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Semi-supervised meta-learning
elucidates understudied molecular
interactions
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Many biological problems are understudied due to experimental limitations and human biases.
Although deep learning is promising in accelerating scientific discovery, its power compromiseswhen
applied toproblemswith scarcely labeleddata anddata distribution shifts.Wedevelop adeep learning
framework—Meta Model Agnostic Pseudo Label Learning (MMAPLE)—to address these challenges
by effectively exploring out-of-distribution (OOD) unlabeled data when conventional transfer learning
fails. The uniqueness of MMAPLE is to integrate the concept of meta-learning, transfer learning and
semi-supervised learning into a unified framework. The power of MMAPLE is demonstrated in three
applications in an OOD setting where chemicals or proteins in unseen data are dramatically different
from those in training data: predicting drug-target interactions, hidden human metabolite-enzyme
interactions, and understudied interspecies microbiome metabolite-human receptor interactions.
MMAPLE achieves 11% to 242% improvement in the prediction-recall on multiple OOD benchmarks
over various base models. Using MMAPLE, we reveal novel interspecies metabolite-protein
interactions that are validated by activity assays and fill in missing links in microbiome-human
interactions. MMAPLE is a general framework to explore previously unrecognized biological domains
beyond the reach of present experimental and computational techniques.

Interactions between small molecules and proteins play pivotal roles in
various biological processes across organisms. However, majority of these
interactions remain understudied due to experimental constraints and
human biases, limiting our understanding of the complex mechanisms
governing life and hampering efforts of drug discovery.

Metabolite-protein interactions (MPIs) play a crucial role in regulating
metabolic pathways, triggering signaling transduction, and maintaining
cellular balance. However, MPIs are frequently low-affinity and are difficult
to be detected by experiments. A recent study discovered that many over-
lookedMPIs contribute to the survival and growth of organisms in response
to a changing environment1. Additionally, proteome-wide characterization
of MPIs provides strong evidence that metabolites serve as not only inter-
mediates inmetabolic reactions but also signalingmolecules via interactions
with proteins that are not enzymes2,3.

In addition to intra-species MPIs, the microbiome co-evolves with the
human and plays a role in shaping humanphenotypes4. In the humanbody,
microbiota produces an extremely diverse metabolite repertoire that can
gain access to and interact with host cells, thus influencing the phenotype of

thehumanhost5. For example, butyrates producedby themicrobiomebinds
to diverse human non-enzyme proteins6. The human microbiome is not
only associated with a large number of human diseases but also responsible
for the efficacy and toxicity of therapeutics (e.g., cancer immunotherapy)
that target human host7,8. Thus, elucidating previously unrecognized
interspecies MPIs will shed light on the molecular mechanisms underlying
microbiome-human interactions9,10 and offer new opportunities on devel-
oping novel therapeutics11.

Beyond MPIs, uncovering novel drug-target interactions (DTIs) will
facilitate identifying novel therapeutic targets, understanding poly-
pharmacology, and advancing drug repurposing, thereby accelerating drug
discovery and development. Unfortunately, small molecule ligands of more
than 90% protein families remain unknown12. Many of these understudied
proteins could be potential drug targets13. The lack of knowledge of small
molecule ligands of understudied proteins hinders the drug development of
presently incurable diseases14.On the onehand,manydisease-causing genes
are functionally and pharmaceutically uncharacterized15. It is a time-
consuming and high-risk endeavor to develop assays for compound
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screening of understudied proteins. On the other hand, a drug acts on a
biological system, and often interacts with not only its intended target but
also unknown off-target(s) that may lead to unexpected drug adverse
reactions or therapeutic effects16. Thus, identifying drug-target interactions
including chemicals with novel scaffolds will improve the successful rate of
drug discovery for unmet medical needs17.

Given the experimental challenges in elucidating understudied intra-
and inter-species molecular interactions, deep learning offers a promising
alternative approach owning to its recent phenomenal successes in Natural
Language Processing (NLP) and image processing. A number of deep
learningmodels have beendeveloped topredict drug-target interactions18–20.
Nevertheless, fewmethods can accurately and reliably predict understudied
molecular interactions due to the dearth of labeled data and out-of-
distribution (OOD)problems inwhich smallmolecules orproteins involved
in the interaction are significantly different from those in the annotated
databases used as training data. A plethora of transfer learning techniques
have been developed to address the molecular OOD problem21. However,
they offer little help in bridging remote chemical spaces21.

Semi-supervised learning and meta-learning alone have shown pro-
mise in addressing OOD challenges in protein-ligand interaction
predictions12,22. Semi-supervised learning uses the labeled data to learn
patterns that are generalized to the unlabeleddata. This approachhas shown
potential in exploring new chemical spaces, as demonstrated by Liu et al.22.
On the other hand, meta-learning is an approach to learning to learn. It has
demonstrated superior generalization power across various applications23,24.
Cai et al. has developed an out-of-cluster meta-learning (OOC-ML)
method, which has notably enhanced the generalization performance for
OOD protein-chemical interactions12. OOC-ML simulates an OOD sce-
nario. It harnesses common patterns extracted from predicting ligands
across distinct protein clusters (meta-model) and generalizes this knowl-
edge to a different protein cluster. These two techniques complement each
other: semi-supervised learning explores unlabeled OOD data while meta-
learning exploits labeled data. To our knowledge, no methods have been
developed to combine these approaches to overcome data scarcity and
address OOD challenges in predictingmolecular interactions. Additionally,
state-of-the-art semi-supervised learning method uses a teacher-student
model where the teacher model is fixed in each iteration22. It may lead to
confirmation bias in pseudo-labeling, another problem that needs to be
addressed.

