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Exotic multifractal conductance fluctuations in
graphene
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In quantum systems, signatures of multifractality are rare. They have been found only in the

multiscaling of eigenfunctions at critical points. Here we demonstrate multifractality in the

magnetic field-induced universal conductance fluctuations of the conductance in a quantum

condensed matter system, namely, high-mobility single-layer graphene field-effect transis-

tors. This multifractality decreases as the temperature increases or as doping moves the

system away from the Dirac point. Our measurements and analysis present evidence for an

incipient Anderson-localization near the Dirac point as the most plausible cause for this

multifractality. Our experiments suggest that multifractality in the scaling behavior of local

eigenfunctions are reflected in macroscopic transport coefficients. We conjecture that an

incipient Anderson-localization transition may be the origin of this multifractality. It is pos-

sible that multifractality is ubiquitous in transport properties of low-dimensional systems.

Indeed, our work suggests that we should look for multifractality in transport in other low-

dimensional quantum condensed-matter systems.
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One of the unsolved problems in single-layer graphene
(SLG) is the nature of the electronic wave-function near
the charge-neutrality (Dirac) point. In principle, the

charge carrier density of SLG should be continuously tunable,
down to zero, leading to the largely unexplored regime of
extremely weak interactions in a low carrier density system. The
interaction parameter rs, which parametrizes the ratio of the
average inter-electron Coulomb interaction energy to the Fermi
energy, turns out to be independent of charge carrier density in
the case of SLG where rs ¼ e2=ðκ�hvFÞ. Here, κ is the dielectric
constant of the surrounding medium and vF is the Fermi velocity.
In the case of SLG on an SiO2 substrate, rs = 0.8. Thus SLG is a
very weakly interacting system, when compared to other con-
ventional two-dimensional systems such as GaAs/AlGaAs and Si
inversion layers, where the values of rs are typically much higher.
A naïve application of the scaling theory to such a system in this
regime would predict Anderson localization—a disorder-driven
quantum phase transition, leading to a complete localization of
the charge carriers, and thence, to an insulator1–5. Indeed, theo-
retical calculations for graphene indicate that intervalley scatter-
ing can lead to changes in the local and averaged electronic
density of states with the creation of localized states6,7. For
example, graphene-terminated SiC (0001) surfaces undergo an
Anderson localization transition upon dosing with small amounts
of atomic hydrogen8. This intervalley scattering-induced locali-
zation is most effective near the Dirac point, where the screening
of the impurity scatterers is negligible7. Experiments, however,
find the appearance of a minimum conductance value at the
Dirac point with σmin � 2e2=π�h, instead of a diverging resistance
which is the hallmark of a truly localized state; notable exceptions
being carrier localization9 and an Anderson localization transi-
tion in bilayer graphene heterostructures10.

By studying the scaling behavior of the universal conductance
fluctuations (UCF), we look for signs of charge carrier localiza-
tion near the Dirac point in ultra-high-mobility SLG and
uncover, as a result, an exotic multifractal behavior in the UCF.
Multifractality, characterized by an infinite number of scaling
exponents, is ubiquitous in classical systems. Since the pio-
neering work of Mandelbrot11, the detection and analysis of
multifractal scaling in such systems have enhanced our under-
standing of several complex phenomena, e.g., the dynamics of
the human heart beat12, the form of critical wave-functions at
the Anderson localization transition1, the time series of the Sun’s
magnetic field13, in medical signal analysis (for instance, in
pattern recognition, texture analysis and segmentation)14, fully
developed turbulence and in a variety of chaotic systems15,16. In
condensed matter systems, signatures of multifractality are
usually sought in the scaling of eigenfunctions at critical
points17–24. Despite compelling theoretical predictions25–30,
there are no reports of the successful observation of multi-
fractality in transport coefficients.

Simple fractal conductance fluctuations, on the other hand,
have been observed in several condensed matter systems31–35.
These arise through semi-classical electron wave interference
processes whenever a system has mixed chaotic regular dynam-
ics31,34,36,37. In all these systems, a primary prerequisite for the
observation of fractal transport is that the electron dynamics be
amenable to semi-classical analysis—the fractal nature of con-
ductance fluctuations seen in these systems disappears as the
system is driven deep into the quantum limit. For such a mixed-
phase semi-classical system, the graph of conductance (G) versus
an externally applied magnetic field (B) has the same statistical
properties as a Gaussian random process with increments of
mean zero and variance (ΔB)γ. These processes are known as
fractional Brownian motion and have the property that their
graph is a fractal of dimension DF ¼ 2� γ

2
31,34, with 1 ≤DF ≤ 2.

