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Chemical potential formalism for polymer entropic
forces
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The entropic force is one of the most elusive interactions in macromolecules. It is clearly

defined theoretically, but practically difficult to evaluate, thus restricting our knowledge of it

often to a qualitative level. Here, we propose a formula for entropic force, f= f�o + T ln(α), for

confined polymers and demonstrate its mathematical equivalence to the widely used che-

mical potential formula for solutions, μ= μ�o þ R~T lnðaÞ. A systematic analysis based on this

formalism clarifies the force magnitudes obtained in several recent experiments on polymers

and granular chains and elucidates the common force scales for polymers studied in

nanoscience and biological systems. This work provides a practical tool for instantaneously

evaluating the entropic forces in polymer science and indicates the possibility of using a

reference-based strategy to tackle general entropic problems beyond chemical solutions.
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A wire threaded through a hole might be one of the sim-
plest models one can imagine in physics, which, captures
the core scenario in numerous polymer systems in

laboratories, industrial applications, and real biological environ-
ments. This model has been studied intensively over decades, for
polymer translocation and confined polymers in microfluidics,
nanotechnology, and single-molecule experiments1–4. Although
entropic effects are significant for systems scaled down to that size
and were already formulated in the earlier theories in this field5–7,
the estimation of their strength is challenging, because analyti-
cally or numerically solving partition functions is difficult8,9.
Thus, qualitative judgments on entropic effects are more fre-
quently reported than quantitative characterizations.

In contrast to these direct approaches, here we derive an
entropic force formula for confined polymers and demonstrate its
correspondence to the well-known chemical potential formula for
solutions (Fig. 1)10. The advantage of the latter formula is that
one can calculate the chemical potential of a desired solution by
summing an easily calculable correction term with a known
reference value. In the same spirit, the convenience of the derived
force formula is that it can be readily calculated based on the
knowledge of the entropic force of a known reference system. The
formalism is elucidated in several numerical experiments,
including a polymer pulled by an optical tweezer into a two-
dimensional (2D) channel and a polymer straddling a 2D channel
undergoing a tug-of-war. Different types of entropic forces in
those systems are calculated by the Jarzynski equality (JE)11 and a
recursion formula (RF) for counting the exact configuration
numbers. The highly coincident force magnitudes extracted from

these two independent approaches justify the accuracy of the
force formula. On the basis of this consistency, the analysis is
extended to three-dimensional (3D) circular tubes and slits. The
estimated force magnitudes are very close to the experimentally
observed ones in 2D strips12, pillar arrays13, and 3D nanoslits14,
and follow the same scaling behavior observed in granular
chains15. More general studies on several polymers threaded
through various natural and artificial pores unravel a common
force range between femto- and piconewton and indicate a special
ratio between the forces of different confinements. The proposed
force formula reduces the complex evaluation of partition func-
tions to a simple textbook-level calculation. This allows us to
estimate the entropic effects on polymers algebraically by hand
without resorting to elaborate computational efforts and perform
a systematic analysis on the force scales for a broad class of
confined-polymer systems.

Results
Configurational entropies. Let us consider a polymer partly
confined in a channel. Suppose the polymer segment inside
(outside) the channel is coarse-grained as a chain of basic unit
(BU) CI (CO), where CI and CO do not need to be the same
(Fig. 2a). For instance, CI could be a rod in the Odijk regime and
CO could be a Kuhn segment in a free space, or CI and CO could
have the same shape but different numbers of monomer micro-
states inside them. The chain can be a non-self-avoiding chain
(NSC) or a self-avoiding chain (SC). The channel is assumed to
be narrow with respect to CI. If CI and CO are identical beads of
size l in a bead-spring model (Fig. 2b, c), let nI (nO) be the

number of beads inside (outside) the channel and ΩnI
ΩnO

� �
denote the configuration number of the chain segment of CI (CO)
inside (outside) the channel. Then the configurational entropy of

the whole chain is S ¼ kB ln ΩnI
ΩnO

� �
, with kB being the Boltz-

mann constant.

Entropic recoiling forces. The entropic recoiling force describes
the tendency of a chain to escape from a channel (Fig. 2b). It is
the negative of the change in the entropic free energy, �~TS, per
shifted distance out of the channel, where ~T is the Kelvin tem-
perature. If the distance is l, this force is given by
~fR ¼ kB~T=l

� �
ln ΩnI�1ΩnOþ1

� �
= ΩnI

ΩnO

� �h i
. Taking the dimen-

sionless temperature T � ~T=~Troom with respect to the room
temperature ~Troom ¼ 298 K, it yields a dimensionless entropic
force fR � ~fRl=ϵ, or

fR ¼ T ln
ΩnI�1ΩnOþ1

ΩnI
ΩnO

 !
¼ T ln

ΦnO

ΦnI�1

 !
; ð1Þ

with ϵ � kB~Troom. Here, ΦnI
� ΩnIþ1=ΩnI

ΦnO
� ΩnOþ1=ΩnO

� �
is the excess configuration number caused by an added bead
inside (outside) the channel. As ΦnO

outside the channel is always
larger than ΦnI�1 inside the channel, we have fR > 0. The positive
sign indicates that the force points to the same direction as an
outward-moving bead. If the channel is so narrow that only one
straight configuration is allowed inside it, the force will degen-