In this paper, we have developed MMAPLE - Meta Model Agnostic
Pseudo Label Learning - to address the challenges aforementioned.
MMAPLE incorporates the concept of meta-learning and transfer learning
into a semi-supervised learning framework. Under a meta-learning fra-
mework, the student model in MMAPLE constantly sends feedback to the
teacher to reduce confirmation biases. MMAPLE is effective in exploring
unlabeled data and addressing the OOD problem. We have demonstrated
that MMAPLE significantly improves the accuracy of DTIs, human
metabolite-enzyme interactions, and understudied microbiome-human
MPI predictions on multiple base models in the OOD setting. Using
MMAPLE, we have identified and experimentally validated novel
microbiome-human MPIs and proposed their associations with human
physiology.Ourfindings suggest thatMMAPLEcanbea general framework
for investigating understudied biological problems.

Results
Overview of MMAPLE
We evaluate the proposed MMAPLE method on three diverse OOD cases:
novel DTIs, hidden human MPIs, and understudied microbiome-human
MPIs. The statistics of training/validation and testing data are shown in
Fig. 1A. In brief, for OOD DTIs and human MPIs, no chemicals in the
testingdatahave aTanimoto coefficient larger than0.5 comparedwith those
in the training/validation set. Details of the distribution of chemical simi-
larities between training/validation and testing data are shown in Fig. 1C.
Although 1.7% chemicals in the testing data are similar to those in the
training/validation data of microbiome-human MPIs with a Tanimoto

coefficient larger than 0.5, the proteins are significantly different based on
e-value as shown in Fig. 1C lower-right. Furthermore, there are no labeled
microbiome-humanMPIs in the trainingdata.Thus, all benchmarks are in a
challenging understudied label scarcity and/or OOD scenario.

The uniqueness of MMAPLE in predicting understudied OOD
molecular interactions is threefold, as shown in Fig. 1B. Firstly, MMAPLE
iteratively transfers knowledge from observed molecular interactions to the
unexplored chemical genomics space of interest, employing a teacher-
student approach. Secondly, unlike a conventional teacher-student model,
the teacher model receives feedback from the student model to perform a
meta-update aligned with meta-learning. Lastly, akin to transfer learning,
the training of the student model incorporates a new target domain sam-
pling strategy. Its aim is to guarantee that the unlabeled target domain of
interest mirrors the distribution of the labeled source domain as well as to
increase sampling efficiency. This alignment facilitates the model in
acquiring a more robust and generalizable representation of the data. In
contrast, utilizing untargeted random sampling for unlabeled data
during trainingmay lead toamarkedly divergentdatadistribution fromthat
of the target domain, owing to the astronomical chemical genomics space.
For the three cases in this study, the target domain is different, as defined
such that (1) the data distribution is significantly different from the labeled
source domain to avoid data leaking, and (2) the data is relevant to the
problem of interest. For example, for the DTI prediction, only drug targets
are sampled.

We train base binary classification models that use labeled molecular
interactions from ChEMBL25. The base models used in this study included
four state-of-the-art models for chemical-protein predictions: pre-trained
protein language model DISAE26, TransformerCPI18, DeepPurpose19, and
BACPI20. Then MMAPLE was applied to these models for exploring
unlabeled molecular interaction space. MMAPLE first initializes a teacher
model using the labeled data. Then a target domain sampling strategy is
applied to select a set of unlabeled data from the large space of understudied
OOD DTIs or MPIs. The pre-trained teacher model makes predictions
about the selected unlabeled data and assigns labels to them (pseudo labels).
Next, a student model is trained using pseudo-labeled data. Different from
conventional teacher-student model, the student model is evaluated by
labeled data and provides feedback (metadata) to the teacher model during
training the student model. Finally, the teacher model is updated based on
the performance of the student and generates new pseudo labels. This
process repeats multiple times until the training converges. The number of
iterations depend on the basemodel and the problemof interest. The details
of MMAPLE are in the Method section.

MMAPLE significantly improves the performance of OOD DTI
predictions
We first evaluated the performance ofMMAPLE forOODDTI predictions.
Weusedmolecular interactions inChEMBL25 andHMDB27 as trainingdata,
and annotated DTIs fromDrugBank28 as testing data. To simulate anOOD
scenario, we removed all chemicals that are structurally similar to drugs in
the testing data (Tanimoto coefficient >0.5). As shown in Fig. 2, both PR-
AUCs and ROC-AUCs of MMAPLE are significantly improved over all
base models with p-values less than 0.05 (Supplemental Tables 1, 2). The
percentage of improvement on PR-AUC ranges from 13% to 26%. Fur-
thermore, the trained models are less over-fitted than the base models, as
supported by the narrow gaps between the training curve of validation data
and that of testing data, as shown in Supplemental Fig. 1.

