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Efficiently reconstructing compound objects by
quantum imaging with higher-order correlation
functions
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Quantum imaging has a potential of enhancing the precision of objects reconstruction by
exploiting quantum correlations of the imaging field, in particular for imaging with low-
intensity fields up to the level of a few photons. However, it generally leads to nonlinear
estimation problems. The complexity of these problems rapidly increases with the number of
parameters describing the object and the correlation order. Here we propose a way to
drastically reduce the complexity for a wide class of problems. The key point of our approach
is to connect the features of the Fisher information with the parametric locality of the
problem, and to reconstruct the whole set of parameters stepwise by an efficient iterative
inference scheme that is linear on the total number of parameters. This general inference
procedure is experimentally applied to quantum near-field imaging with higher-order corre-
lated light sources, resulting in super-resolving reconstruction of grey compound transmis-
sion objects.
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uantum metrology exploits the quantum features of
measurement schemes to infer the parameters of interest
with enhanced precision, compared with classical
schemes!. In some cases, such as interferometry>3, the number of
parameters to be determined is small, and inferring them from
measurement results is straightforward. However, for a large
number of parameters, the problem of inferring them from
measurement results can be quite demanding, even when it is
linear. It might require a prohibitive amount of measurement and
computational effort to be solved. For example, to reconstruct the
state of a moderate number (say, a few dozen) of the simplest
quantum objects, qubits, one already needs some simplifying
assumptions, such as a low rank of the state*-7, the possibility to
approximate the state by a matrix product®, or by a permuta-
tionally invariant state®-!l. For nonlinear problems, the task is
even more difficult!213. A typical case of multiparameter deter-
mination is quantum imaging'4. Images with improved optical
resolution can be obtained from higher-order correlation func-
tions of the light field, thanks to correlation in the illumination
sources!>~17. For this problem, the number of parameters can be
related to the number of pixels in the image to be reconstructed.
Here, we present an efficient method for nonlinear estimation
problems that applies for the important class of parametrically
localized measurements. For this class, the result of a particular
measurement is dependent on a limited subset of parameters
only. Such measurements are common for objects consisting of
components well separated in physical or phase space. For
example, measurements on individual systems in ion traps!'® or
optical lattices!?, direct?® and near-field imaging!4, or data-
pattern tomography?! fall into this category. For such measure-
ments, we develop an iterative sliding-window method (SWM) by
reconstructing on each step only a subset of parameters that can
be much smaller than the total number of parameters. The
complexity for such an approach depends linearly on the number
of times one needs to shift the window to cover the whole
parameter set. To establish the use of the SWM, we develop an
informational approach for the analysis of the measurement
scheme. We apply here the Fisher information matrix (FIM) for
the analysis of the problem and for designing the SWM. Nowa-
days, Fisher information analysis is firmly establishing itself as an
operational tool in quantum tomography and imaging
schemes?2-26, We show how the structure of the FIM can be
exploited for estimating the size and structure of the parameter
subset of the SWM iterations. We demonstrate the efficiency of
our method with the practically important problem of imaging
with correlated photons by measuring a second- or higher-order
correlation function for position-momentum-entangled photons
generated by spontaneous parametric downconversion (SPDC)
and pseudo-thermal light. We predict the existence of an optimal
degree of photon correlations in the imaging field to achieve the
best resolution for a given object. The FIM analysis allows us also
to uncover the possibility to increase the resolution by using
biased estimation with a bias stemming from physical limitations
on the set of the problem parameters.

Results

Theoretical background. To elucidate our approach, let us start
with the simplest linear measurement model described with the
probabilities p;, = Z]Ail ijej, where 0; are the parameters in
question and Cy; is the square Hermitian measurement matrix.
We call the measurement strictly parametrically I-local, if I <M
and Cy; =0 for |k —j| >, i.e., the matrix C is I-banded, and the
(I+ 1)th and other side diagonals are equal to zero. It means that
each probability p; depends on no more than 2/ neighboring
parameters. The key observation here is the possibility to

approximate the inverses of banded matrices with approximately
banded matrices?’-?8. It would mean that the estimator of the
parameter 0; depends only on probabilities in the vicinity of p;.
Such a locality provides the possibility of getting an accurate
estimate for some 0, for example, by minimization of the dis-
tance between a set of experimentally measured frequencies, fi,
kel[h—], h+]], where J>I is an interval around h, and the
probabilities estimated as p;, ~ thhl_ ; ijﬂjg. Estimation can be
performed for a sequence of h, thus, shifting the estimation
window along the whole set of parameters. The complexity of the
SWM is linear on the number of shifts required to cover the
whole set of parameters. Below we elaborate on this possibility.
Notice that the consideration given above holds also for non-
strictly parametrically local measurements (Supplementary
Note 1).

