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Topological superconductivity with deformable
magnetic skyrmions
Maxime Garnier1*, Andrej Mesaros 1 & Pascal Simon 1

Magnetic skyrmions are nanoscale spin configurations that are efficiently created and

manipulated. They hold great promises for next-generation spintronics applications. In par-

allel, the interplay of magnetism, superconductivity and spin-orbit coupling has proved to be a

versatile platform for engineering topological superconductivity predicted to host non-abelian

excitations, Majorana zero modes. We show that topological superconductivity can be

induced by proximitizing skyrmions and conventional superconductors, without need for

additional ingredients. Apart from a previously reported Majorana zero mode in the core of

the skyrmion, we find a more universal chiral band of Majorana modes on the edge of the

skyrmion. We show that the chiral Majorana band is effectively flat in the physically relevant

parameter regime, leading to interesting robustness and scaling properties. In particular, the

number of Majorana modes in the (nearly-)flat band scales with the perimeter length of the

system, while being robust to local disorder.
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Magnetic skyrmions are nano-scale or meso-scale whir-
ling spin configurations of topological nature which
gives them some stability and long lifetime. Magnetic

skyrmions have been found in a variety of non-centrosymmetric
magnets1, in ultrathin magnetic films2–4, as well as in multiferroic
insulators5–7. Quite remarkably, magnetic skyrmions can be sta-
bilized over a wide temperature domain ranging from room
temperature8,9 to cryogenic temperature2,3,10. Evidence that
magnetic skyrmions can be driven by ultralow electric current
densities11,12 make them promising candidates for future spin-
tronic applications13.

In parallel to these developments, the search for Majorana
modes in condensed-matter systems has been the focus of great
attention, motivated by their potential application in quantum
computation. Various systems have been considered as hosts for
topological superconductivity and Majorana modes, based on the
paradigm of combining ferromagnetic order with strong spin-
orbit coupling and conventional superconductivity. The paradigm
led to successes in predicting14–18 and experimentally indicating
Majorana zero-energy modes at endpoints of one-dimensional
systems, such as iron atomic chains19–21 and semiconducting
wires22. Recent experiments have extended the paradigm to two
dimensions, reporting some evidence for dispersive Majorana
edge states around two-dimensional magnetic domains using
cobalt atom clusters under monolayer lead23 or iron adatom
clusters on a rhenium surface24. Since the long-term goal is a
flexible platform for manipulation of Majorana modes, two
challenges for the paradigm are that the preformed structures
(clusters, wires) are hard to manipulate, and that the systems are
constrained by requirement of strong spin-orbit coupling.

An alternative approach to engineering topological super-
conductors while circumventing these two challenges could be to
remove the spin-orbit coupling ingredient, and instead consider a
non-collinear magnetic texture proximitized by a conventional
superconductor14,25–29. In fact, our results are relevant for a
broader class of skyrmion-like textures, such as magnetic bub-
bles30–33. In addition, a texture such as a skyrmion can be
manipulated by external fields, potentially facilitating the
manipulation of Majorana states. Yang et al. recently found that
skyrmions having an even azimuthal number can indeed bind a
single Majorana zero mode in their core26. Moreover, very
elongated magnetic skyrmions were shown to host Majorana zero
modes at their endpoints34. In contrast, we find here that a
magnetic skyrmion of any azimuthal winding and sufficient radial
winding gives rise to a single band of states at the edge of the
skyrmion, i.e., a chiral Majorana edge mode (CMEM).

Surprisingly, for the physically relevant range of parameters
(skyrmion size, winding numbers, magnetic coupling strength)
the CMEM has negligible velocity, i.e., it is nearly a Majorana flat
band (MFB). Furthermore, we find that the CMEM is robust to
local perturbations, as well as to smooth deformations of the edge
geometry. Such deformations preserve the number of edge states
proportional to the perimeter length of the edge.

For systems with translational symmetry there is a theoretical
classification of topological superconducting phases, and predic-
tions for a corresponding CMEM along a given edge of the sys-
tem35–37. Furthermore, the existence of a MFB along an edge can
be deduced from an appropriate discrete chiral symmetry and
topological indices in lower spatial dimension38–40. In our case,
the skyrmion is an inhomogeneous texture so these methods
cannot be directly used to explain the observed robustness and
near-flatness of the CMEM. We however deduce the underlying
topological protection of the skyrmion’s CMEM by a mapping to
a cylinder geometry. Although this construction requires rota-
tional symmetry of the skyrmion, the CMEM by its nature pro-
vides robustness against small deformations of the shape of the
system. Further, we identify the chiral symmetry that would
protect a strict MFB (instead of a CMEM), and show that this
symmetry is only weakly broken by the skyrmion texture, leading
to a nearly flat CMEM and providing further protection against
low-energy perturbations. Finally, we will discuss potential
material realizations, and possibilities for manipulation of
Majorana states within the nearly-flat CMEM.