The superior performance of MMAPLE may be because it can better
align the embedding space of OOD samples to that of training data. To test
this hypothesis, we investigated ifMMAPLE could alleviate the distribution
shift between training and testing data.We extracted the embeddings of the
training and testing examples before training and acquired by DISAE and
MMAPLE, then utilized the Uniform Manifold Approximation and Pro-
jection (UMAP) for visual analysis. Figure 2C supports this hypothesis.
Before the training, the embeddings of training chemicals are scattered
around those of testing chemicals. While DISAE - the best-performed base
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model - narrows the dispersion, ourmodel achieves tighter overlap between
two distributions. Importantly, our model not only draws them closer but
also ensures amore uniformdistributionwithin each group, reducing inter-
distribution gaps.

Transfer learning in the protein space via protein language modeling
can improve the performance of DTI prediction26. As shown in Figs. 2A, B
and 3A, B in the next section, DISAE that is based on a pre-trained protein
languagemodel outperforms other baselines that do not utilize the language
model. However, the improvement fromDISAE is not as significant as that
by MMAPLE. Additionally, We study if transfer learning in the chemical
space could boost the performance of OOD DTI predictions. We apply a
chemical pretraining-fine-tuning based on self-supervised Motif Learning

Graph Neural Network (MoLGNN)29. In consistent with recent findings21,
no improvement was detected, as shown in Supplemental Table 3.

MMAPLE significantly improves the performance of hiddenOOD
human MPI predictions
We next evaluated the performance of the MMAPLE model in predicting
hidden human MPIs. We first trained the model using ChEMBL which
primarily includes exogenous smallmolecule ligands and druggable protein
targets. We evaluated the performance of the trained model using the
Humanmetabolite database HMDB27 on humanMPIs. The test cases were
in the OOD setting, as supported by the chemical similarity distribu-
tions (Fig. 1C).

Fig. 1 | Data statistics and framework illustration. A Statistics of training, vali-
dation, and testing data used in this study. B Illustration ofMMAPLE framework. A
deep learning model is trained using both labeled and unlabeled data and iteratively
updated using gradients from the trained model as metadata. C Chemical and
protein similarity distribution between training/validation and testing datasets. Up-

left: Chemical similarity distribution of OOD DTI; up-right: chemical similarity
distribution of hidden humanMPI; lower left-right: chemical and protein similarity
distribution of zero-shot microbiome-humanMPI experiment. Chemical similarity
is quantified by the Tanimoto coefficient of chemical fingerprints. Protein similarity
ismeasured by the negative logarithm (base 10) of the e-value derived fromBLAST61.
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Figure 3 A indicates that MMAPLE significantly outperforms all of
state-of-the-art basemodels on both ROC and PR. TheROC-AUC andPR-
AUC increase by 17% to 20% and 17% to 30%, respectively, suggesting that
MMAPLE is able to accurately predict hidden human MPIs in an OOD
setting.

Again, MMAPLE training brings the embeddings of testing samples
closer to those of training data than the baseline, as shown in Fig. 3C.
Overall, our results suggest that MMAPLE significantly outperforms the
state-of-the-art methods for OOD DTI and hidden MPI predictions.

MMAPLE significantly improves the performance of under-
studied OOD interspecies MPI predictions and reveals the
molecular basis of microbiome-human interactions
Known interspecies microbiome-human MPIs are extremely scarce, only
including 17 observed active interactions (See Methods for details). To
investigate interspecies interaction, MMAPLE was trained on a combina-
tion of three datasets: HMDB, ChEMBL, and NJS1630, while the test set
consisted of 17 annotated along with 145 negative microbiome-human
MPIs from the literature31,32. As shown in Fig. 1C, no metabolite-protein
pairs in the testing set have similar chemicals or proteins to those in the
training/validation set. Because no interspecies MPIs exist in the training
and validation set, the problem is a zero-shot learning scenario. The

previously best performed model DISAE has a poor performance, with a
PR-AUCof 0.193. It indicates that transfer learning alone is not sufficient to
address the OOD challenge of interspecies MPI predictions. Our results,
presented in Fig. 4A, demonstrate thatMMAPLE significantly outperforms
DISAE in terms of ROC and PR. It achieves a three-fold increase in the PR-
AUC for interspecies MPI predictions. These findings indicate that
MMAPLE holds promise in deepening our comprehension of interspecies
interactions, thus serving as a valuable tool for investigating the impact of
the microbiome on human health and disease.

To further validate the performance of MMAPLE, we predicted and
experimentally validated the interactions between trimethylamine N-oxide
(TMAO) and human G-protein coupled receptors (GPCRs). TMAO is a
smallmolecule generated by gutmicrobialmetabolism. It has beenobserved
that elevated plasma levels of TMAO increase the risk for major adverse
cardiovascular events33, activate inflammatory pathways34, and promote
foam cell formation35. Additionally, TMAO inhibits insulin signaling36.
However, it remains elusive how TMAO modulates these pathological
processes at amolecular level. Besides its biological interest, TMAO is one of
the most challenging molecules for MMAPLE. Firstly, the current study of
microbiome-human interactions mainly focuses on short-chain fatty acids,
there are few data for TMAO. Secondly, TMAO is amolecule with different
structural characteristics from other chemicals in the training data, The

Fig. 2 | OODDTI prediction outcomes when applying MMAPLE to base models. A ROC curves. B PR curves. CUMAP visualization of chemical space. Top to bottom -
original fingerprints, baseline embeddings from DISAE, and MMAPLE embeddings. Orange and blue dots for MMAPLE and baseline, respectively.
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chemical structure of TMAO is significantly different from known meta-
bolites involved in microbiome-human MPIs, as shown in Supplemental
Fig. 2. Thus, we chooseTMAOto rigorously evaluateMMAPLE in anOOD
scenario.