erate to fR ¼ T ln ΦnO

� �
, because ΩnI�1 ¼ ΩnI

¼ 1 implies

ΦnI�1 ¼ 1.
Let fR′ be the force of a second chain of the same form as

Eq. (1), with ΦnO
, ΦnI

, and l there replaced by ΦnO
′, ΦnI

′, and l′. For a

f Inter-unit factor �

Intra-unit factor �

� = 1

Granular chain

� �

� = �   + RT  ln(a ), a  = r c

Concentration c

Activity coefficient r

r = 1
Dilute solution

f = f   + T ln (�), � = ��

f

˜

Fig. 1 A correspondence between polymer physics and physical chemistry.
Owing to a correspondence between the chemical potentials for solutions
and the entropic forces for partly confined polymers, solving these two
problems is mathematically equivalent. The chemical potential formula for a
solution of activity a= rb is μ= μ�o + R~T lnðaÞ, with the standard chemical
potential μ�o, gas constant R, Kelvin temperature ~T, activity coefficient r, and
concentration b of the solution. With this expression one can calculate the
μ of a desired solution by summing an easily calculable correction term
R~T lnðaÞ with a known reference value μ�o. The entropic force formula for a
polymer partly confined in a channel is f= f�o + T ln(α), with a reference
force f�o and a dimensionless temperature T. Here, the “activity” α= γβ
depends on the channel width and stiffness, as well as the polymer
persistence length and excluded volume. Therein, the “concentration” β is
decided by the configuration number of the basic unit to coarse-grain the
polymer, such as the commonly adopted beads, rods, or blobs, whereas the
“activity coefficient” γ reflects the change in internal freedom in that basic
unit when it enters or leaves the channel. If all the basic units along the
polymer chain are identical in shape and internal freedom, such as those in
a granular chain, then γ= 1 and α= β, which corresponds to the ideal case
of dilute solutions with r= 1 and a= c in μ
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given (nI, nO), fR′ is related to fR by

fR ¼ fR′þ T ln
ΦnI�1′ ΦnO

ΦnI�1ΦnO
′

 !
¼ fR′þ T ln αRð Þ; ð2Þ

with αR≡ αiαo, where αi � ΦnI�1′ =ΦnI�1 and αo � ΦnO
=ΦnO

′ .
Generally, the bead sizes l for fR and l′ for fR′ in Eq. (2) are not
the same. Therefore, even when the values of fR and fR′ of the two
systems are identical, the real forces ~fR ¼ fRϵ=l and ~fR′ ¼ fR′ϵ=l′
may be different.

If CI and CO do not have identical shapes or internal freedom,

such as those in Fig. 2a, let ~ΦnI
~ΦnO

� �
be the excess “microstate”

number caused by an added BU CI inside (CO outside) the
channel. The “microstates” here include the allowed configura-
tions of CI and CO considered in Eq. (1) and the internal freedom
inside each individual BU, which are generally hybridized and
cannot be decoupled. When a chain segment of length l moves
into (out of) a channel, suppose ni (no) BUs of CI (CO) appear
inside (outside) it. Then, the total excess microstate number of ni

(no) added BUs would be ~ΦnI�1

� �ni ~ΦnO

� �no� �
, for which the

entropic recoiling force in Eq. (1) is generalized to

fR ¼ T ln
~ΦnO

� �no
~ΦnI�1

� �ni
0B@

1CA; ð3Þ

with ~ΦnI
� gnIþ1ΩnIþ1= gnIΩnI

� �
=ΨnI

ΦnI
and ~ΦnO

� gnOþ1

ΩnOþ1= gnOΩnO

� �
= ΨnO

ΦnO
. Therein, ΦnI

ΦnO

� �
is the excess

configuration of CI (CO) defined in Eq. (1), while gnI and gnO as
well as ΨnI

� gnIþ1=gnI and ΨnO
� gnOþ1=gnO are correction terms

reflecting the difference between the shapes, or internal freedoms,
of CI and CO. Notice that nO and no as well as nI and ni in Eq. (3)
have different meanings.

Two forces of the same form as Eq. (3) are related as Eq. (2)
with αR there replaced by ~αR ¼ G�αR where

G � gnI�1′ nignO
no

gnI�1
nignO′

no
and �αR � ΦnI�1′ niΦnO

no

ΦnI�1
niΦnO

′ no
: ð4Þ

That is, ~αR is related to the αR in Eq. (2) by ~αR ¼ γαR with
γ � G�αR=αR. Therefore, for general CI and CO, Eq. (2) is extended
to the form

f ¼ f �o þ T ln αð Þ; with α ¼ γβ; ð5Þ

with β= αR. Specifically, if the microstates of a polymer can be

decomposed as those inside and outside CI (CO), then gnI gnO

� �
is

exactly the number of microstates inside CI (CO). This
decomposition is similar to that in the de Gennes blob, where
the Flory statistics inside a blob is independent of the chain
properties outside the blob. If CI and CO are identical, then ni ¼
no ¼ gnI ¼ gnO ¼ 1 for all nI and nO. In this case, γ= 1 and α is
reduced to the β= αR of an “ideal” confined chain in Eq. (2).
Therefore, α, β, and γ play the same role as the activity a= rc, the
concentration c, and the activity coefficient r, respectively, in the
chemical potential formula μ= μ�o + T ln(a) of a non-ideal
solution. Notice that the mathematical equivalence between
Eq. (5) and the chemical potential formula for solutions does
not mean the former is aimed at understanding polymer
solutions.