Results
Setup and model. Consider a two-dimensional (2D) magnetic
thin film hosting a skyrmion, which is represented by a classical
magnetization texture

n rð Þ ¼ sin f ðrÞcosðqθÞ; sin f ðrÞsinðqθÞ; cos f ðrÞð Þ; ð1Þ

written in polar coordinates r= (r, θ), where f(r) is a radial profile
that we will specify shortly. We study such a thin film prox-
imitized by a conventional s-wave superconductor (Fig. 1a).
The electrons interact with the skyrmion texture via a direct
exchange interaction of strength J. In the Nambu basis

Ψy rð Þ ¼ ψy
" rð Þ;ψy

# rð Þ;ψ# rð Þ;�ψ" rð Þ
� �

, where ψσ(r) annihilates

an electron with spin σ at position r in 2D, the total Hamiltonian
H can be written as H ¼ 1

2

R
drΨy rð ÞH rð ÞΨ rð Þ, with the
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Fig. 1 Induced topological superconductivity a A 2D magnetic thin film hosting a skyrmion (bottom layer) with radial winding number p= 4 and azimuthal
winding number q= 1 proximitized by a s-wave superconductor (top layer). Arrow colors represent the z component of the skyrmion texture (red for up,
purple for down). b Local density of states (LDoS) along the gray line in a obtained from a tight-binding description with lattice spacing a= 1 and hopping
energy t= 1/(2ma2) with electron effective mass m (see Methods Radial tight-binding model). The LDoS shows very weakly dispersing edge states within
an effective gap Δeff≈ 5%Δ0. The colorbar refers to the LDoS going from low values (black) to high values (red). Beyond the edge of the skyrmion (vertical
white dashed line) we include a non-magnetic background. The model parameters are the s-wave order parameter Δ0/t= 0.1, the exchange interaction
strength J/Δ0= 2 and the chemical potential μ/t= 0, with an angular momentum cutoff set to 50, see Methods Radial tight-binding model. The skyrmion
has radial winding number p= 6, azimuthal winding number q= 2, and radius Rsk/a= 996, so that the length of a spin flip λ= Rsk/p is λ/a= 166
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Bogoliubov-de-Gennes (BdG) Hamiltonian H rð Þ defined as

H rð Þ ¼ � ∇2

2m
� μ

� �
τz þ Jσ � n rð Þ þ Δ0τx; ð2Þ

where the s-wave superconducting order parameter Δ0 is taken
real without loss of generality, the electron effective mass is m and
the chemical potential is μ. We set ħ= 1 unless explicitly written
otherwise. The σα and τα (α= x, y, z) are Pauli matrices acting in
spin and particle-hole space, respectively.

We thus assume that the skyrmion affects the electrons only
through the exchange field, which is justified in the limit of strong
local exchange interaction. We further consider the limit where
the effective spin-orbit coupling is dominated by the one induced
by the skyrmion exchange field. This is justified if both intrinsic
and Rashba spin-orbit couplings are relatively weak, which we
argue in the discussion section to be the case in a typical
superconducting material such as aluminum. The inclusion of
intrinsic and Rashba spin-orbit couplings would require another
in-depth study due to the loss of rotational symmetry, and due to
the non-trivial interplay of different effective spin-triplet pairings
introduced by these couplings. In the limit that we consider in
this work, in absence of skyrmion the spin-orbit length in the
superconductor lso= 1/(mα), with α a spin-orbit amplitude, is
much larger than the typical lengthscale of the skyrmion, so that
the magnetoelectric coupling and appearance of vortices can also
be neglected41–45.

The skyrmion is parametrized by three numbers: the radial
winding number p, which counts the number of spin flips as one
moves radially away from the core of the skyrmion; the azimuthal
winding number q, which counts the number of spin flips as one
winds around the origin; and finally the skyrmion radius Rsk,
which determines its size. We consider a hard-wall boundary
condition at the edge i.e., at r= Rsk. Formally this can be realized
by having the exchange J= 0 in the magnetic insulator outside
the edge, which might be experimentally unattainable. However a
simple alternative is to deposit the superconductor in form of an
island, whose edge would naturally become the edge in our
model. In such a setup it is natural to consider various
geometrical shapes of the edge given a fixed underlying magnetic
texture.