Figure 4B lists the top 7 predicted GPCR genes that interact with
TMAO with a p-value less than 5.0e-6 (approximate false discovery rate of
0.05). We performed GPCR functional assays to experimentally test the
binding activities of five of them under the concentration of 30 μM of
TMAO, which is the same concentration used in the previous study and is
based on the physiological concentration of TMAO in the human
(1–45 μM)37.The assay for two top-rankedGPCRsGNRHR andADGRA3 is
not available. As shown in Fig. 4B, all five testedGPCRs are antagonists that
block the activity of receptors. and CXCR4 demonstrates the strongest
activity (activity score >30). Other top-ranked predictions can be found in
Supplemental Table 4. We have also performed additional experiments to
analyze the predictions from the baseline model (DISAE). MMAPLE sig-
nificantly outperforms the base model, as shown in Supplemental Figure 3.
The full predictive results are in Supplemental Table 5.

Protein-ligand docking by AutoDock Vina38 suggests that TMAO can
fit into the antagonist conformation of the CXCR4 structure, as shown in
Fig. 4C, D. Among these interacting residues, TRP94, TYR116, and Glu288
also interact with the co-crystallized ligand of encoded protein of CXCR4

(PDB id: 3ODU). TYR116 and GLU288 provide attractive charges to the
nitrogen atom on TMAO. ARG188 forms a conventional hydrogen bond
with an oxygen atom on TMAO. These strong interactions could keep
TMAO in the binding pocket. The CXCR4 antagonism by TMAO estab-
lishes a causal linkage for observed microbiome TMAO-human interac-
tions, as illustrated in Fig. 4E. It is known that CXCR4 regulates PI3K and
RAF/RAS/MEK pathways39 (KEGG Pathway: https://www.genome.jp/
pathway/hsa04062). PI3K pathway regulates bile acid synthesis39.
TMAO’s inhibition on bile acid synthesis may be responsible for its pro-
motion effect on atherosclerosis33. The physiological effect of TMAO on
obesity and insulin resistance may be via CXCR4-RAF/RAS/MEK axis. It
has been observed that the deficiency of CXCR4 and impaired RAF/RAS/
MEK signaling results in obesity and insulin resistance40–43. Thus, micro-
biome TMAO-human CXCR4 interaction is responsible for the several
observedpathological effects of TMAO.However, otherTMAOeffects such
as inflammation cannot be directly explained by the TMAO-CXCR4
interaction. It is possible that other human proteins can interact
with TMAO.

While other top-predicted GPCRs (GLP1R, GIPR, CALCRL, C3AR1)
show much weaker binding to TMAO compared to CXCR4 at the tested
TMAO concentration, the antagonist (inhibition) effect of TMAO can be
amplified at higher TMAO concentrations, such as when consuming food,

Fig. 3 | HiddenHumanMPI prediction outcomes when applyingMMAPLE to basemodels. A ROC curves; B PR curves;CUMAP visualization of chemical space. top to
bottom - original fingerprints, baseline embeddings from DISAE, and MMAPLE embeddings. Orange and blue dots for MMAPLE and baseline, respectively.
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and aligns with experimental evidence. GLP1R activation is known to
reduce inflammation, suggesting that TMAO inhibition of GLP1R might
increase inflammation44,45. Similarly, studies have shown that gut GIPR is
associated with diet-induced inflammation and insulin resistance46. Mod-
ulation of CALCRL is associated with insulin resistance47, and its deletion
can worsen intestinal inflammation48.C3AR1 plays a protective role against
atherosclerosis49, implying that TMAO blocking C3AR1 activity might
increase the risk of atherosclerosis in individuals.

Semi-supervised learning, meta-learning, and target domain
sampling synergistically contribute to the performance
of MMAPLE
In our comprehensive ablation study, we rigorously examined the influence
of several key components on ourmodel’s performance: the introduction of
target domain sampling and semi-supervised learning with pseudo labels,
the choice between utilizing soft pseudo labels or hard labels, and the
application of meta-learning.

When excluding meta-learning from our training process, we kept the
teacher model static, therefore restricting it to generate constant pseudo
labels for the studentmodel to learn from.This leads to performance decline
when compared to our full MMAPLE model, as shown in Table 1. The
absence of iterative feedback learning addresses the critical role of meta-
learning.

To investigate the effect of teacher-student training, we trained the
model sorely with meta-learning by leveraging the Model-Agnostic-Meta-
Learning (MAML) framework50. This approach, while constantly out-
performing the baseline, resulted in 124% fall in PR-AUC compared to
MMAPLE. This experiment not only demonstrated the intricate depen-
dencies between meta-learning and semi-supervised learning but also
underscored the necessity of synergy of these techniques to achieve superior
model performance.