Now let us consider the general nonlinear parametric
measurement model p, = Ci(6, ...0). Strict parametric [-locality

p; ; Lo
for the case would mean % = 0 for [m — j| > I. Our suggestion is
to estimate the influence of a given change of a particular
parameter on the other parameters with help of the FIM and the

Cramer-Rao bound (CRB). By assuming the completeness of the
measurement set, y ., p; = 1, the FIM for this case reads

1 9p; 9p;
Epp = ZE@a—en

i

(1)

For the unbiased estimate, the CRB connects the elements of the
inverse FIM with the variance of the estimators, A%(6;) > [F~1];/N,
where N gives the total number of events. A banded structure of
the FIM would mean that an error estimate for a particular
parameter, 6, can be influenced by variations of the parameters
only in some vicinity [k —J, i+ J]. Our suggestion is to use this
clue for designing the SWM as it was described above for the
linear case. Also, FIM and CRB can be used for optimization of
the measurement scheme aiming at lowering the error bounds per
given number of measured events, N. One can minimize the
bound for the total measurement error described by the trace of
the inverse FIM. A banded structure of the FIM gives a clue to the
connection between the width of the FIM and the total error:
generally, for given diagonal elements of the FIM, increasing the
width (i.e., a number and value of bands) leads to an increase in
the inverse trace and the total error (Supplementary Note 2). One
can also define an empirical Rayleigh criterion for the parameter
resolution from the banded structure: when the FIM is strongly
diagonally dominant, F; > Zk# |Fi|, then statistical errors for

estimation of the parameter 0; are defined mainly by the measured
f» and the parameters can be well estimated by individual
measurements. Notice that the diagonal dominance is a quite
strong property imposing locality (Supplementary Note 1). For
example, for a strictly one-banded diagonally dominant FIM, a

lower bound on the variance of ; is defined by elements Fj with
li — k| <22°.

Imaging with higher-order correlation functions. We illustrate
the previous discussion by applying the SWM to practically
relevant examples of quantum near-field imaging by means of
higher-order correlation functions. Measuring higher-order cor-
relation functions!#30-32 is one of the ways to increase the
resolution of imaging®3-37 and to go beyond the empirical Ray-
leigh limit38. The scheme of the measurement setup is depicted in
Fig. 1. The source produces the linearly polarized field with the
density matrix p. This field passes through the object described by
the transmission function A(s’) and then through the imaging
system characterized by the point-spread function h(s’,T).
Afterward, the field goes to the detectors. The field amplitude
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Fig. 1 Scheme of the imaging setup. The source produces the field with the
density matrix p; this field passes through the object described by the
transmission function A(s’) and then through the imaging system
characterized by the point-spread function h(s’, T'). Afterward, the field is
detected at the image plane

operator at the object plane, E,(7s), relates to the field amplitude
operator at the image plane, E(T), in the following way:

B(T)= /O PTA(T, FE(T), 2)

where h(s’,T) is a PSF describing the field propagation
between the object and the image plane!. Integration in Eq.
(2) is over the object plane O. We represent the object as a
superposition of M pixels A(s) = Zfil dj(?)xj, where the
function dj(?) describes the unit transmission through the jth
pixel, and x; is the value of the transmission assigned to the jth

i
pixel. We measure the nth-order intensity correlation function,

i
GY = Tr{ [T ECF)] [T E(ﬂk))}p} where the index

. k) >k k
k numbers some set of n points, T\ , Ts ... T,

image plane. The detection probabilities are

pkchD(k)(ll... Lim... mn)[ﬁxlx} ﬁxm’. (3)
Im i=1 i=1

The coefficients DX)(1;...1,; m,...m,,) are defined by the ima-
ging system and the state of the source. In Supplementary
Note 3, D) are derived for SPDC-entangled photons, and
pseudo-thermal states used for experimental implementations.