Entropic drift forces. The above formalism also applies to other
entropic forces. For polymer tug-of-war in Fig. 2c, the chain
straddling the channel is unstable and will gradually move out of
a channel either rightward or leftward. The entropic drift force

fD ¼ T ln
ΩnR�1ΩnLþ1

ΩnR
ΩnL

 !
¼ T ln

ΦnL

ΦnR�1

 !
ð6Þ

represents the tendency of the drift of the whole chain from the
right to the left space. Here, nL (nR) denotes the number of beads
in the left (right) space and ΦnL

� ΩnLþ1=ΩnL

ΦnR
� ΩnRþ1=ΩnR

� �
stands for the excess configuration number

caused by an added bead in the left (right) space. ΦnL
and ΦnR

are
the same function as ΦnO

in Eq. (1). Since the configuration of an
outside segment with fewer beads is more constrained by the half-
plane boundary, such segment cannot have a larger excess
number, which implies Φn−1 ≤Φn for n∈ {nO, nL, nR} (see a
discrete example in Fig. 3). Hence, nL > nR− 1 (nL < nR− 1) in

Eq. (6) implies ΦnL
>ΦnR�1 ΦnL

<ΦnR�1

� �
and fD > 0 (fD < 0), for

ΦnI

ΨnI

3CI

CI

2CO

CO

ΦnO

ΨnO

a

b Optical
tweezer

nO nI

fdragfR

c

nL
nI

nR

fT

fD

l + d

l

d

h

d + de

d

Fig. 2 Three kinds of entropic forces for partly confined polymers. a A chain
partly confined by a channel, for which three basic units of CI (red) appear
inside the channel when two basic units of CO (blue) move into the channel.
ΦnI

ΦnO

� �
is the excess configuration number inside (outside) the channel

in Eq. (1), whereas ΨnI
and ΨnO

reflect the changes of internal freedoms in
basic units in Eq. (3). b The entropic recoiling force fR for a chain escaping
from a two-dimensional (2D) channel is counterbalanced by the drag force
fdrag of an optical tweezer. nI (nO) is the number of basic unit CI inside (CO
outside) the channel. c The entropic drift force fD and tension force fT for
polymer tug-of-war. nL (nR) is the number of basic unit CO in the left (right)
space. d A bead (blue circle) of size l is in a channel (black) of width w= l
+ d, where the lateral free space d is the distance the bead can freely move
without touching the boundary. The potential well (blue curve) above the
channel describes the bead-wall interaction versus the location of the bead
center. The well boundary V(η)= κη2/2 is a function of the penetration
depth η and stiffness κ. The probability density of finding the bead in the
lateral direction of the channel (green area) has the same area as a uniform
probability density of an effective width d+ de (magenta rectangle). The
bead confined by the blue soft potential is analogous to being restricted to a
hard potential of an effective width d+ de
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which the chain tends to move leftward (rightward). For nL= nR− 1,
one has ΦnL

¼ ΦnR�1 and fD= 0, for which the chain movement
does not have a biased direction. The drift force in Eq. (6) can be
decomposed as a difference fD ¼ fR;ðnI;nLÞ � fR;ðnI;nR�1Þ between a
leftward recoiling force, fR;ðnI;nLÞ, and a rightward recoiling force,
fR;ðnI;nR�1Þ, with fR;ðn;n′Þ � T ln Ωn�1Ωn′þ1

� �
= ΩnΩn′ð Þ� �

being a
generalized expression of Eq. (1). Interestingly, the statistical
forces fD and fR based on counting configurations also comply
with the above subtraction rule as normal non-statistical forces in
mechanics. Two drift forces of the same form as Eq. (6) are
related as Eq. (2) with αR there replaced by αD≡ αl/αr, where
αl � ΦnL

=ΦnL
′ and αr � ΦnR�1=ΦnR�1′ are the same function as the

αo below Eq. (2).

Entropic tension forces. The entropic tension force in Fig. 2c
characterizes the tendency of polymer stretching inside a channel.

The simplest version of that force describes the tendency of
moving one bead from the channel into the left or the right space,

fT ¼ T ln
ΩnLþ1ΩnI�1ΩnR

þΩnL
ΩnI�1ΩnRþ1

ΩnL
ΩnI

ΩnR

� �
¼ T ln

ΦnL
þΦnR

ΦnI�1

� �
:

ð7Þ

Since ΦnL
;ΦnR

>ΦnI�1, fT is always positive, indicative of a
spontaneous trend of stretching, rather than compression, in that
system. This trend will eventually be counterbalanced by the
increased free energy during stretching caused by other
mechanisms, such as bead deformation. Two tension forces of the
same form as Eq. (7) can be related as Eq. (2), with αR there

replaced by αT≡ αiαlr, where αlr � ΦnL
þΦnR

� �
= ΦnL

′ þΦnR
′

� �
and l= l′ is not required, as in Eq. (2). For large nL and nR, ΦnL

,
ΦnR

, ΦnL
′ , and ΦnR

′ are approximately the same as ΦnO
at large nO,

which implies fT � T ln 2ΦnO
=ΦnI

� �
and αT � αiαo ¼ αR.

If CI and CO are different, in analogy to Eq. (3), the generalized

tension force is fT = T ln ~ΦnL

� �noþ ~ΦnR

� �noh i
= ~ΦnI�1

� �nih i� �
. It

is related to another tension force of the same form again by Eq.
(5) with a slightly different α. For those CI and CO, the drift force
fD in Eq. (6) does not need to be generalized, because CI is absent
in that equation and CO in the left and right spaces are identical.
The upper and lower limits of the above forces for NSCs and SCs
in various confinements are derived in Supplementary Note 1 and
summarized in Table 1), which serve as good candidates for the
values of f �o in Eq. (5).