For simplicity, the function f(r) is chosen to be linear, defining
a straightforward skyrmion texture as in Fig. 1a. As we show in
the discussion section, the exact shape of f(r) has weak influence
on our conclusions, allowing us to extend our results to a broader
class of textures including magnetic bubbles.

Skyrmion edge states and topological superconductivity. We
first solve the model in Eq. (2) by using rotational symmetry. Our
model in Eq. (2) has a rotational symmetry in the combined real-
space and spin-space, given by the conserved total angular
momentum Jz ¼ Lz þ q

2 σz where Lz=−i∂θ is the orbital angular
momentum. Using the eigenvalues of Jz, denoted as mJ, the
Hamiltonian in Eq. (2) becomes an effective one-dimensional
radial model that can further be discretized and diagonalized
numerically (technical details are given in “Methods” section
“Radial tight-binding model”). In the regime of J/Δ0 large enough

(estimated as J >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2
0 þ μ2

q
below), Fig. 1b shows the resulting

strong peak in the local density of states (LDoS), near zero energy
and at the skyrmion’s edge. Such a spectral feature was observed
before in related models14,25,26,46. Further, the LDoS clearly dis-
plays a reduced gap Δeff ≈ 5%Δ0 consistent with an effective
(topological) p-wave superconducting gap47. As J/Δ0 is reduced

the effective gap closes (at J ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2
0 þ μ2

q
, see estimate below),

and a full gap Δ0 develops without any edge states. This is

expected in a transition from a topological superconducting phase
to trivial superconductivity. The regime of topological p-wave
superconductivity is also consistent with our finding of other in-
gap states localized near the skyrmion core that only appear when
the edge modes appear. We therefore interpret these states near
the core as analogs of states bound to magnetic impurities (here,
inhomogeneities of the skyrmion texture), which are only
expected for p-wave pairing, but are absent in the s-wave-pairing-
dominated trivial phase (J/Δ0 small enough).

We further clarify the edge states and topological super-
conductivity by looking at the spectrum ε(mJ), in which edge
states form a seemingly flat band in a range of mJ values, see
Fig. 2a, b. Importantly, the edge states appear for any value of the
azimuthal winding number q (on the other hand, p always needs
to be high enough26, we showcase p= 6). Note that in contrast,
we find a single Majorana zero mode at the core of the skyrmion
only if the skyrmion’s azimuthal winding number q is even26.
This is easily understood since the zero mode must appear in the
self-conjugate angular momentum mJ= 0 sector, while mJ is
quantized to be integer (resp. half-odd-integer) when q is even
(odd) due to the single-valuedness of the wavefunction. The
existence of edge states indicates that skyrmions of any q induce
topological superconductivity.

Topological origin and the near-flatness of edge mode. In order
to explain the origin of the edge states we use a procedure
introduced by Wu et al.48 to smoothly deform the model in Eq.
(2) defined on the disk to another model defined on the cylinder
via the cone geometry as represented in Fig. 2a. Taking the
cylinder limit (see “Methods” section “Gradient and Laplace
operators in the cone geometry”) effectively focuses on the edge
of the skyrmion at the price of disregarding the skyrmion core
area, which is replaced by an artificial edge.

Explicitly, we use the rotation symmetry, i.e., the total angular
momentum mJ basis (see “Methods” section “Radial tight-binding
model”), then we apply the unitary transformation U(r)= exp
(iσyf(r)/2) to align the exchange field with the z-axis at each point
of radial distance r, and finally we apply the mapping to the
cylinder. The resulting Hamiltonian ~Hcyl

mJ
ðrÞ can be written as the

sum of three parts, ~Hcyl
mJ
ðrÞ ¼ Hwire

mJ
ðrÞ þ Hslope

mJ
ðrÞ þ H0

mJ
ðrÞ,

where:

Hwire
mJ

ðrÞ ¼ � 1
2m ∂

2
r � μ

� �
τz þ 1

2mR2
sk

m2
J þ q2

4

� �
τz þ f 0

2m ∂riσyτz þ Jσz þ Δ0τx

ð3Þ

~Hslope
mJ

ðrÞ ¼ � qmJ

2mR2
sk

ð�1Þpσzτz ð4Þ

H0
mJ

rð Þ ¼ f 02

8m
τz þ

f 00

4m
iσyτz ð5Þ

For our purpose it is sufficient to show that the edge modes
and the effective gap (the energy gap in the mJ= 0 sector) of the
original model Eq. (2) are connected to such features of a model
derived from the cylinder mapping. Therefore, in what follows we
safely neglect the part in Eq. (5) since these are a small overall
chemical potential renormalization and small overall boundary
term. For a given angular momentum mJ, the Hamiltonian
Hwire

mJ
ðrÞ can be interpreted as the extensively studied Hamilto-

nian of a Rashba wire49,50 upon introducing a momentum-

dependent chemical potential μ mJ

	 
 ¼ μ� m2
J þ q2

4

� �
= 2mR2

sk

	 

.