A semi-classical description, however, breaks down in the case
of materials where the charge carriers obey a Dirac dispersion
relation, e.g., in graphene and topological insulators. In this
report, we ask: can we find signatures of multifractality in a
quantum system through transport measurements, specifically
through the statistical properties of the graph of conductance
fluctuations versus an external parameter like the magnetic field?
We address this question by studying in detail the statistics of
conductance fluctuations in high-mobility SLG–FET devices as a
function of the perpendicular magnetic field over a wide range of
temperature and doping levels. We report, for the first time, the
occurrence of multifractality in the UCF in high-mobility gra-
phene devices deep in the quantum limit. Our measurements and
analysis suggest at an incipient Anderson localization transition
in graphene near the Dirac point.

Results
Measurement of UCF. SLG–FET devices with mobilities in the
range 20,000–30,000 cm2 V−1 s−1 were fabricated on SiO2 sub-
strates by mechanical exfoliation from natural graphite, followed
by conventional, electron-beam lithography38 (Fig. 1a, b). We
begin with the dependence of the resistance (R) on the gate
voltage (VG), for the device G28M6. In Fig. 1c we show plots of R
versus ΔVG =VG −VD, where VD is the Dirac point, measured at
different temperatures (T). The high mobility and the position of
the charge neutrality point very close to VG = 0 V attests to the
high quality of the devices. We measured the magnetoconduc-
tance (G) as a function of the magnetic field (B = (0, 0, B)),
applied perpendicular to the plane of the device, in the range −0.2
T ≤ B ≤ 0.2 T. The presence of UCF was confirmed by the
appearance of reproducible, non-periodic, but magnetic-field-
symmetric, oscillations in G. The measurements were performed
on multiple devices, over a wide range of VG and T. We find our
UCF data to be in excellent agreement with previous studies of
magnetoresistance and conductance fluctuations in SLG39–43.
Figure 2a shows illustrative plots of G(B) with the Fermi energy
(EF) maintained very close to the Dirac point (ΔVG ’ 0) for the
device G28M6. The data for other devices are similar and are
shown in the Supplementary Figure 1 (see Supplementary
Note 1). At low values of |B|, near the minimum of G at B = 0,
weak-localization corrections are visible (Fig. 2a). As we move
away from B = 0, the conductance fluctuations become promi-
nent. The amplitudes of the UCF peaks, and the values of the
charge carrier phase coherence length Lϕ, obtained from the
variance of the UCF (Fig. 2b), decrease with increasing tem-
perature because of thermal dephasing (see Supplementary
Note 2, Supplementary Figures 2, 3 and Supplementary Table 1
for a discussion on methods to obtain Lϕ). The temperature
dependence of the intervalley scattering length and the intravalley
scattering length, extracted from weak localization measurements
at T = 20 mK and ΔVG = 0.2 V, are shown in the Supplementary
Figure 4 (see Supplementary Note 3). We find them to be in
excellent agreement with previous studies of localization in
SLG42,44. We also observe an increase in Lϕ with increasing
|ΔVG| = |VG −VD| (Fig. 2c), which we attribute to the increase in
the screening of impurities by charge carriers39. We note an
apparant saturation of Lϕ below a temperature of ’ 100 mK. The
saturation of the phase-coherence length (Lϕ) with decreasing
temperature is an issue that has been at the forefront of research
in several other semiconducting materials including doped
Si45–47. There are many effects, e.g., the presence of magnetic
impurities47 or finite size, which can lead to a saturation of Lϕ.
We note here that a decoupling of the electron and lattice tem-
perature leading to a saturation of the Lϕ is also possible. How-
ever, the data shown in Figs. 1c and 2a show a continuous
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evolution of both the conductance and conductance fluctuations
down to 20 mK. This rules out any saturation of the electron
temperature down to 20 mK, and hence, the observed saturation
of Lϕ below a certain temperature is not an experimental artifact
(see Supplementary Note 3). In a separate set of measurements,
we obtain the magnitude of the UCF, at a given magnetic field, by
sweeping over VG and calculating the rms value of the fluctua-
tions. We found that this quantity decreased sharply with
increasing magnetic field (see Supplementary Note 4, Supple-
mentary Figure 5) in conformity with theoretical predictions48.