Optical tweezer experiments. To illustrate the above formulas
and the analytical results in Table 1, let us carry out the following
numerical experiments, with the Hamiltonian described in the
Methods section. First, suppose an NSC is pulled into a 2D
channel of width w by the drag force fdrag of an optical tweezer,
which moves slowly rightward with a constant speed (Fig. 2b, d).
The work done by fdrag is converted to the entropic recoiling force

f ðNSCÞR via the JE (Methods section), as depicted by the magenta

dashed curve in Fig. 3a. This curve shows that for nO > 10, f ðNSCÞR

has almost saturated at its maximum value �f ðNSCÞR on a plateau
(blue solid line), which is independent of the tail length nOl
outside the channel. In contrast to other studies in experiments13

and simulations16,17, this tail length independent force is, to our
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Fig. 3 Relations between the entropic recoiling forces of different kinds of
polymer. a If a non-self-avoiding chain is pulled into a channel by an optical
tweezer (as shown in the inset of b), the entropic recoiling forces fðNSCÞR

calculated by the Jarzynski equality at d= 0.05l, κ=ϵ ¼ 104, T= 1, and
different bead numbers outside the channel, nO, are depicted by the green
points. Increasing the number of systems in the ensemble of the Jarzynski
equality approach, the green points will become more concentrated onto
the magenta dashed curve. The curve saturates at the maximum magnitude
�fðNSCÞR when nO > 10. The blue dotted (solid) line denotes the force �fðNSCÞR

calculated by the recursion formula, without (with) the penetration effect,
for which the lateral free space in Fig. 2d is d (is d+ de). b For d= 0.2l at
different temperatures, the circles (squares) are the force �fðNSCÞR

�fðSCÞR

� �
of

the non-self-avoiding chain (self-avoiding chain) measured via the
Jarzynski equality. The dotted (dashed) line denotes the �fðNSCÞR

�fðSCÞR

� �
calculated by the recursion formula without the penetration effect, while
the solid (dash-dotted) line represents the �fðNSCÞR

�fðSCÞR

� �
calculated by the

recursion formula with that effect, which agrees with the circles (squares).
The forces �fðNSCÞR and �fðSCÞR are related by a specific version of formula (5)
written in the plot. c The function αo (blue curve) in Eq. (2) converges to
0.66 (red dashed line). It has a zigzag shape, because αo behaves
differently at even and odd nO in a lattice space. The error bars in the
Jarzynski equality approach vary with the selected ensemble size and are,
therefore, not emphasized in b

Table 1 The upper and lower bounds of various entropic
forces

Force range Strip (2D) Tube (3D) Slit (3D)

f
ðNSCÞ
R

fðNSCÞ
R

" #
T ln 2πl

d

� �
T ln πl

d

� �� 	 T ln 16l2

d2

� �
T ln 8l2

d2

� �24 35 T ln 2lq
d

� �
T ln lq

d

� �" #

f
ðNSCÞ
D

fðNSCÞ
D

" #
T ln 2
�T ln 2

� 	
T ln 2
�T ln 2

� 	
T ln 2
�T ln 2

� 	
f
ðNSCÞ
T

fðNSCÞ
T

" #
T ln 4πl

d

� �
T ln 2πl

d

� �� 	 T ln 32l2

d2

� �
T ln 16l2

d2

� �24 35 T ln 4lq
d

� �
T ln 2lq

d

� �" #
The maxima (minima) of the entropic recoiling, drift, and tension forces of a non-self-avoiding
chain are denoted by the upper (lower) components in the column vectors, where d > 1/ρ, with ρ
the linear density of the bead configurations (Supplementary Note 1). The parameter q∈ [1, ∞)
characterizes the angle 2π/q a bead in a stretched chain segment inside a quasi-2D slit can
rotate. Because the force f(NSC) of the non-self-avoiding chain is smaller than the force f(SC) of
the self-avoiding chain, fðSCÞ



 

< fðNSCÞ


 

, the maximum f

ðNSCÞ
of f(NSC) is an upper bound of the

maximum f
ðSCÞ

of f(SC)
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knowledge, first time determined by the JE. For nO < 10, the curve
falls monotonically and drastically with a decreasing nO to its
minimum. The sharp kink around nO= 5 reveals that after most
beads have been pulled into the channel, the rest beads in the tail
will surrender and give up to resist, which behaves like a first

order phase transition16. In Fig. 3a, the maximum force �f ðNSCÞR is
also calculated by the RF (blue dotted line) (Methods section),
which is slightly larger than the magenta dashed curve calculated
via the JE.

To inspect the cause of this slight difference, we raise the
temperature from T= 1 (~T ¼ 298 K) up to a physically extreme

value T= 8 (~T ¼ 2384 K) in Fig. 3b. At that T, the �f ðNSCÞR
evaluated by the RF (blue dotted line) has deviated 10% from that
calculated by the JE (blue circles). However, taking into account
the penetration effect by enlarging the channel width w= l+ d in
the RF approach to we= l+ d+ de with de being the mean
penetration depth in Eq. (8) in the Methods section, the blue
dotted line is reduced to the blue solid line in the same plot. The
latter passes precisely through all blue circles evaluated by the JE,
which justifies the crucial role of the penetration effect and the
accuracy of formula (8). Subtracting this effect, the plateau of the
magenta dashed curve in Fig. 3a is shifted to the blue dotted line,

which is rather close to the magnitude �f ðNSCÞR ¼ T lnð2πl=dÞ
predicted in Table 1. Although that analytical magnitude is
derived under the strict assumption of nO � 1, the simulation in
Fig. 3a shows its correctness even for nO > 10.