(Note: however that the skyrmion-induced effective spin-orbit
coupling in 2D is not of a simple Rashba type.) At each mJ the
superconducting wire Hamiltonian Hwire

mJ
ðrÞ is well known to be
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in a trivial state ðJ <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2
0 þ μðmJÞ2

q
Þ or in a topological state49,50

ðJ >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2
0 þ μðmJÞ2

q
Þ. For each topological wire there is a single

Majorana zero mode localized at the end of the wire, i.e., a single
zero mode at the edge of the skyrmion. Due to the variation of μ
(mJ), there is generically a flat zero-energy band of edge modes,
i.e., a MFB, for a range of jmJj< m�

J

�� ��, where
m�

J

�� �� ¼ Rsk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 � Δ2

0

qr
; ð6Þ

where all energies are in units of the bandwidth t, all distances are
in units of the lattice spacing a (see Supplementary Note 1 and
Supplementary Fig. 1 for details). For precisely jmJj ¼ m�

J

�� �� the
wire is at the topological transition and has a gapless spectrum,
giving our model a bulk-gap-closing point as shown in Fig. 2c.

The MFB found here has a protection by a chiral symmetry, as
MFB’s were found to have in models with translational
symmetries39,40,51. Note that the wire Hamiltonian and its MFB
become a correct model for our texture Eq. (1) if we choose q= 0
and thereby nullify the Hslope

mJ
ðrÞ term. Physically, this is a special

case where instead of the skyrmion shape the texture becomes
coplanar (in the xz-plane, see Eq. (1)), and the orthogonal
direction provides a chiral operator

Ξ ¼ τyσy ð7Þ
that anticommutes with the Hamiltonian (see Eq. (2)). Since all
the MFB states have the same chirality, they cannot hybridize
among themselves. It is difficult to remove the MFB states51,
namely, a perturbation must have energy larger than the effective
gap; or, it should hybridize the MFB with low energy bulk states
at jmJj ¼ m�

J

�� ��, which are few; or, chirality symmetry must be
broken (out-of-xz-plane exchange field). We note that the
proof of existence of the MFB rests on the rotational symmetry

of the q= 0 coplanar texture, since this symmetry provides the mJ

quantum number. Consider now deformations of the shape of the
edge imposed on our q= 0 coplanar texture. These geometric
deformations would generally mix the mJ sectors, yet the
described stability of the MFB implies that the deformations
would be inefficient in removing the MFB states.

We can now proceed to the relevant model for a skyrmion with
arbitrary q ≠ 0:

~Hcyl;eff
mJ

ðrÞ ¼ Hwire
mJ

ðrÞ þ Hslope
mJ

ðrÞ: ð8Þ

The single term Hslope
mJ

ðrÞ breaks the chiral symmetry Ξ, and
there are no other chiral operators. The term Hslope

mJ
ðrÞ exactly

contributes an energy εedgestate(mJ) ~ mJ to an MFB state at mJ,
making the flat MFB into a linearly dispersing chiral Majorana
edge mode (CMEM) of the q ≠ 0 skyrmion (Fig. 2c). The single
CMEM itself has general robustness to perturbations, however,
we additionally find that the velocity of the CMEM is very small
in the relevant physical regime, i.e., the breaking of chiral
symmetry is very weak. Qualitatively, we can estimate the upper
limit on energy ε* that the CMEM can have, which occurs at the
maximal mJ of the CMEM, i.e., ε� � jεedgestateðjm�

J jÞj. Treating
Hslope

mJ
ðrÞ as a first order perturbation to the MFB (see

Supplementary Note 2 and Supplementary Fig. 2), the estimate

ε� ¼ q
Rsk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 � Δ2

0

qr
scales the same way with skyrmion size

as the estimate of the effective gap Δeff ~ p/Rsk. For the relevant
regime of J, Δ0, μ (see “Discussion” section) the quantitative ratio
is at most ε*/Δeff ~ 0.1. The corresponding Fermi velocity of the
CMEM is therefore small and suppressed by the skyrmion size,
∂εedgestateðmJÞ=∂ðmJ=RskÞ � q

2mRsk
.