Analysis of fractal scaling of the UCF. UCF represents quantum
correction to Drude conductivity arising from the interference of
electronic wavefunctions; it is a fingerprint of the disorder con-
figuration in the conducting channel. Besides information about
the phase-coherence of the charge carriers, it can also provide
crucial insights into the electron dynamics and distribution of
eigenstates through a scaling-dimension analysis of the magne-
toconductance traces31,32,34. We first compute the simple fractal
dimensions DF of the UCF curves via the Ketzmerick variance
method (see Supplementary Note 5, and Supplementary Figure 6
for details). Figure 3a shows plots of DF versus T for the device
G28M6. At very low T and small | ΔVG|, we find 1<DF< 2. With
increasing temperature, DF→1 monotonically. In this high-T
regime, the thermal-diffusion length LT ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�hD=kBT
p � Lϕ, with

D the thermal diffusion coefficient of the charge carriers; there-
fore, quasiparticle phase decoherence, induced by inelastic ther-
mal scattering, suppresses quantum interference. For large |ΔVG|,
the magnitude of the UCF is comparable to, or smaller than the
background electrical noise, so DF→2, the value for Gaussian
white noise. In Fig. 3b, we plot DF versus Lϕ for two different
devices: G28M6 and G30M4; remarkably, all the data points from
these two devices cluster in the vicinity of a curve, with
DF / lnðLϕÞ. In the limits Lϕ � L, the UCF is non-fractal (
DF ’ 1), whereas for large Lϕ, the UCF is a fractal, so 1<DF< 2.

Analysis of multifractal scaling of the UCF. We build upon the
predictions of multifractal scaling of conductance fluctuations in
quantum systems25 by carrying out a multifractal detrended fluc-
tuation analysis of our UCF (see Supplementary Note 6, Supple-
mentary Figures 7 and 8 for details). The multifractality can be
represented in the following two ways: (1) by the generalized Hurst
exponent h(q), defined using the order-q moment of the UCF as

hrms½ΔGðΔBÞ�qi1=q � ½ΔB�hðqÞ, and (2) by the multifractal
spectrum f(α), obtained from the Legendre transform of h(q).
For a monofractal function, h(q) has a single,
q-independent value. For each one of our UCF plots, we obtain h
(q) in the range −4 ≤ q ≤ 4. An illustrative plot of h(q) versus q that
we obtain from our magnetoconductance data at 20mK (Fig. 4a) is
shown in Fig. 4b; h(q) goes smoothly from ’ 1:9, at q = −4, to
’ 0:85, at q = 4; the corresponding f(α) spectrum is plotted in
Fig. 4c. The singularity spectra have a definite maximum value of 1
(which is the dimension of the support graph). The width of the
multifractal spectrum is defined as Δα ≡ h(q)max − h(q)min. The
wide range of h(q), or, equivalently, the wide spectrum (Δα = 1.05)
quantifies the multifractality of the UCF. This is the first obser-
vation of multifractality of a conductance in any quantum-
condensed matter system and is the central result of our work.

We note that there are two distinct properties of UCF that can
give rise to its multifractal behavior49,50: (i) a fat-tailed, non-
Gaussian distribution of the UCF differences (as a function of δB)
or (ii) long-range, in the magnetic field B, correlations of the
fluctuations of δg(B). We have verified that the distribution of our
measured δg(B) is not log-normal. Having ruled out (i), we now
give a convenient test for (ii): we check for multifractality in a
data set obtained from a random shuffling (see Supplementary
Note 7) of the original sequence of δg(B). If the long-range
correlations (ii) exist, then signatures of multifractality must be
absent in the reshuffled data. Indeed, in our experimental data, we
observe a near-complete suppression of multifractality in the
shuffled data set with hshuf ðqÞ ’ 0:5 for all values of q and Δα =
0.05 (Supplementary Figure 9). Hence it is reasonable to infer that
the multifractality in our UCF can be traced back to long-ranged
correlations, that are otherwise difficult to measure.