If the chain is an SC, the maximum values �f ðSCÞR of the recoiling

force f ðSCÞR of that chain are calculated by the JE at different T and
depicted by the red squares in Fig. 3b. To determine those values
from an NSC by Eq. (2), one needs to evaluate �αo, which is the αo
at nO � 1. For a 2D half-lattice, our Monte Carlo simulation
(Fig. 3c) shows that αo has almost saturated at its minimum
�αo � 0:66 after nO= 10, which is slightly smaller than that,b�αR � 0:78, observed in a 3D half-lattice18. If fR and fR′ in formula

(2) represent the �f ðSCÞR of an SC and the �f ðNSCÞR of an NSC,
respectively, partly confined in the same channel, αR there should
be equal to �αR ¼ �αi�αo � 0:66, where �αi ¼ 1 due to identical

channels (Supplementary Note 1). Using this formula, �f ðNSCÞR

(blue dotted line) in Fig. 3b is converted to �f ðSCÞR (red dashed line),
which is the RF calculated force for the SC without the
penetration effect. Taking into account that effect by enlarging
d to d+ de, the red dashed line is further shifted down to the red
dash-dotted line. The latter is very close to the JE calculated red
squares, which confirms the specific version of formula (5)
written in Fig. 3b.

In Fig. 4a, the maximum recoiling force �f ðNSCÞR for a channel of
width w= l+ d at different d is calculated by the RF and depicted
by the blue solid curve. It deviates from the force evaluated by the
JE when the channel has stiffness κ ¼ 103ϵ (diamonds) and 104ϵ
(triangles). However, after considering the penetration effect by
replacing d by d+ de as before for κ=ϵ ¼ 103 κ=ϵ ¼ 104ð Þ, the
blue solid curve is shifted to the red dash-dotted (dashed) curve,
which precisely passes through the diamonds (triangles) and
again justifies the significance of formula (8). All force
magnitudes on the blue solid curve agree very well with the
analytical results in Table 1, which validates those results at least
up to d= 0.6l, far beyond the ideal condition d � l. In Fig. 4b,

the stiffness dependent �f ðNSCÞR calculated by the JE at two different
T (squares and circles) coincide precisely with those evaluated by
the RF (dashed and solid curves). Both curves show a kink around
κ=ϵ ¼ 103, indicative of a separation between the stiffness effect
dominant regime κ=ϵ<103ð Þ and the width effect dominant
regime κ=ϵ>103ð Þ for the force. A similar stiffness analysis on a

linear channel potential can be found in ref. 19. In Fig. 4c, the
potentials of three different stiffnesses are plotted. The force
magnitudes calculated in Fig. 4a, b confirm the specific version of
formula (5) written in Fig. 4a.

Tug-of-war experiments. In Fig. 5a, the drift forces f ðNSCÞD of an
NSC of N′ beads straddling a channel are calculated by the RF,
where the translocation ratio ξ≡ nL/N, with N=N′− nI, is the
fraction of the chain segment in the left space. The left (right)
ends of the force curves of different N approach their minimum,
−T ln 2, (maximum, T ln 2,) as derived in Table 1. These force
curves are insensitive to the penetration depth and channel size,
in consistent with the absence of ΩnI

and ΦnI
in Eq. (6). Inte-

grating these curves leads to the free energy profiles F(ξ) in
Fig. 5b. The barriers of F(ξ) can be used to calculate Krammers'
escape rate for polymer translocation, if the process is quasi-
equilibrium and ergodicity is preserved20. The curves in Fig. 5b
will converge to an invariant shape at large N. In Fig. 5c, the

tension forces f ðNSCÞT of different N start from some initial values
close to T ln(3πl/d) at ξ= 0, increase monotonically to their
maxima below T ln(4πl/d), and then fall back to their initial
values when ξ= 1. For larger (smaller) N, the maxima (minima)
of the forces will approach T ln(4πl/d) (T ln(2πl/d)). All these

numerical observations agree with the analytical bounds of f ðNSCÞT
predicted in Table 1 and Supplementary Note 1.
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Fig. 4 Relations between the entropic recoiling forces of different channel
sizes and stiffnesses. a The recoiling forces �fðNSCÞR of a non-self-avoiding
chain for κ=ϵ ¼ 103 and 104 at T= 1 and different d measured by the
Jarzynski equality approach are depicted by the diamonds and triangles,
respectively. The same force for a hard-wall channel (κ=∞) calculated by
the recursion formula is depicted by the blue solid curve. The divergence of
this curve is bounded by a maximum value when d falls into the small area
(0, 1/ρ), which is the degenerate force explained below Eq. (1). b The
squares (circles) are the �fðNSCÞR measured by the Jarzynski equality
approach, at d= 0.2l, T= 1 (T= 1.1), and different stiffnesses κ scaled by ϵ.
The dashed (solid) curve denotes those forces calculated by the recursion
formula for the effective channel width we= l+ d+ de, in units of l. c The
potentials of three different stiffnesses studied in b are plotted on the same
length scale. The error bars in the Jarzynski equality approach vary with the
selected ensemble size and are, therefore, not emphasized in a, b
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Let Δn be the difference between the entropic free energies of a
chain at nL= n and N/2, where the latter is the position of the
maximum of the F(ξ) in Fig. 5b. The value of Δn reveals the free
energy barrier for a chain translocation starting from nL= n.
According to a scaling argument, the entropic free energy of a
chain of nL= n is Fn=kB~T = ð1� rÞ lnðnÞ þ ð1� rÞ lnðN � nÞ
when n and N � n � 121,22, where r= 1/2 for NSCs. It implies

Δn = FN=2 � Fn
� �

= kB~T
� �

= ð1=2Þln ðN=2Þ2=ðnðN � nÞÞ� �
for an

NSC. In Fig. 5d, the Δn calculated by that scaling argument are
found to overestimate those measured from the F(ξ) in Fig. 5b.
The discrepancy is especially significant in Δ1 between the solid
curve and circles. This is ascribed to the overestimated difficulty
of pulling the first few beads into the left space by the scaling

formula. It is in echo with the finding in Fig. 3a that f ðNSCÞR is
weaker than expected for chains with few beads outside the
channel.