Models trained on one-hot (hard) labels are subject to over-fitting
since they do not represent soft decision boundaries across concepts.
Soft labels, which are probability distributions over the possible classes

Fig. 4 | Results of microbiome metabolite-human protein interaction predic-
tions. AROC and PR curves ofmodels tested by literature annotated 17 positive and
145 negative microbiome-human MPIs. B Top 5 predicted G-protein coupled
receptor (GPCR) genes that interact with TMAOandGPCR functional assay results,
with p-value indicating the tail probability from Kernel density estimation;
C Predicted 3D binding pose of TMAO on the CXCR4 antagonist conformation;

D Interaction patterns between TMAO and CXCR4; E Proposed molecular
mechanism of TMAO-human interactions. No assay is available for GNRHR and
ADGRA3. Antagonist: a molecule blocks the receptor, preventing activation and
the usual cellular response. Agonist: a molecule activates the receptor, triggering a
cellular response.
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as opposed to hard labels, are often demonstrated to be more effective
due to the ability to provide themodel withmore information about the
uncertainty in the data, as well as the ability against label noise,
resulting inmore robust predictions51,52. As shown in the Table 1, when
soft labels were used, ROC-AUC improved by 25%, and PR-AUC
increased by twofold.

The objective of target domain sampling aligns with that of transfer
learning. As shown in Table 1, using target domain sampling significantly
increased theperformanceof themodel by 11%onROC-AUCand115%on
PR-AUC, showing the effectiveness of this strategy in improving the per-
formance of MMAPLE.

In summary, integrating meta-learning, target domain sampling, and
soft labeling into a teacher-student framework yields superior performance
compared to each of these approaches individually, as well as any combi-
nation of two of them.

Discussion
In this study, we present MMAPLE, a highly effective deep learning fra-
mework, designed to address the challenges of data scarcity and OOD
problems encountered when applying machine learning in understudied
biological domains when transfer learning is less effective. Through exten-
sive evaluations, we have demonstrated the exceptional capabilities of
MMAPLE in exploring the unlabeled data space and facilitating knowledge
transfer from one chemical space to another. Using MMAPLE, we suc-
cessfully predicted and experimentally validated novel interactions between
microbiomemetabolites and human proteins, thereby shedding light on the
intricate interplay between these components.Notably, our frameworkdoes
not rely on a specific model and can accommodate various deep-learning
architectures tailored to specific biological tasks. Thus,MMAPLE serves as a
versatile and robust framework for investigating a wide range of under-
studied biological problems.

MMAPLE shows potential for improvement in several key areas.
Firstly, the current implementationofMMAPLE lacks the ability to estimate
the uncertainty associated with pseudo labels. By incorporating an accurate
uncertainty quantification mechanism, it becomes possible to select high-
confidence pseudo labels during training, therefore reducing the impact of
noise. Secondly, the process of sampling pseudo labels in a vast and
imbalanced chemical-protein interaction space proves time-consuming,
particularly when aiming to achieve the desired positive versus negative
ratio. The performance ofMMAPLE can be further enhancedby employing
an unbiased and efficient sampling strategy. For example, sampling based
on protein family or chemical similarity clustering. Thirdly, while MMA-
PLEhas thus far been applied exclusively to classificationproblems, itwould
be interesting to explore its extension to regression problems. Lastly, the
meta-update in the current implementation of MMAPLE uses in-
distribution data. Incorporation of OOC meta-learning may further
improve the generalization power of MMAPLE in an OOD setting. These
would be subject to future study.

Method
Data sets
Experiment 1: DTI prediction
Training/validationdata.Weusedmolecular interactions inChEMBL25 and
HMDB27 as training and validation data. It contained 298,736 total pairs
with 230,811 unique chemicals and 3084 unique proteins.

OOD testing data. The annotated DTIs from DrugBank28 were used as
testing data. To simulate an OOD scenario, we removed all chemicals that
are structurally similar to drugs in the testing data (Tanimoto coeffi-
cient > 0.5), totaling 21,760 pairs including 8917 unique chemicals and 3266
proteins.

Unlabeled data. To focus on the unexplored domain of interest, a target
domain sampling strategywas developed. Specifically, we selected unlabeled
pairs of drug targets and drug-like chemicals but excluded already labeled
pairs. For each chemical, we sampled six proteins, resulting in 53,502 total
unlabeled pairs. The detailed data statistics can be found in Fig. 1.

Experiment 2: Human MPI prediction
Training/validation data. The training data for this experiment was sourced
from ChEMBL (version 29)25. It consisted of 334,668 pairs with 252,712
unique compounds and 5204 unique proteins, where each pair represented
an activity with a single protein as the target.

OOD testing data. For the testing, we utilized HMDB27, which provided
interactions between metabolites and human enzymes. We randomly
sampled 10,000 pairs as the testing data covering 8,921 unique compounds
and 2611 unique proteins.