Figure 4d shows plots of f(α) for different values of T and ΔVG

= 0.2 V. The symmetry of f(α) about α0 (Fig. 4c) reflects the
distribution of fluctuations, about the mean of the UCF. The
large-fluctuation (small-fluctuation) segments contribute predo-
minantly to the q> 0 (q< 0) part of h(q). The q> 0 (q< 0) part
of h(q) maps onto the α< α0 (α> α0) region of f(α), which is
more-or-less symmetric about α0 at low T (Fig. 4d). As we
increase T, this symmetry is lost. The magnitude of the skewness
h½δα�3i=h½δα�2i3=2, where δα = (α−α0), increases with T. Therefore,
as T increases, large-amplitude conductance fluctuations become
rarer than small-amplitude fluctuations. This is consistent with
our plots of the UCF (Fig. 2a).
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Discussion
A naïve characterization of the fractal property of a curve, say by
the measurement of one fractal dimension, does not rule out
multifractality of this curve, which requires the calculation of an
infinite number of dimensions51 (related to h(q)). One dimension
suffices for monofractal scaling (as, e.g., in the scaling of velocity
structure functions in the inverse cascade region of forced, two-
dimensional fluid turbulence52,53). Our measurements of the
UCF in SLG show that it is multifractal only if (i) the temperature
is low and (ii) ΔVG ’ 0. If either one of these conditions is not
met, the plot of δg versus B is a monofractal (see Supplementary
Note 8, and Supplementary Figure 10); at sufficiently large T,
DF→1 and the plots are non-fractal.

What can be the possible origin of our multifractal UCF? We
list three potential causes: (1) scarring of wave functions (e.g.,
because of classically-chaotic billiards54); (2) quasi-periodicity in
the Hamiltonian induced by a magnetic field55–57 and its analog
for graphene58; (3) Anderson localization-induced multi-
fractality1. We critically examine each one of these possibilities

below and conclude that our results are most compatible with the
last of these mechanisms.

While describing a quantum system, whose classical analog is
chaotic, one encounters scarred wavefunctions, whose intensity is
enhanced along unstable, periodic orbits of the classical system.
This non-uniform distribution of intensity of wavefunctions
results from quasiparticle interference. Quantum scars can lead to
pointer states59 with long trapping times, and, consequently, to
large conductance fluctuations. Relativistic quantum scars have
been predicted theoretically in geometrically confined graphene
stadia, which exhibit classical chaos60. However, our devices are
not shaped like billiards that are classically chaotic; and the
charge carriers are not in the ballistic regime. Therefore, quantum
scars cannot be the underlying cause for our multifractal UCF.

Fractal energy spectra can arise in tight-binding problems with
an external magnetic field, which can be mapped onto Schrö-
dinger problems with quasiperiodic potentials55–57,61. It has been
argued58, therefore, that a fractal conductance can also arise, via
Hofstadter-butterfly-type spectra, in Dirac systems at sufficiently
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high magnetic fields BH ’ ϕ0=A0 (’ 105 T for our samples),
where ϕ0 ¼ 2π�h=e is the flux quantum and A0 is the unit
cell area. Our measurements use very low-magnitude magnetic
fields (≲0:2 T); this rules out a quasi-periodicity-induced multi-
fractal UCF.

The most compelling explanation of the multifractal UCF we
observe in our SLG samples is an incipient Anderson localization
near the charge neutrality point. Multifractality of the local
amplitudes of critical eigenstates near Anderson localization has
been studied, theoretically, in several quantum-condensed matter
systems19,22–24. The multifractality of the eigenstates near the
critical point directly affects the two-particle correlation function
through the generalized diffusion coefficient62,63, which, in turn,
affects the local current fluctuations in the system via the Kubo

formula. It is not obvious that this must be reflected in the
(macroscopic) conductance, or its moments; however, it is
plausible that near the critical point, the UCF may inherit mul-
tifractal behavior from its counterpart in the eigenfunctions64.
Indeed, there are several theoretical predictions of multifractality
in transport coefficients including conductance jumps near the
percolation threshold in random resistor networks27,28, con-
ductance fluctuations in quantum Hall transitions29, and the
temperature dependence of the peak height of the conductance at
the Anderson localization transition30.