Applications. Suppose we have a double-stranded DNA
(dsDNA) of persistence length lp ≈ 53 nm partly confined in a 2D
strip (Fig. 2b, c), a 3D circular tube, or a 3D slit of size
w= 110 nm and stiffness κ=∞ pN nm−1 at ~T ¼ 298 K. If
this system is modeled by an SC of beads of Kuhn length lK, then

l= lK ≈ 2lp ≈ 106 nm. According to Eq. (5) (Supplementary

Note 2), the maximum real forces are f̂ ðSCÞR ; f̂ ðSCÞD ; f̂ ðSCÞT

� �
≈

ð0:18; 0:01; 0:21Þ pN for the strip, (0.35, 0.02, 0.38) pN for the
tube, (0.16, 0.02, 0.19) pN for the slit when nI is so large that an
added bead in the slit can freely rotate 2π, and (0.28, 0.02, 0.31)
pN if nI is so small during strong stretching that an added bead
can only rotate a small angle around 2π/q= π/16 for q= 32.

In an experiment12, a dsDNA recoiling from a 90-nm-wide and
100-nm-deep channel is estimated to encounter a force

f̂ ðexpÞR � 0:22 pN. It is slightly larger than the value f̂ ðSCÞR � 0:18
pN for a strip of a slightly greater width 110 nm calculated above.
In an experiment13, a T2 phage dsDNA recoils from an array of
nanopillars 35 nm in diameter with a center-to-center spacing of
160 nm. The experimentally estimated recoiling force

f̂ ðexpÞR � 0:04 pN in that array was bounded by the force

f̂ ðSCÞR � 0:12 pN in a 2D channel of the same width estimated
by formula (5) (Supplementary Note 2). This upper bound is
reasonable because the confinement of an array is much weaker
than that of a channel of the same size. In an experiment15, a
granular chain above a vibrating platform escapes from a channel.
The recorded recoiling force follows exactly the same relation fR
~−ln(w− l) as in Fig. 4a. In another experiment14, when a
dsDNA straddling a nanoslit is entropically pulled out of the slit,
it undergoes (i) a tug-of-war scenario, followed by (ii) a recoiling-

retraction scenario. The force, ~f ðexpÞðiÞ , in (i) is similar to the above

~f ðSCÞT , which is counterbalanced by the entropic elasticity of the

stretched dsDNA strand inside the nanoslit. The force, ~f ðexpÞðiiÞ , in

(ii) is closer to our ~f ðSCÞR , which are dragged by the friction force
and the optical tweezer (Fig. 2b), respectively. For a slit 110 nm in

height, the forces extracted from the experiment, f̂ ðexpÞðiÞ ; f̂ ðexpÞðiiÞ
� �

≈

ð0:17; 0:30Þ pN, are not far from f̂ ðSCÞT ; f̂ ðSCÞR

� �
≈ ð0:31; 0:28Þ pN

of a tightened chain estimated in the previous paragraph. The

relation f̂ ðexpÞðiiÞ � f̂ ðSCÞR indicates that the allowed rotational angle

for beads inside the slit is around π/16. The ordering f̂ ðexpÞðiÞ < f̂ ðSCÞT

suggests the existence of a non-configurational-entropy effect in

f̂ ðexpÞðiÞ . Indeed, in addition to increasing the configurational
entropy, strong chain stretching may also decrease the microstate
number inside a bead or deform the bead. The subsequent

increase of free energy will weaken f̂ ðexpÞðiÞ , but not f̂ ðSCÞT , leading to

f̂ ðexpÞðiÞ < f̂ ðSCÞT . Despite that discrepancy, these two forces are of the
same order.

More generally, if a single-stranded DNA (ssDNA) of lp ≈
0.75 nm23, partly confined in a 2D nanochannel or a 3D circular
nanotube of width 1.6 nm and κ=∞ pN nm−1, is modeled by an
SC comprising beads of three nucleotide bases24, one obtains l=
lK ≈ 1.5 nm and d ≈ 0.1 nm. This yields f̂ ðSCÞR � 11:32 pN for the
nanochannel and 21.76 pN for the nanotube (Supplementary
Note 2), which are even larger than the drag force, 5 ~ 6 pN, of a
myosin. The increase in the force magnitude from dsDNA to
ssDNA is a consequence of the shortened Kuhn length and the
narrowed channel width. Owing to the physical limits on these
two lengths, 20 pN seems to be close to the maximum entropic
force one can observe in nature for a recoiling polymer. For the
examples of soft channels, consider a 120-nt ssDNA oligomer25

