundary conditions by adding
repeat images of the system to the boundaries. We truncate to 101 images along the
x̂ and ŷ direction, which gives an effective lattice size of 406 × 406. Numerically, the
linewidths are given by υun= 25γ, υ+= 0.09γ, υ−= 0.08γ, and υcb= 2 × 10−4γ.
Due to our image truncation, the two striped modes υ± are not degenerate and all
three subradiant modes have a nonzero linewidth. The population of the
eigenmodes (Fig. 2b) is calculated using the occupation measure defined by70

Lα ¼
PN

l vαðrlÞρðlÞge
��� ���2P
β

PN
l vβðrlÞρðlÞge

��� ���2 ; α; β ¼ un; ± ; cb: ð26Þ

Analytic mean-field solutions. For a general form Rl ¼ Reiq�rl , where q is the
wavevector of the drive, a solution to Eqs. (3) and (4) is given by ρðlÞge ¼ ρgee

iq�rl ,
with

ρge ¼
iRð2ρee � 1Þ

i Δ� ð2ρee � 1Þ~ΩðqÞ� �� γ� ð2ρee � 1Þ~γðqÞ� � ; ð27Þ

where

~ΩðqÞ ¼
X
j≠l

Ωjle
iq�rj ; ~γðqÞ ¼

X
j≠l

γjle
iq�rj ; ð28Þ

are the Fourier transforms of the real and imaginary parts of the dipole kernel, Eq.
(16), respectively (excluding the self-interaction j= l). The number of excitations
ρee obeys the following cubic equation

~γðqÞ2 þ ~ΩðqÞ2� �ð2ρee � 1Þ3 þ ~γðqÞ2 þ ~ΩðqÞ2 � 2Δ~ΩðqÞ � 2γ~γðqÞ� �ð2ρee � 1Þ2
þ Δ2 þ γ2 þ 2jRj2 � 2Δ~ΩðqÞ � 2γ~γðqÞ� �ð2ρee � 1Þ þ Δ2 þ γ2ð Þ ¼ 0:

ð29Þ
We use the solutions to Eqs. (27) and (29) to describe the spatially uniform

solutions and their bistability in the phase diagram with uniform level shifts. In
the absence of incident light, Eq. (29) admits only one real solution of ρee= 0.
For large intensities, the interaction terms in Eq. (29) become negligible and the
coherence and number of excitations become identical to the noninteracting
solutions to the optical Bloch equations with familiar power-broadened linewidths

ρge ¼ R �Δþ iγ

Δ2 þ γ2ð1þ I=IsatÞ
; ð30Þ

ρee ¼
I

2Isat

γ2

Δ2 þ γ2ð1þ I=IsatÞ
; ð31Þ

where we have used 2jRj2=γ2 ¼ I=Isat . Other steady state solutions to Eqs. (3) and
(4) can be found numerically that obey a bipartite ansatz, with more details in
Supplementary Note 4.

Bistability threshold. The regimes of bistability between the spatially uniform
phases can be predicted analytically for certain detunings. Without the loss of
generality in the derivation, we can set in the following q = 0 for the drive.
Substituting ρðlÞge ¼ ρge and ρðlÞee ¼ ρee into Eqs. (3) and (4) gives the steady-state
solutions (7) and (8) that are equivalent to the solutions of the optical Bloch Eqs.
(30) and (31), but with the Rabi frequency R replaced by the total external electric
field on an atom (the incident field plus the scattered light from all the other atoms)
in the array, Reff (Eq. (9)). By substituting Eq. (7) into Eq. (9), we obtain

R ¼ Reff þReff
2CðΔ2 þ γ2Þ

Δ2 þ γ2 þ 2jReff j2
; ð32Þ

where C is given by Eq. (12) for ~Ω 
 ~Ωð0Þ and ~γ 
 ~γð0Þ. Equation (32) is also valid
for a general plane-wave Rabi drive (q ≠ 0) if 0 → q and ρge ! ρgee

iq�rj in Eq. (9).
Analytic solutions to Eq. (32) can be found by either ignoring the single Reff term,
or the Δ2 + γ2 term in the denominator, which gives the cooperative (Eq. (10)) and
single-atom (Eq. (11)) solutions in the main text, respectively. It is worth noting
that for real C, Eq. (32) has similar form as equations determining bistability in
cavities40, as discussed in the main text.
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The threshold of bistability is determined by taking the modulus-squared of Eq.
(32) (and using I=Isat ¼ 2jR=γj2) and then finding the values of jReff j2 that
minimise I/Isat, resulting in a cubic equation,

4jReff j2 η2 þ 2jReff j2
	 


η2 þ 2jReff j2 þ α
	 


þ η2 � 2jReff j2
	 


β2 þ η2 þ 2jReff j2 þ α
	 
2h i

¼ 0;
ð33Þ

where η2 = γ2 + Δ2 and α + iβ = 2(Δ2 + γ2)C. Bistability occurs when two
positive real solutions to Eq. (33) are found. When Δ=γ ¼ ~Ω=~γ, β = 0, and the
bistability threshold is ~γ> 8γ, while for Δ=γ ¼ �~γ=~Ω, α = 0, and the threshold is
~Ω
2
> 27γ2. Below these values, there is no bistability for any intensity at the

respective detuning. In the limit that ~Ω; ~γ � Δ2 þ γ2, the intensity range for
bistability is approximately given by

2
γ2

α±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ β2

q� �
<

I
Isat

<
2Δ2 þ 2γ2 þ αð Þ2 þ β2

h i
4γ2ðΔ2 þ γ2Þ ; ð34Þ

where the sign of the square root is chosen such that I/Isat is always positive. For
Δ=γ ¼ ~Ω=~γ, this gives an intensity range of

ð1þ χÞ 2~γ
γ

~Ω
2

~γ2
þ 1

 !
<

I
Isat

<
~Ω
2

~γ2
þ 1

 !
1þ χ

~γ

γ
þ ~γ2

4γ2

� �
; ð35Þ

where χ = 1, while for Δ=γ ¼ �~γ=~Ω, we have Eq. (35) with the following
interchange of parameters: ~γ $ ~Ω and χ = 0. In the main text, we examine how the
thresholds and intensity ranges for bistability vary with lattice spacing, and where
bistability is lost for two atoms, and atomic chains and arrays, with the two-atom
case displayed in the Supplementary Note 1.

Data availability
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