in the

Sliding-window method for imaging. The problem of the object
inference is to find a set of transmission values {x;} fitting the
measured data described by the set of frequencies f in the best
way. For the realization of the SWM, we implement the fol-
lowing iterative scheme: in the first step, we define the pixels
(the functions dj(?)) in such a way that the FIM, i.e,, Eq. (1), is
strongly diagonally dominant and infers the initial approx-
imation. Then, we divide each initial pixel in a subgroup of
smaller pixels, assign to each of them the transmittance of the
parent pixel, and calculate the FIM. Next, we define the window
to be shifted as some set of adjacent “core” pixels and some
“border” pixels around the “core”. Thereby, we use the number
and relative value of major bands of the FIM for defining the
size of the “border” and perform the fitting. Notice that for
building the procedure, one does not need to know the object
beforehand or to perform some preliminary estimation. The
pixel size and the window structure can be defined for
the model object and the used imaging setup. The details of the
SWM method and the pseudocode are provided in the
“Methods” section.

Object inference. Let us illustrate the mechanics of the SWM with
transmitting 1D and 2D objects. We take for our examples
common “workhorses” of the quantum imaging field: a pseudo-
thermal state3 and a position-momentum-entangled state pro-
duced by SPDC*. In Fig. 2, one can see an illustration of the

SWM for a 1D object for the simulated G (Supplementary
Note 3). Figure 2a, b shows an example of the typical strongly
diagonally dominant FIM for a pixel larger than the Rayleigh limit
(Fig. 2a), and the FIM with a pixel smaller than the Rayleigh limit
(Fig. 2b). However, the FIM of Fig. 2b is still narrowly banded, and
thus the inference problem is treatable by the SWM. The rule
of thumb here is to choose the size of the border region larger than
the number of the major bands of the FIM. Figure 2c shows the
object. Figure 2d shows the simulated G2 for the object of Fig. 2¢
for the thermal source. The image of the object (Fig. 2¢) is shown
in Fig. 2d, e. The process of reconstruction by moving the “win-
dow” is depicted in Fig. 2f (see the Methods section). The result of
the reconstruction is shown in Fig. 2g, h. Notice that for this case,
we have come beyond the Rayleigh limit Al, shown with the red
bar in Fig. 2h: the reconstruction result 2g is close to the original
object shown in Fig. 2c, while the diagonal part of the image 2e
looks differently. The object inference for the higher-order cor-
relation functions can be realized similarly to the procedure
described above.

Experiment. The experimental verification of the SWM was done
with the particular realizations of a generic measurement scheme
depicted in Fig. 1 for both, a pseudo-thermal and a spontaneous
downconversion (SPDC) source (see the Methods section). To
produce pseudo-thermal light, a rotating ground glass disk was
illuminated by a monochromatic laser3®#! operating at 405 nm.
Type-0 position-momentum-entangled two-photon states were
generated by a SPDC source). Thereby, we use a 12-mm-long
periodically poled potassium titanyl phosphate (PPKTP) non-
linear crystal pumped by a continuous-wave laser centered at
405nm. The entangled photons are then emitted at 810 nm.
Detection at the image plane was done for the pseudo-thermal
light by using SuperEllen, a single-photon- sensitive 32 x 32-pixel
single-photon avalanche diode (SPAD) array detector manu-
factured in complementary metal-oxide-semiconductor (CMOS)
technology!”74% and by scanning single photon counters for the
entangled photons#0. Figure 3 shows the results of the SWM for
experimental data. Figure 3b shows the reconstructed 2D object
inferred from the measurement of G(3 for the pseudo-thermal
source shown in Fig. 3a (only the diagonal part is shown). Fig-
ure 3¢, d presents reconstruction of the 1D object from G for
the SPDC imaging state. Resolution beyond the Rayleigh limit
(shown by red bars) is demonstrated for both sources.

Optimization of the imaging state. The informational approach
allows us to predict the optimal correlation width of the used
illumination source for the object resolution in the super-
resolution regime. Intuitively, it seems that the smaller the cor-
relation width is, the better the resolution should be. However,
the analysis of the collected information shows that for the object
inference, perfectly correlated photons might not be the best
choice. It follows from an optimization of the lower bound on the
total reconstruction error. This prediction is valid for an arbitrary
reconstruction method for the measurement of the second-order
correlation function with both twin-photon and quasi-thermal
imaging source. In Fig. 4a, an example of the optimization is
shown for the image reconstruction from a G() function for a
pseudo-thermal state. The trace of the inverse FIM and the
infidelity of the reconstruction are shown for different correlation
widths w,. There is an optimal w, allowing to increase the
reconstruction quality for the same number of detector counts in
the super-resolution regime. One can describe the most optimal
state with the following rule of thumb: the correlation width
should be close to the smallest object details to be resolved, i.e., to
the pixel size. In the super-resolution regime, the measurement of
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Fig. 2 The sliding-window method. Examples of the Fisher information matrix for large pixels (a) and for super-resolution regime (b) for reconstruction of a
one-dimensional image with the second-order correlation function. Horizontal axes number the pixels. The object (¢) is used for simulation of G (panels
d and e present the correlation map and its normalized diagonal part; axes in panel d number the pixels), for 108 joint detection events. The sliding-window
method is schematically shown in panel f, the reconstruction result is shown in panel g. The result of the reconstruction (solid line) is compared with the
original model object (dashed line) and diagonal part of G2 (gray line) in plot (h); the horizontal axis in panel h numbers pixels. Simulations are performed