We thus demonstrated that at low energy the single edge mode
of the skyrmion can be connected to the single CMEM of a
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cylinder made of Rashba wires, and the CMEM is nearly a MFB.
The phase diagram of both models (skyrmion model vs. wires on
cylinder) obtained by varying J/t in the radial tight-binding setup
are compared in Supplementary Note 3 and Supplementary Fig. 3
and show excellent agreement. Importantly, in both the original
skyrmion and the cylinder model and for small enough systems
as shown in Fig. 2b, we observe the angular momentum value m�

J
in accordance to predictions in Eq. (6), and we observe the near-
flatness of the edge mode.

Edge states on deformed edges. The number of states in the
single CMEM of a perfectly rotationally symmetric system is
given simply by the highest angular momentum that is reached by
the edge states, i.e., m�

J , and therefore scales linearly with the
perimeter of a disk-shaped system centered on the rotationally
symmetric skyrmion (see Eq. (6), neglecting corrections of order
1 due to μ depending on m�

J ). We remind that the edge of
the system is defined by setting the exchange J = 0 outside it, or
equivalently, by depositing a superconducting island with that
edge shape on top of the underlying magnetic material. If the
nearly-flat CMEM is indeed robust, we hypothesize that geo-
metric deformations of the edge would preserve the scaling of
number of states in the CMEM with the perimeter of the
deformed edge.

We substantiate the perimeter hypothesis with an extensive
analysis of a 2D square-lattice tight-binding discretization of the
skyrmion model Eq. (2), which upon setting the skyrmion
exchange strength J to zero outside the skyrmion edge, i.e., radius
Rsk, gives consistent results with the radial model (see “Methods”
section “2D tight-binding Hamiltonian”, Supplementary Note 4
Counting the number of edge states of circular skyrmion and
Supplementary Fig. 4).

Next we consider two more geometries where the edge of the
system is far from a circle and count their edge states as the
overall system size is varied (see Supplementary Note 4 Defining
the geometries and edge state counting and Supplementary
Fig. 5).

The results for the number of edge states vs. the perimeter of
the edge are displayed in Fig. 3. It clearly shows that the number
of edge states scales linearly with the perimeter of the edge for all
three geometries considered, with a mean slope of 0.12(13)a−1.
The inverse slope is a lengthscale ξ associated to the edge state.
We find that ξ ≈ 0.5λ for the parameters considered, where the
lengthscale λ measures the distance for a single radial spin flip,
i.e., Rsk= pλ. This is consistent with the observed localization
length of edge states in the radial direction. This typical radial
width of the edge states thus ranges from a few nanometers for
the skyrmions depicted in Fig. 3 to a few tens of nanometers for
the skyrmion depicted in Fig. 1.

To further investigate the robustness of the states forming the
single nearly-flat CMEM, we notice that the states in the CMEM
seem to locally hybridize where the shape of the edge has sharp
features. Sharp features in the edge shape allow the edge-state
wavefunctions to overlap as they decay perpendicularly to the
edge. Therefore the “elastic perimeter law” demonstrated in Fig. 3
is best exhibited when the curvature of the edge is constant on
lengthscales comparable to the extent of a single edge-state
wavefunction ξ, as we additionally confirm through an investiga-
tion of elliptical skyrmion geometries (see Supplementary Note 4
Elliptic geometry and Supplementary Fig. 6).

Sharp corners in the shape of the edge seem a stronger
perturbation than uncorrelated scalar disorder, since we numeri-
cally show using the 2D tight-binding model that the nearly-flat
CMEM is indeed robust to uncorrelated scalar disorder (see
Supplementary Note 5 and Supplementary Fig. 7).

Discussion
In summary, we have shown that a system composed of a mag-
netic skyrmion coupled to a conventional s-wave superconductor
realizes a topological superconducting phase with a nearly dis-
persionless chiral Majorana mode at its edge. Deforming the edge
of the skyrmion away from a circular shape shows that the
number of edge states can be tuned and scales linearly with the
perimeter of the edge.