Unlabeled data. To create the unlabeled dataset, we considered all the
unlabeled metabolite-enzyme pairwise combinations. From the total pairs,
we included all unique metabolites and randomly selected two enzymes to
associate with each chemical, this resulted in the creation of a sizeable
unlabeled dataset, consisting of 44,644 unlabeled samples. The detailed data
statistics can be found in Fig. 1.

Experiment 3: Microbiome-human MPI prediction
Training/validation data. For this experiment, the training data consisted of a
combination of ChEMBL, HMDB, and NJS1630 datasets. After removing
duplicates and unusable data, the dataset contained a total of 1,667,708 sam-
ples including 357,213 unique compounds and 168,517 unique proteins.

OOD testing dataset. The testing datasetwasmanually created based on two
published works. The first work31 provided information on interactions
between 241 GPCRs and metabolites from simplified human microbiomes
(SIHUMIs) consisting of the seven most general bacteria species. The sec-
ond work32 involved the screening of gut microbiota metabolomes to
identify ligands for various GPCRs. Since this study focused on small
molecule metabolites, lipids were excluded, resulting in a total of 162MPIs,
including 17 positive activities.

Unlabeled data. For the protein side,we included allGPCRs fromUniProt53.
Besides, an equal number of proteinswere randomly selected from thePfam
dataset. Chemical samples were the 240 uniquemetabolites from theNJS16
dataset. Overall, the unlabeled data consisted of 73,238 pairs. The detailed
data statistics can be found in Fig. 1.

MMAPLE base models
To enable a fair comparisonwith the baselinemodels, we currently focus on
binary classification problems. Four state-of-the-art base models were
employed to evaluate the performance MMAPLE:
• DISAE26. Distilled Sequence Alignment Embedding (DISAE) is a

method developed by us that includes three major modules: protein
language model, chemical structure modeling, and the combination of

Table 1 | Ablation study

Methods ROC-AUC PR-AUC

base model (DISAE) 0.665 ± 0.006 0.193 ± 0.008

meta + TS soft 0.727 ± 0.033 0.308 ± 0.020

meta + Vanilla TS 0.708 ± 0.013 0.247 ± 0.024

OOC-ML (out-of-cluster meta-learning) 0.748 ± 0.009 0.295 ± 0.034

TS soft + target 0.791 ± 0.061 0.632 ± 0.108

TS soft 0.655 ± 0.065 0.209 ± 0.001

Vanilla TS 0.665 ± 0.059 0.198 ± 0.006

meta + TS soft + target (MMAPLE) 0.805 ± 0.051 0.661 ± 0.037

The variance was derived through k-fold cross-validation with k = 3
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the above two modules. The protein sequence module uses distilled
sequence alignment embedding, leveraging a transformer-based
architecture trained on nearly half amillion protein domain sequences
for generating meaningful protein embeddings. This is crucial for
predicting protein-ligand interactions in out-of-distribution (OOD)
scenarios. The chemical module is a graph isomorphism network
(GIN) to obtain chemical features, which are numerical representa-
tions of small molecules and capture their chemical properties. Finally,
DISAE includes an attentive poolingmodule that combines the protein
and chemical embeddings obtained from the first two modules to
produce the final output for predicting DTIs or MPIs as a binary
classification task (i.e., active or inactive). The attentive poolingmodule
uses a cross-attention mechanism to weigh the importance of each
protein and chemical embedding, allowing it to focus on the most
relevant information when making the prediction. Lbase denotes the
loss function of the base model, which is a binary cross-entropy loss in
this case.

• TransformerCPI18 Adapted from the transformer architecture,
TransformerCPI takes protein sequence as the input to the encoder,
and atom sequence as the input to the decoder, and learns the inter-
action at the last layers. Specifically, the amino acid sequence is
embedded with a Word2vec model pre-trained on all human protein
sequences in UniProt, and the self-attention layers in the encoder are
replaced with a gated convolutional network and output the final
presentation of proteins. The atom features of chemicals are learned
through graph convolutional network (GCN) by aggregating their
neighbor atom features. The interaction features are further obtained
by the decoder of transfer, which consists of self-attention layers and
feed-forward layers.

• DeepPurpose19 DeepPurpurpose provides a library for DTI prediction
incorporating sevenprotein encoders and eight compound encoders to
learn the protein and compound representations respectively, and
eventually feeds the learned embeddings into an MLP decoder to
generate predictions. We implemented the best-reported architecture,
convolutional neural network (CNN) for both protein and compound
feature representation learning, as another base model of MMAPLE.

• BACPI20 The last basemodel included in this study is the Bi-directional
attention neural network for compound-protein interaction (BACPI).
Similarly, it consists of chemical representation learning, protein
representation learning, and CPI prediction components to combine
them. BACPI employs a graph attention network (GAT) for
compounds to learn various information of the molecule graphs. For
protein, it introduces a CNNmodule to take the amino acid sequence
as input, to learn the local contextual features of protein by using a
content window to split the sequences onto overlapping subsequences

of amino acids. Finally, the atomstructure graphs and residue sequence
features are fed into the bi-directional attention neural network to
integrate the representations and capture the important regions of
compounds and proteins, and the integrated features are used to
predict the CPI.