threaded through an α-hemolysin, which is 10 nm long and has
an inner size varying between 1.4 and 4.1 nm1. If this system is
modeled by an NSC of 40 Kuhn segments of l ≈ 1.5 nm24 and
threaded through a circular tube of the same width as l, with a
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Fig. 5 Entropic drift and tension forces at different chain lengths and
translocation ratios. a The drift forces fðNSCÞD of a non-self-avoiding chain of
N= 4, 20, and 100 are calculated by the recursion formula at different ξ,
and fitted by the black dash-dotted, red dashed, and blue solid curves,
respectively. When the chain is pulled leftward to increase its nL starting
from nL= 0, it will be resisted by a rightward force, fðNSCÞD ðξÞ<0, when ξ <
0.5, but assisted by a leftward force, fðNSCÞD ðξÞ>0, when ξ > 0.5. b The free
energy profiles F(ξ) are integrated from the curves in a, where the two ends
of those profiles are set to zero. The integration is carried out along the real
length nLl, and then reexpressed as a function of ξ. Therefore, F(ξ) rises
with N, although the areas bounded by the curves fðNSCÞD ðξÞ in Fig. 5a
decrease with N. c The tension forces fðNSCÞT calculated by the recursion
formula are fitted by the black dash-dotted, red dashed, and blue solid
curves for N= 4, 20, and 100, respectively. d The free-energy barrier Δn

measured from the energy profiles in Fig. 5b gives the blue circles, red
squares, and black triangles for n= 1, 2, and 3, respectively, where nI � 1.
The Δn calculated by the scaling formula in the main text are the blue solid,
red dashed, and black dash-dotted curves, respectively
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hypothesized effective stiffness κ= 1 ~ 102 pN nm−1, then the
maximum tension force is f̂T � 1:47 � 14:12 pN (Supplementary
Note 2). This analysis provides an instantaneous check for the
consistency between the hypothesized d, κ, and forces.

Discussion
The experimental measurement of polymer entropic forces is
challenging. The currently reported “measured” force magnitudes
are all indirectly inferred from certain force-velocity or force-
extension relations. The observed velocity and extension can be
affected by several factors, including interfacial friction, Debye
length, osmotic force, dye and salt concentrations, and nature of
solvent. Even for the more fundamental polymer characteristics,
such as persistence length or width of DNA and RNA, the
experimentally measured values are often not unique. Thus, some
experimentally measured entropic force was considered an
“effective” one13. With these technical difficulties and system
varieties, a coincidence close to 100% between a theoretically
predicted force and an experimentally measured one could be
accidental, when these forces are as small as a few piconewtons.
However, if coincidences of the same order occur concurrently in
several systems, as in the above-mentioned examples, the actual
force magnitudes are probably not much different from the
experimentally and theoretically determined ones.

The formalism proposed in this work overcomes the problem
of directly solving partition functions and provides a less-time-
consuming reference-based algorithm to assess entropic con-
tributions. This approach is especially simple when a polymer
system can be modeled by an ideal confined chain with γ= 1.
Beyond that regime, such as in the de Gennes or Odijk regime,
the forces obtained from Eqs. (3) and (5) are as complex as those
extracted by other half-analytical approaches (Supplementary
Note 3). If other specific interactions, such as the angular and
dihedral force-fields, are not coarse-grained in the BUs of a chain
model, their entropic contribution has to be derived case by case,
as reflected in the widened channel width in Eq. (8), or empiri-
cally measured, as the αo in Fig. 3c. Nevertheless, the forces of a
nearby system with γ= 1, calculated by Eq. (5), can readily
provide an upper or a lower bound for the desired systems with
γ ≠ 1, as the pillar array discussed above. To sharpen these force
bounds, the current formalism further serves as a proper frame-
work, for instance, for selecting more sophisticated UBs CI and
CO or for performing perturbation approaches on Eq. (5) around
γ= 1.

Methods
Hamiltonian. For a chain of N identical beads in the bead-spring model in Fig. 2b,
let m and l be the mass and the size of a bead, respectively, whereas xi and _xi be the
position and the velocity of the ith bead, respectively. The Hamiltonian of the chain
is H= EK+ EC+ EV+ EO+ EW, with the kinetic energy EK ¼PN

i¼ 1 m _x2i =2, the

interaction between consecutive beads EC ¼PN�1
i¼ 1 kC xi � xiþ1



 

� l
� �2

=2, the
excluded volume interaction between non-consecutive beads

EV ¼PN
i;j¼1 ði > jÞ kV xi � xj




 


� l
� �2

σij=2, the bead-channel interaction

EW ¼PN
i¼1 V ηi

� �
, and the interaction between the last bead and the optical

tweezer EO= kO|xN− z|2/2. Here, the natural length of the spring between two
consecutive beads is the same as the bead size l. The value σij= 1 for |xi− xj| ≤ l and
0 for |xi− xj| > l. The position z denotes the location of the optical tweezer. The
potential VðηiÞ ¼ κη2i =2 when the ith bead penetrates a distance ηi into a channel
wall (Fig. 2d). Therein, kC, kV, kO, and κ are the force constants in EC, EV, EO, and
EW, respectively. In this system, there is no facial friction and the diffusion coef-
ficient is position independent. For an SC, the bending angle formed by three
consecutive beads lies within [0, 2π/3].

Penetration effects. Since the channel is narrow, the slight lateral motion of a
bead is less affected by its motion along the channel axis. Therefore, the probability
density of finding a bead at some lateral position y follows the Boltzmann dis-
tribution e�UðyÞ=kB ~T , which is depicted by the green area in the upper part of Fig. 2d.

Here, the potential well U(y) consists of a zero-potential area flanked by two walls
of the form of the above V(η). If that distribution has the same area as an effective
uniform distribution (magenta rectangle) of the same height h and of a larger width
d+ de, the equality in area implies 2

R1
0 hexp �κη2= 2kB ~T

� �� �
dηþ hd= h d þ deð Þ.