for a thermal source

the second-order intensity correlation gives the most information
per detected photon coincidence event about the object when the
photons going through the neighboring pixels are correlated. This
prediction is confirmed by the experimental results shown in
Fig. 4b by using the pseudo-thermal source with various corre-
lation widths of the generated speckles (Supplementary Note 3).
A similar relation between the optimal photon correlation width
and the size of the object features also holds for a SPDC source
(Supplementary Note 4). For pixel size exceeding the Rayleigh
limit, this effect disappears; decreasing the correlation width
brings about enhancement of the resolution (Fig. 4c).

Inference bias. The informational approach and the SWM can
capture the possibility of a considerable improvement of resolu-
tion stemming from constraints imposed on the parameters. For
the special case of parameters being on the borders of the allowed
regions, the estimation is generally biased. The bias can sig-
nificantly modify the error bounds*>** (see Supplementary

Note 5 and Fig. 4d). For the imaging of binary black-and-white
objects (i.e., for x; being either 0 or 1; see bottom inset and thick
lines in Fig. 4d), one can go far beyond the resolution limit found
for gray images (top inset and thin lines in Fig. 4d) even without
any prior assumption of the binary object structure. The reason
for it is the dependence of the error bounds on the bias derivative
with respect to the parameters®. Generally, the SWM shifts the
estimators near borders. The closer the estimated value is to the
border, the larger is the respective shift and the error-bound
deviation. Notice that for the object inference demonstrated in
Fig. 3, this bias effect was actually seen.

Discussion

We developed an inference method for nonlinear parametrically
local problems and showed how the analysis of the information
allows one to develop an estimation scheme making the com-
plexity of the problem linear on the total number of parameters.
Then, the scheme was applied to the experimental data for super-
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Fig. 3 Experimental data and reconstructed pixel transmissions. Pseudo-thermal light source and a digit “5" object (190 x 311 um) from group 2 of a
negative 1951 U.S. Air Force (USAF) resolution test chart: a diagonal part of a measured G function, b reconstruction result. Spontaneous
downconversion source and a one-dimensional object being the positive 1951 U.S. Air Force resolution test slits with 31.25-pm width: ¢ measured

G@(x,, x2), d reconstruction result. The red segments correspond to the Rayleigh limit Al for the used optical system
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Fig. 4 Inverse Fisher information matrix trace and reconstruction infidelity for 1D pseudo-thermal light images. a Calculated dependence of the total
measurement error on w, for the object in the inset. The solid and dashed lines correspond to d/Al = 0.41, 0.5. The object pixel size d is normalized by the
Rayleigh limit Al. Vertical dotted lines correspond to w.=1.5 pix (the value of the minimum). b Measured infidelity for the same object and super-
resolution regime as in a. Red bars show the standard deviations of the reconstruction results for the analysis of 12 independent 1D datasets taken from a
single 2D experiment. ¢ Calculated dependence of the total measurement error on d/Al for the top object in the insets in d. Dotted, dot-dashed, solid, and
dashed lines correspond to w. = o0, 2, 1, and O pixels. Vertical dashed lines correspond to d/Al= 0.5. d Calculated infidelity for the objects in the inset.