Semi-supervised meta-learning
We adopted a semi-supervised meta-learning paradigm for our model
training. Similar to pseudo labels, there is a pair of teacher model and
studentmodel, the teachermodel takes unlabeled data as input, and uses the
predicted results as pseudo labels for the student model to learn with the
combination of labeled and pseudo-labeled data. However, instead of
learning from the fixed teacher model, the student constantly sends feed-
back to the teacher in the format of performance on labeled data, and the
teacher keeps updating the pseudo labels on everymini-batch. This strategy
could solve the problem of confirmation bias in pseudo-labeling54. The
illustration of MMAPLE training is shown in Fig. 5. Let T and S denote the
teacher model and the student model, θT and θS denote the corresponding
parameters (θ0T and θ0S denote the updated parameters). We use L to
represent the loss function, andT(xu; θT) to stand for the teacher predictions
onunlabeleddata xu, similar notations for S(xu; θS) and Sðxl; θ0SÞ.CEdenotes
the cross-entropy loss.

Model training
MMAPLE does not work alone but is built on top of other models. The
training process is repeated until optimization converges. The number of
iterations depends on the base model and training data, so it varies
accordingly. To ensure a fair comparison with the base models, both
MMAPLE and base models were constructed using the same architecture.
The detailed training procedure is shown in Algorithm 1.

The update rule of student. On a batch of unlabeled data xu, sample
T(xu; θT) from the teacher’s prediction, and optimize the student model
with the objective

minθSLuðθT ; θSÞ ð1Þ

where

LuðθT ; θSÞ :¼ Exu
½CEðTðxu; θT Þ; Sðxu; θSÞÞ� ð2Þ

The optimization of each mini-batch is performed as

θ0S ¼ θS � ηS∇θSLuðθT ; θSÞ ð3Þ

Fig. 5 | Illustration of MMAPLE training schema.
A teacher model generates pseudo labels by pre-
dicting a batch of unlabeled data. The pseudo label is
further passed to a filter to control the balance ratio
of the positive and negative samples (as a hyper-
parameter). A student model generates the predic-
tions from the same unlabeled data as those used in
the teachermodel and is updated byminimizing loss
function LuðθT ; θSÞ as in equation (3). Then, the
updated student model takes a batch of labeled data
and generates new predictions that compare with
the ground truth labels and minimize lossLlðθ0SÞ as
equation (6).

https://doi.org/10.1038/s42003-024-06797-z Article

Communications Biology |          (2024) 7:1104 8

www.nature.com/commsbio


Theupdate ruleof teacher. On a batch of labeled data (xl, yl), and use the
students’ update to optimize the teacher model with the objective

minθTLlðθS � ηS∇θSLuðθT ; θSÞÞ ð4Þ

where

Llðθ0SÞ :¼ Exl ;yl
½CEðyl; Sðxl; θ0SÞÞ� ð5Þ

The optimization of each mini-batch is performed as

θ0T ¼ θT � ηT∇θTLlðθS � ηS∇θSLuðθT ; θSÞÞ ð6Þ
We experimented with both hard labels and soft labels. Due to the

superior performance of soft labels to hard labels, the final MMAPLE was
trained using the soft label. The methods are described as follows:

Using soft labels. Because we always treat θS as fixed parameters when
optimizing Equation (6) and ignore its higher-order dependence on θT,
the objective is fully differentiable with respect to θT when soft pseudo
labels are used, i.e., T(xu; θT) is the full distribution predicted by the
teacher model. This allows us to perform standard back-propagation to
obtain the gradient.

Additionally, we incorporated the temperature scaling to soften the tea-
cher model’s predictions55. T(xu; θT) is the teacher’s output distribution

computedby applying softmaxover the logits z : softmax ðzÞ ¼ expðz=TÞPn

j¼1
expðzj=TÞ

,

the temperature parameter T is used to control the ”softness” of the output
probabilities. In the implementation, the temperature was tuned by hyper-
parameter searching.

For the quality control of soft labels, we employed a balance sampler to
control the ratio between positive and negative hard labels transferred from
soft labels. This will provide amechanism to dynamically adjust the ratio of
positive and negative during training. This ratio served as a crucial para-
meter to govern the training process, enabling us to strike a balance between
the two label categories. Through this approach, we aimed to alleviate bias
and imbalance in the dataset.

Using hard labels. When using hard pseudo labels, we followed the
derivative rule proposed in the reference54, which was a slightly modified
version of REINFORCE applied to obtain the approximated gradient of
Ll in Equation(6) with respect to θT as follows:

h ¼ ηS � ∇θS0
CEðyl; S xl; θ

ðtþ1Þ
S

� �� �T
� ∇θS0CE ŷu; S xu; θ

t
S

� �� �
� �

ð7Þ

The teacher’s gradient from the student’s feedback:

gtT ¼ h � ∇θTCEðŷu;Tðxu; θT ÞÞjθT ¼ θðtÞT ð8Þ

Algorithm 1. Training procedure
Require: N, the batch size nsup, number of epochs of supervised training
nfreeze, number of epochs that teacher model is frozen n, number of
training epochs
Input: Xun, Xl

Stage 1:
for epoch = 1 to nsup do
for t = 1 to Nl

N do
sample Xl of size N from the labeled data (without rep)
Update θT with Lbase

end for
end for
save the model with early stopping
Stage 2:
Initialize the teacher model with θT