In analogy, for a 3D circular tube, the equality in volume leads toR1
0 2πðηþ d=2Þh exp �κη2= 2kB~T

� �� �
dη+ hðd=2Þ2π= hðd=2þ de=2Þ2π. Therein,

de is the mean penetration depth into two strip walls in Fig. 2b, c or into the
circular tube wall, which is given by

de ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πTϵ=κ

p
; for 2D strips;ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2 þ B
p � d; for 3D circular tubes;

(
ð8Þ

with ϵ defined in Eq. (1) and B � 8ϵT=κþ 2d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πϵT=κ

p
. Although the above soft

potential U can generally be interpreted as a soft channel or a soft bead, the latter
requires a more subtle model with a varying bead shape during bead-wall collision,
which is not considered here.

Langevin dynamics. With the above Hamiltonian H, the ith bead follows a Lan-
gevin equation m€xi ¼ �∇xi

H � Ξ _xi þ ζi , where ∇xi
H is the derivative of H with

respect to xi, Ξ denotes the friction coefficient, and ζi stands for a random force24.
That force is Gaussian and white and satisfies the fluctuation-dissipation theorem,

with 〈ζi(t)〉= 0 and ζiðtÞζTj ðt′Þ
D E

= 4ΞkB~Tδðt � t′Þδði� jÞ, where the superscript

T represents the transpose. Since the strength of the above random force changes
with temperature, the diffusion of beads is temperature dependent as well. To study
general real systems, the above equation can be reduced to a dimensionless one,
~m€~xi ¼ �∇~x

~H � ~Ξ _~xi þ ~ζ i , with the dimensionless quantities: ~m ¼ m=M, ~x ≡ x/l,
~t � t=τ, ~H � τ2= Ml2ð Þð ÞH, ~kC � τ2=Mð ÞkC, ~kV � τ2=Mð ÞkV, ~κ � τ2=Mð Þκ,
~Ξ � ðτ=MÞΞ, and ~ζ � τ2=ðMlÞð Þζ in units of some convenient mass M and time
τ24. However, to test the consistency between the force formula (5), the JE and RF
approaches, and the analytical results in Table 1, it is sufficient to consider some
simple parameter values for the original Langevin equation. In this study, we take
ðl;m;Ξ; kC; kV; kO; κ=ϵÞ= ð1; 1; 1; 104; 104; 104; 0 � 104Þ, where units are not
specified.

Jarzynski equality. Let ~W be the work done by fdrag to pull a bead of length l into
the channel in Fig. 2b. Owing to fluctuations, the ~W in different pulling realizations
will be different, which form a work distribution. According to the JE11, the free

energy change, Δ~F, per shifted l is related to ~W by e�Δ~F=kB ~T ¼ e� ~W=kB ~T
D E

, where

the ensemble mean 〈⋅〉 is averaged over the whole work distribution. Therefore, the
mean force to counterbalance fdrag is the free energy change per shifted bead
~f ¼ �Δ~F=l ¼ kB~T=l

� �
ln e� ~W=kB ~T
D E� �

, which has a dimensionless version

f ¼ ~f l=ϵ ¼ T ln e�W=T
� 
� �

, with the dimensionless work W ¼ ~W=ϵ, where ϵ is
defined in Eq. (1). The f measured in our numerical recoiling experiments should

be the f ðNSCÞR derived in Eq. (1) if the change of internal energy is negligible during
pulling, which occurs when the channel has a hard-wall or its soft wall is replaced
by an effective hard-wall.

Recursion formulas. A recursion formula can be used to count the configuration
number of a chain of n beads based on that of a chain of n− 1 beads. For a one-
dimensional NSC consisting of n rods of unit length, let Nn

x be the configuration
number when one end of the chain is anchored to the origin and the other end is
located at x between −n and+ n, where x is an integer. It follows a simple
recursion relation Nn

x ¼ Nn�1
x�1 þ Nn�1

xþ1 for x=−n, −n+ 1, …, n− 1, n, where
Nn
x ¼ 0 for |x| > n. The solutions of this equation are the binomial coefficients

Nn
x ¼ Cn

ðnþxÞ=2 when x=−n, −n+ 2, …, n− 2, n and Nn
x ¼ 0 elsewhere. With

those Nn
x , the total number of the chain configurations of n rods is Ωn ¼Pn

x¼�n
Nn
x ¼ 2n and the corresponding configurational entropy is S= kB lnΩn= nkB ln 2.

For a chain of n beads of size l in a high-dimensional off-lattice space, the above RF
can be generalized to Nn

r ¼ RNn�1
r′ δ r′� rj j � lð Þdr′, for which the total number of

the chain configurations, Ωn ¼ RNn
r dr, is an integration over all end-to-end dis-

placement vectors r of a chain of n beads. To count the configurations of a mac-
rostate of a chain, specified by some (nI, nO), in Fig. 2b, first calculate the

configuration number ΩnI
ΩnO

� �
of a chain segment of nI (nO) beads inside

(outside) the channel when one segment end is anchored to a point on the cross-
section of the channel opening. Summing up the product ΩnI

ΩnO
over all different

points on that cross-section yields the total configuration number needed for
calculating the entropy of the whole chain. Notice that although the RF is able to
count the chain configurations within a channel, it cannot reflect the stiffness effect
of the channel, unless we use Eq. (8) to replace a soft channel by an effective wider
hard channel.
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