Thick lines correspond to black-and-white objects and thin lines to gray objects
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Fig. 5 An example of two adjacent reconstruction steps for a general two-dimensional case. Panels a, b correspond to obtaining the first approximation, and
¢, d correspond to iterative refinement. Although pixels are divided after the first approximation is obtained, here the pixel size is chosen to be the same for
both cases in order to show mathematical similarity of the first approximation inference and refinement. Letter “X" denotes pixels for which the

optimization problem will be stated (“unknown” pixels), digit “0"” denotes pixels that will be completely ignored at the iteration (“irrelevant” pixels), and
letter “V" denotes pixels whose values will be included in the optimization problem as known constants (“known” pixels). Dashed frame shows the core of

the window, solid frame shows the whole window, the core, and the border

resolution imaging based on higher-order correlation measure-
ments with nonclassical two-photon and pseudo-thermal states. It
was shown how the FIM can be applied to optimize the imaging
state for better resolution, in particular, for the correlation width
of the twin-photon or pseudo-thermal imaging fields. Generally,
the correlation width should be close to the smallest details to be
resolved. This prediction is experimentally confirmed for mea-
surements with pseudo-thermal light. It was also demonstrated
that bias due to marginal values of estimated parameters can
improve the resolution. We believe that the suggested SWM and
an information approach for nonlinear inference problems will
find applications for the design and optimization of inference
schemes in imaging, quantum diagnostics, and tomography.

Methods
The sliding-window method. The practical application of the SWM to the
quantum imaging problem consists of the following steps.

First, an initial rough estimate of the object transmission amplitude is found.
The pixel size is chosen in such a way that the inverse of the FIM for the
reconstruction of the object, expressed in terms of pixels of this size, d((,o), is
diagonally dominant. The problem is strongly local, and a single run of the SWM is
sufficient for getting the initial estimate.

Then, the estimate is refined by representing the object in terms of smaller
pixels (size d) and applying the reconstruction algorithm again. The pixel size d

limits the size of the object features that can be successfully reconstructed, and
therefore, determines the achievable resolution.

Here, the pseudocode for the iterative reconstruction is presented. Both algorithms
(the one for the first approximation inference and the one for refinement) are
mathematically very similar, the only difference is the role of the window border: the
first algorithm implies that pixels inside the border are unknown and not reliable (at
each step): they need to be reconstructed but then discarded; the second algorithm
implies that pixels inside the border are known (at each step) and thus can be
included in the optimization problem as known constants (Fig. 5).

The pseudocode for the first approximation inference algorithm reads as
follows:

For given core window dimensions, compute all core window positions that
lead to the object being fully covered by non overlapping core windows. For each
position of the core window:

1. For a given border size, build a complete window: core + border.

2. Map the resulting full window to the image plane.

3. Find all detectors inside the obtained window in the image plane.

4. Combine the obtained detectors according to the order of correlations and
other constraints if present.

5. For the obtained detector combinations, load the corresponding experi-
mental joint detection frequencies.

6. Build a function that maps pixels inside the full window to residuals between
theoretical joint detection probabilities and experimental frequencies. The
theoretical probabilities are computed by assuming all pixels but those
inside the window to be zero.

7. Perform numerical minimization of the function thus obtained. Pixels inside
the full window are subjected to physical constraints.

8. Update object pixels inside the core window with the corresponding values
obtained from the minimization procedure. Discard other pixel values.
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Fig. 6 Pseudo-thermal light imaging setup. A monochromatic laser is focused onto a rotating ground glass disk (RGGD) by means of lens L1. The
subsequent lens L2 provides the far-field speckle pattern at the object plane (OP). The resolution of the single-lens (L3) imaging system can be modified by
a variable-size pinhole (PH). Single photons are detected at the image plane (IP) by SuperEllen

2f

Laser L1 L2
405 nm

MMF

Fig. 7 SPDC setup. A monochromatic laser is weakly focused into a PPKTP nonlinear crystal (NLC) to generate type-O SPDC. The two-photon state is
imaged via a 4-f arrangement from the center of the NLC to the object plane (OP) by using lenses L1 and L2. A long-pass filter (LF) blocks the pump and a
band-pass filter (BF) transmits photons at 810 nm. A single-lens imaging system with lens L2 maps the OP onto the image plane (IP), which coincides with
the fiber tip of two multimode fibers (MMFs) connecting the detection stages D1 and D2 in a coincidence circuit. The resolution of the imaging system is

modified by a variable-size pinhole (PH)

Because the algorithm first computes all core window positions and then applies
one iteration per core window position, it is easily paralleled.
The pseudocode for the iterative refinement algorithm reads as follows:

1. For a given core window position and a given border size, build a complete
window: core + border.

2. Map the resulting window to the image plane.

3. Find all detectors inside the obtained window in the image plane.

4. Combine the obtained detectors according to the order of correlations and
other constraints if present.

5. For the obtained detector combinations, load the corresponding experi-
mental joint detection frequencies.

6. Build a function that maps pixels inside the core window to the residuals
between theoretical joint detection probabilities and experimental frequen-
cies. The theoretical probabilities are computed by assuming pixels outside
the core window but inside the full window to be known, they are set to
constant values. Pixels outside the full window are set to zero.