Initialize student model with random parameters θS
for epoch = 1 to nfreeze do
for t = 1 to minðNun ;NlÞ

N do
sample Xun of size N from unlabeled data (without rep)
update θS with student update rule

end for
end for
for epoch = nfreeze + 1 to n do
sample Xun of size N from unlabeled data (without rep)
update θS with student update rule
update θT with teacher update rule

end for

Model evaluation
The model performance was measured using both Receiver Operating
Characteristic (ROC) and Precision-Recall (PR) and their corresponding
area under the curve (AUC).While ROC is a commonly usedmetric, itmay
give anoptimistic impressionof themodel’s performance,particularlywhen
datasets are imbalanced56. Therefore, PR is a better metric to evaluate the
performance of MMAPLE than ROC. A three-fold cross-validation
approach was utilized to ensure the robustness of the model’s performance
evaluation. Consistency across evaluations was maintained by using the
same folds for all base models.

Statistical significance of prediction
In our study, we focused on predicting GPCR genes that interact with
TMAO, employing a comprehensive analytical approach to evaluate the
statistical significance of each prediction. The prediction scores generated
through our model were subjected to Kernel Density Estimation (KDE)
from the Python package scipy57. KDE is a non-parametric way to estimate
the probability density function of our prediction scores. By applying KDE,
we were able to calculate the tail probability for each predicted interaction
score, which we interpreted as a p-value. This p-value serves as an indicator
of the rarity or significance of the predictions within the overall distribution
of scores, providing a statistical basis for identifying the most significant
GPCR-TMAO interactions. The detailed results of our predictions can be
found in Supplemental Table 4. The results of DISAE predictions can be
found in Supplemental Table 5.

Statistics and Reproducibility
Statistical analyses in general were conducted using paired t-tests. We
employed three-fold cross-validation to ensure the robustness of our results.
For each fold, we applied early stopping and tested the model on the hold-
out testing set. The final reported mean performance is the average result
from these testing sets.

GPCR functional assay
Trimethylamine N-oxide (TMAO) (purity: 95%, molecular weight: 76.12)
was purchased from Sigma-Aldrich (MO, USA).

GPCR functional assay was performed using the PathHunter®
β-Arrestin assay by Eurofins (CA,USA). The PathHunter® β-Arrestin assay
monitors the activation of a GPCR in a homogenous, non-imaging assay
format using a technology called Enzyme Fragment Complementation
(EFC)withβ-galactosidase (β-Gal) as the functional reporter. The enzyme is
split into two inactive complementary portions (EA for Enzyme Acceptor
and PK for ProLink) expressed as fusion proteins in the cell. EA is fused to
β-Arrestin and PK is fused to the GPCR of interest. When the GPCR is
activated and β-Arrestin is recruited to the receptor, ED and EA com-
plementation occurs, restoring β-Gal activity which is measured using
chemiluminescent PathHunter® Detection Reagents.

The compound activitywas analyzed using theCBIS data analysis suite
(ChemInnovation, CA).

For agonist mode assays, percentage activity was calculated using the
following formula:
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%Activity = 100% x (mean RLU of test sample - mean RLU of vehicle
control) / (mean MAX control ligand - mean RLU of vehicle control)

Where RLU is relative luminescence unit of the measurement.
For antagonistmode assays, percentage inhibitionwas calculated using

the following formula:
%Inhibition = 100% x (1 - (mean RLU of test sample - mean RLU of

vehicle control) / (meanRLUofEC80control -meanRLUofvehicle control))
Where EC80 is 80% maximal effective concentration of TMAO.

Protein-ligand docking
AutoDock Vina38 was applied on TMAO to find the best conformation in
the CXCR4 chemokine receptor (PDB ID: 3ODU). The center of the co-
crystallized ligand (ligand ID: ITD) in3ODUwasused todefine the centerof
the searching space and 12Angstromof extra spacewas added to the edge of
ITD to set up the docking space for TMAO. The binding energies between
TMAO and 3ODU were attained in terms of Kcal/mol.

Ablation study
All the ablation studies were applied to the experiment of Microbiome-
human MPI prediction.

Vanilla TS. Vanilla teacher-student model, where the teacher model is
pre-trained, and kept frozen while training the student model, so the
student will reply on the pseudo labels to learn, without sending feedback
to the teacher model. Hard labels are used for pseudo-labeling.

TS soft. Same as Vanilla TS, except for soft labels are used.

OOC-ML(out-of-cluster meta-learning). As demonstrated in the pub-
lished work12, we created five clusters based on the scaffold of the
molecules, and we forced the model to see data from different clusters
from everymeta-update, therefore themodel was pushed to generalize on
the unseen data.

Data availability
All the data used in this study can be accessed at https://doi.org/10.5281/
zenodo.1072888258; The source data can be accessed from ChEMBL,
HMDB, and NJS16; The testing dataset in Microbiome-human MPI
prediction was manually created based on two published works by Chen
et al.31 and Colosimo et al.32. The numerical source data for all the graphs
is available at: https://figshare.com/articles/dataset/MMAPLE_source/
2651429559.

Code availability
The code to reproduce results, together with documentation, is available on
GitHub at https://github.com/XieResearchGroup/MMAPLE)60.
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