Spectroscopic studies on single-layer on-substrate graphene
devices have revealed that the local potential fluctuations in
this system are strongest when EF is close to the Dirac point7,9.
This leads to electronic states that are quasi-localized65–67. Such
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quasi-localized states have a high inverse participation ratio6 that
can lead to the multifractality seen in our experiments. If this is
true, then the multifractality in the UCF should be largest near
the Dirac point; and then fall off on either side of it. In Fig. 5 we
show the dependence of Δα on T and ΔVG for the device G28M6
(data obtained for other devices are qualitatively similar). We
observe that Δα is indeed largest near ΔVG = 0 and at low T,
where the conductance of the device is of the order of e2/h, and it
sharply decreases as either T or the magnitude of ΔVG increases.
Similarly, as T is increased, thermal scattering increases quasi-
particle dephasing, and eventually at high T, when Lϕ � LT � L,
quantum-interference effects are masked. From our observation
that a large multifractality arises only when quantum
interference-induced charge carrier localization is significant, we
propose that an incipient Anderson localization near the Dirac
point is the most plausible origin of multifractal UCF in SLG.

This interpretation of the multifractality of the UCF in SLG
devices is based on previous theoretical predictions and analysis.
We summarize our argument below.

Conductance fluctuations, as a function of the magnetic field,
have been shown to have a fractional fractal dimensions in some
simple, one-dimensional, quantum systems, e.g., the kicked
rotor64,68. In these systems, such a fractional fractal dimension
arises if one of the following conditions holds: (1) The PDF
P(t), of the charge carrier survival time t, has a power-law form
PðtÞ / t�γ at large t (as opposed to an exponential decay); (2) the
energy correlation C(ΔE) of elements of the S-matrix exhibit
power laws (i.e., C(ΔE)/ (ΔE)−γ)31,34,68,69. Such survival prob-
abilities are related to the conductance64,68; and their multifractal
behavior has been explored25.

At the Anderson localization transition, it is known that both
the probability density function describing the diffusion of a
wave-packet and the two-particle correlation function decay
algebraically with a fractional power62,63,70. Hence, as in the case
of the simple quantum systems mentioned above, we may expect
multifractal fluctuations of the conductance at the Anderson
localization transition. However, to the best of our knowledge,
there are no exact, analytical results that yield a one-to-one
correspondence between the multifractality of a critical wave-
function and the multifractality of the magnetoconductance.
Thus, we propose that the multifractality of the critical wave-
functions at the Anderson localization is the most plausible cause
of the multifractality of the UCF we have observed.

In conclusion, we have uncovered and quantified the multi-
fractal structure of mesoscopic conductance fluctuations in SLG
devices. We speculate that our results are indicative of an incipient
Anderson localization in this system. In particular, we quantify the
multifractality of transport in a quantum condensed matter system.
There may well be multifractality in transport properties in systems
other than graphene, and that multifractality is not unique to
graphene. Our work provides a natural framework for studying the
multifractality of such transport properties.

Methods
Sample fabrication. The graphene flakes were exfoliated from natural graphite
onto highly doped Si wafer with thermally grown, 285-nm thick SiO2 on top. SLG
flakes were identified by optical microscopy, and further, confirmed by Raman
spectroscopy, or by measurement of integer quantum-hall plateau positions.
Electrical contacts to the SLG were made by standard electron-beam lithography
followed by thermal evaporation of 5 ~ 7 nm chromium and 60 nm gold. The
highly doped Si was used as the back-gate electrode, and the SiO2 was used as the
gate dielectric, which enabled us to tune the charge carrier density, and hence the
Fermi level of the device, globally.

Measurement technique. The devices were pumped overnight, before cooling
down, to remove moisture and other adsorbents from the graphene surface. The
electrical transport characteristics of the devices were measured in a cryogen-free
Oxford Instruments Triton 400 dilution refrigerator. Cryogenic filters were used to

remove high-frequency noise. The conductance of the device were measured in
standard low-frequency ac lock-in measurement technique, in a four-probe con-
figuration. The biasing current (typically 0.25–0.5 nA) was kept sufficiently small to
avoid electron heating.

Data analysis. The computation of the fractal dimension of the data were carried
out using the Ketzmeric variance method. The multifractal exponents were com-
puted following Multifractal Detrended Fluctuation Analysis method. The details
of these methods have been discussed in the Supplementary Note 5 and Supple-
mentary Note 6, respectively.

Data availability. The data that support the plots within this paper and other
findings of this study are available from the corresponding author on reasonable
request.
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