7. Perform numerical minimization of the function thus obtained. Pixels inside
the core window are subject to physical constraints.

8. Update pixels inside the core window with the values obtained. Move the
core window one step further.

Experiments. In the first experiment, we illuminate a rotating ground glass disk
(RGGD) with an attenuated, monochromatic laser operating at A = 405 nm

(Fig. 6). An additional lens (L1) in front of the disk allows to vary the beam waist
radius at the position of the RGGD. Subsequently, we insert a far-field lens (L2) in
a 2f setting (f=75mm) in order to collimate the light and remove the spherical
wave front given by the point-like source. (The latter has shown to induce dis-
tortions in the subsequent imaging setup.) The object plane (OP) is then located in
the far field of the source. An object is then imaged onto the image plane (IP) by
means of L3 (f= 150 mm), which is additionally endowed with a variable-size
pinhole (PH) to control the resolution, i.e., the Rayleigh limit of the setup. The
diameter of the PH was fixed to 1.7 mm. The magnification factor m = s;/s, of the
imaging system is m = 1.94, whereas the object distance is s, = 234 mm, and the
imaging distance is given by s; = 454 mm. At the image plane, photons are detected
by SuperEllen, a single-photon-sensitive 32 x 32-pixel SPAD array detector man-
ufactured in CMOS technology with a pixel pitch of 44.64 um and a fill factor of
19.7%17:42, SuperEllen is able to provide frames with a data acquisition window of
30 ns, and a readout time of 10 s at a frame rate of 800 kHz. The spatial corre-
lations between pixels were evaluated between consecutive frames with a resolution
of 10 us given by the frame separation. This procedure allows for the resolution of
the coherence time of the speckles of the order of microseconds. Second- and third-
order correlation functions are measured with SuperEllen.

The here-presented pseudo-thermal light setup was used to obtain the following
two results: first, the digit “5” (Group 2) from a negative U.S. Air Force (USAF) test
chart was imaged and then reconstructed from the data of a G function
measurement. This is shown in Fig. 3a, b of the main text. Second, a negative USAF
chart three-slit pattern (Group 3, Element 2) was imaged from the object plane to
the image plane for various correlation widths w.. The latter was modified by
changing the distance between the focusing lens L1 and the RGGD, and therefore
the beam waist radius. Based on a G2) measurement, this allowed to demonstrate
the dependence of the image reconstruction quality on the correlation width of the
source shown in Fig. 4b of the main text.

The setup for imaging with entangled photons is shown in Fig. 7. Our source
generates type-0 position-momentum-entangled photon states by pumping a
12-mm-long PPKTP nonlinear crystal (NLC) with a continuous-wave (CW) laser
centered at 405 nm*0. The entangled photons are then emitted at 810 nm. The
residual pump beam is subsequently blocked by a long-pass filter (LF), and the
subsequent band-pass filter (BF) transmits photons at 810 nm with a spectral full
width at half maximum (FWHM) of 10 nm to the detectors. The experimental
setup contains two imaging systems: the first system consists of a 4-f image by
using lenses L1 and L2 both with focal length f= 50 mm. This configuration maps
the entangled photon states transverse momentum distribution from the OP1 at
the center of the NLC to the OP with a magnification factor of m = 1. The OP is
then imaged with a single-lens system onto the fiber tips of two multimode fibers
(MMFs). Thereby, we have a magnification factor of m =12 for s, = 65 mm and
s; =780 mm. Both detection stages can be scanned in horizontal direction. This
setup was used to record the image of a three-slit pattern of a positive USAF
resolution chart (Group 4, Element 1) by measuring a second-order correlation
function of the photons. The experimental correlation map and the reconstructed
object can be seen in Fig. 3¢, d of the main text.

Data availability

The datasets generated and analyzed during the current study are available from the
depository of the Center for Quantum Optics and Quantum Information of B. L
Stepanov Institute of Physics, National Academy of Sciences of Belarus http://master.
basnet.by/Informational-approach-for.data.rar.

Code availability
The source codes used for the sliding-window method are available from the
corresponding author upon reasonable request.
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