As skyrmions usually appear in ferromagnetic thin films, we
also considered the effect of a ferromagnetic background on the
edge states. For this purpose, in the radial tight-binding model we
move the boundary of the system farther than the edge of the
skyrmion, filling the added space with a ferromagnetic exchange
field without changing the strength of the interaction J. We find
that the edge states initially localized at the edge of the skyrmion
delocalize in the background, as seen in Supplementary Note 6
and Supplementary Fig. 8. This can be understood rather simply
because the superconductor is gapless in that region. The delo-
calization of the edge states is consistent with the analytical
treatment of Yang et al.26.

Our analysis is carried out in the Bogoliubov-de Gennes
formalism without self-consistency. We believe that a self-
consistent calculation would not change our main conclusions
since self-consistent calculations52,53 on similar systems related to
one-dimensional wire Hamiltonians, to which we map the sky-
rmion, didn’t show any qualitative change of the physics. The
only effects would then be expected near the topological phase
transition where the gap is small. In our case, this may for
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2 and half this for geometry 3 (see Supplementary Note 4 Defining the
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Δ0/t= 0.1, the chemical potential μ/t= 0 and the exchange interaction
strength J/t= 0.2. For geometry 1, the radial winding number is p= 9 while
for geometry 2 and 3, the skyrmion has p= 6 and p= 9, respectively. The
graphic for black disks (geometry 1) shows the real-space image of the local
density of states of one typical low-energy state. Graphics for red triangles
and blue squares (geometry 2 and 3, respectively) show the local density of
states averaged over the 30 lowest-energy states. The colorbar represents
the local density of states from low (black) to high (red) values with
different scales for the three geometries. Top inset: linear slope extracted
for each geometry. The gray shading indicates error bars from the fitting
procedure. The black horizontal line is the average slope estimated to be
0.12(1)a−1 where a is the lattice spacing

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-019-0226-5 ARTICLE

COMMUNICATIONS PHYSICS |           (2019) 2:126 | https://doi.org/10.1038/s42005-019-0226-5 | www.nature.com/commsphys 5

www.nature.com/commsphys
www.nature.com/commsphys


example slightly shift the value of mJ
* defined in Eq. (6) at which

the gap closes. Furthermore, we assumed that our skyrmion arises
in a magnetic insulator which guarantees that the mutual inter-
play between the magnetic insulator and the superconductor
is weak.

The chirality of our CMEM is determined by the azimuthal
winding number q, so the questions arise whether the CMEM
appears in other textures that have azimuthal winding, and
whether chiral materials are necessary. First, note that our texture
definition in Eq. (1) may describe both Bloch and Néel skyrmions
by adding a constant phase shift, named “helicity”1 that can be
unitarily removed from our model and does not affect the dis-
covered spectrum nor the wavefunction localization. Second, we
have so far focused on skyrmions but our findings also apply to
magnetic bubbles that have a different microscopic stabilizing
mechanism but have the same topology30–33. For our purpose,
the key distinguishing aspect of bubbles is their spatial profile:
bubbles are essentially annulus-shaped domains of uniform
polarization separated by ring-shaped domain walls30–33. We
include this spatial feature of a bubble directly in our exchange
field model Eq. (1) by tuning the function f(r), and we show in
Supplementary Note 7 and Supplementary Figs. 9 and 10 that our
main results, i.e., the gapped spectrum with a CMEM and
wavefunction localization, appear in the bubble model too. This
indicates that a wider spectrum of materials and textures could be
experimentally explored for realization of our predictions.

The realization of topological superconductivity and the edge
states in our system puts constraints on the parameter values. We
consider three requirements for successful realization: (i) A
substantial effective p-wave gap in the mJ= 0 sector, e.g., Δeff/Δ0

> 5%. An estimate of the effective gap47 based on the skyrmion-

induced spin-orbit coupling and chemical potential μ mJ

	 
 ¼
μ� m2

J þ q2

4

� �
=R2

sk � μ when Rsk large, is given by

Δeff ¼
π

λ

Δ0

J

ffiffiffiffiffiffiffiffiffiffiffi
J þ μ

p ð9Þ

where λ= Rsk/p is the spin-flip length. In this formula, all energy
scales are in units of the hopping energy t which determines the
bandwidth and we take it to be t ~ 1 eV; the unit lengthscale in the
formula is the lattice spacing a whose dimensionful value should
correspond to the microscopic electron lengthscale, so we take a
~ 0.1 nm. The requirement (i) now says that the exchange
strength cannot be too large, i.e., J/t < 600 a/Rsk, assuming p≲ 10.
Since in materials generically J ~ 1 – 10 meV, the skyrmion size is
allowed to reach micrometers. The second requirement is that:
(ii) The topological regime is reached, so that the exchange scale J
surpasses the superconducting pairing Δ0. This means Δ0 is below
the 1–10 meV range, or the coherence length is in the range
10–100 nm, which is generally realistic. The final requirement is
that: (iii) The CMEM is localized at the edge, i.e., the localization
length of the edge-state wavefunctions (estimated to be a ⋅ t/Δeff)
has to be an order of magnitude smaller than the skyrmion radius
Rsk. From Eq. (9) using J ≈ Δ0 we get the constraint that radial
winding p ~ 10, consistent with Yang et al.26. One may try to relax
this constraint by increasing the exchange strength.

For the superconducting part of our setup, we propose alu-
minum which is a known superconductor and has negligible
atomic spin-orbit coupling, in accord with our general assump-
tion that Rashba and intrinsic spin-orbit couplings are sufficiently
weak. First of all, disordered thin films of aluminum have a cri-
tical temperature of the order of 3 K with a coherence length of
around 50 nm54,55 or less, which is within our theoretically
relevant range. Second, direct measurements of the Rashba spin-
orbit coupling in such thin films are hard to come by, but we find
an estimate of Eso/Δ0= 5% for the ratio of energy scale Eso of

spin-orbit scattering to the energy scale Δ0 of s-wave pairing in
thin-film aluminum56. The skyrmion-induced spin-orbit
energy scale Eso= (π2/2m) ⋅ (p2/R2) [cf. derivation of the wire
model, Eq. (3)] can without problem reach 5% Δ0 or several times
higher for theoretically relevant values of the parameters p≲ 10,
Rsk ~ 10–100 nm and Δ0 ~ 1 meV.

For the experimental realization of our findings we propose that
the magnetic material be insulating so as to protect the CMEM.
From the materials perspective, there are currently two known
insulators hosting skyrmions, Cu2OSeO3 and BaFe12−x

−0.05ScxMg0.05O19 (x= 1.6)5–7. In terms of their parameters, 100
nm-thick Cu2OSeO3 films host skyrmions of radius 25 nm at
temperatures ranging from a few Kelvins up to 57K57. There is a
sizeable electronic gap of 2.5 eV at 15 K58, while the lattice constant
is 8.925 Å59. All these parameters are within the ranges for which
our results are relevant, as detailed in the previous paragraphs. We
note that in BaFe12−x−0.05ScxMg0.05O19 (x= 1.6) the skyrmions are
larger, but could be within the upper limit of the tens-of-
nanometers range we consider for this parameter. If these mag-
netic insulators could be grown on a metallic substrate, then one
may consider a finite superconducting island deposited on top of
the system making the system suitable for Scanning Tunneling
Microscopy/Spectroscopy (STM/STS) experiments. In addition, our
model might also apply to the case of a metallic magnet, although
feedback effects between the texture and the electrons (not con-
sidered here) can be important60,61. In that regard, we note that
skyrmions displaying a three-ring structure where observed
experimentally, albeit with a change in the helicity6. Further,
magnetic skyrmions with q= 2 have also been predicted in fru-
strated62 and itinerant63 magnets. An alternative platform to con-
sider would be thick permalloy (Ni81Fe19) disks64, since the
existence of skyrmions with p up to 3 was recently shown in them,
although this would require a different setup. High-p skyrmions
were also recently observed in Pd/Fe/Ir(111) magnetic islands65.
These systems, albeit metallic, naturally provide an edge to localize
the CMEM and remove the need to grow a superconducting island.
These results are important developments since the larger p also
ensures the localization of the CMEM.

The biggest challenge in the experimental verification of our
findings lies in the choice of the materials. Indeed, both ingre-
dients (skyrmions and superconductivity) are separately well-
controlled and well-understood, but little is known about their
combination. In particular, we expect that the strength of the
exchange field will depend on the achieved interfacing between
the magnetic and superconducting materials, which is hard to
predict. Recent works aiming at engineering topological super-
conductivity by using magnetic adatoms or external magnetic
fields have shown interesting possibilities, which means that
bringing together the magnetism/spintronics and topological
superconductivity communities holds great promises.

Methods
Radial tight-binding model. The rotational symmetry of the problem can be
exploited by defining the total angular momentum operator Jz around the z axis
perpendicular to the plane of motion of the electrons. In polar coordinates (r, θ), it
is defined as Jz ¼ Lz þ q

2 σz where Lz=−i∂θ is the orbital angular momentum.
Denoting the eigenvalues of Jz as mJ, we can expand the electronic field operators as

ψσ rð Þ ¼
Xþ1

mJ¼�1
ei mJ�q

2 σzð Þσσ½ �θ~ψmJ ;σ
rð Þ ð10Þ

The Nambu spinor Ψ(r) can thus be expanded as

Ψ rð Þ ¼
Xþ1

mJ¼�1
ei mJ�q

2σz½ �θ ~ΨmJ
rð Þ ð11Þ

where ~ΨmJ
rð Þ ¼ ~ψmJ ;" rð Þ; ~ψmJ ;# rð Þ; ~ψy

�mJ ;# rð Þ;�~ψy
�mJ ;" rð Þ

� �T
. We conveniently

rescale the spinor by
ffiffi
r

p
so that the rdrdθmeasure simplifies to drdθ. After all these
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transformations, the BdG Hamiltonian is block-diagonal in angular momentum
space and a single block ĤmJ

rð Þ reads

ĤmJ
rð Þ ¼ � 1

2m
∂2r þ

1
4r2

1� q2 � 4m2
J þ 4qmJσz

� �
� μ

� 

τz

þ J σzcos f þ J σxsin f þ Δ0 τx

ð12Þ

We discretize the remaining polar r variable by introducing a lattice spacing a so
that r→ rj= ja, and in numerical calculations we set a= 1. The nearest-neighbor tight-

binding Hamiltonian uses the Nambu basis Cyj ¼ cy" jað Þ; cy# jað Þ; c# jað Þ;�c" jað Þ
� �

.

We parametrize the tight-binding Hamiltonian as

ĤTB
mJ

¼
XL
j¼1

Cy
jþ1M Cj þ h:c:þ Cyj CCj ð13Þ

Now, we Taylor expand Eq. (13) to second order, integrate by parts and identify
the matrices M and C from Eq. (12). This leads to

ĤTB
mJ

� PL
j¼1

�tCyjþ1τzCj þ h:c:þ Cyj 2t � μ� t
4j2 1� q2 � 4m2

J þ 4qmJσz

� �h i
τzCj

þCyj Jσzcos f þ Jσx sin f þ Δ0τx½ �Cj:
ð14Þ

The tight-binding hopping energy is t= 1/(2ma2) in terms of the effective
electron mass m. We exactly diagonalize the Hamiltonian in the form of Eq. (14)
without implementing the self-consistency inherent to the Bogoliubov-de-Gennes
formalism.

2D tight-binding Hamiltonian. On the square lattice r= (xa, ya) where a≡ 1 is
the lattice spacing, and x, y are integers labeling the sites of the lattice, the two-
dimensional tight-binding Hamiltonian is

H2DTB ¼ P
r¼x;y

P
σ¼";#

�tcyrþx̂σcrσ � tcyrþŷσcrσ þ ð4t � μÞcyrσcrσ
"

þΔ0c
y
r"c

y
r# þ h:c:

þ J
P
σ;σ 0

cyrσ n rð Þ � σð Þσσ 0 crσ 0
# ð15Þ

where the parameters are the same as in the main text, and t is the hopping
amplitude, μ the chemical potential measured from the bottom of the band, Δ0 the s-
wave gap and J the exchange coupling with the texture. The unit vector in the x (resp.
y) direction is denoted as x̂ (resp. ŷ). Exact diagonalization is then performed without
implementing the self-consistency inherent to the Bogoliubov-de-Gennes formalism.

Consistently with the radial model, in the regime of J/Δ0 large enough

(estimated as J >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2
0 þ μ2

q
) and for any q we find weakly-dispersing states

extended around the edge and localized in the radial direction near Rsk, while only
for q even there is a zero energy state localized at the skyrmion center.

Gradient and Laplace operators in the cone geometry. As in Wu et al.48,
consider a cone of half-opening angle φ and base radius Rsk where the coordinates r
and θ, respectively denote the distance measured from the tip of the cone and the
usual polar angle. Denoting by r̂ and θ̂ the unit vectors on the cone, the gradient
and Laplace operators read

∇ ¼ ∂r r̂þ
1

r sinφ
∂θ θ̂ ∇2 ¼ ∂2r þ

1
r
∂r þ

1

r2sin2φ
∂2θ : ð16Þ

The cylinder limit is φ= 0, r→∞ while keeping r sin φ= const= Rsk. Under the
transformation from the disk to the cylinder via the cone, the surface element varies
like

r dr dθ ! r sinφ dr dθ ! Rskdr dθ: ð17Þ
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