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Transcriptional profiling in microglia
across physiological and pathological
states identifies a transcriptional module
associated with neurodegeneration

Check for updates

Aysegul Guvenek1,2, Neelroop Parikshak 1, Daria Zamolodchikov2, Sahar Gelfman1, Arden Moscati1,
Lee Dobbyn1, Eli Stahl 1, Alan Shuldiner 1 & Giovanni Coppola 1

Microglia are the resident immune cells of the central nervous system and are involved in brain
development, homeostasis, and disease. New imaging and genomics technologies are revealing
microglial complexity across developmental and functional states, brain regions, and diseases. We
curated a set of publicly available gene expression datasets from human microglia spanning disease
and health to identify sets of genes reflecting physiological and pathologicalmicroglial states.We also
integrated multiple human microglial single-cell RNA-seq datasets in Alzheimer’s disease (AD),
multiple sclerosis (MS), and Parkinson’s disease, and identified a distinct microglial transcriptional
signature shared acrossdiseases. Analysis of germ-lineDNA identifiedgeneswith variants associated
with AD and MS that are overrepresented in microglial gene sets, including the disease-associated
transcriptional signature. This work points to genes that are dysregulated in disease states and
provides a resource for the analysis of diseases in whichmicroglia are implicated by genetic evidence.

Microglia are the resident immune cells of the central nervous systemdistinct
fromother tissue-residentmacrophages1–3.Microglia originate in the yolk sac
and colonize the brain at the early stages of development4, Microglia play an
essential role in brain development5, via synaptic pruning and clearing of
neural progenitor cells6. Microglia are also involved in brain homeostasis by
sensing changes in the brain3 and can shift out of their homeostatic state to a
variety of reactive states in case of tissue injury or inflammation.

Microglia have been implicated in multiple CNS diseases, including
Alzheimer’s disease (AD)7, multiple sclerosis (MS)8, Parkinson’s disease
(PD)9, amyotrophic lateral sclerosis10, stroke11, and glioblastoma12. Genes
with established genetic associations with disease (for example,TREM2 and
APOEwith AD) are expressed inmicroglia and are dysregulated in patients
and animal models13,14.

In both physiological and pathological conditions, transcriptional
profiling—an established approach to elucidate the role of microglia in
health and disease—has revealed considerable microglial complexity and
heterogeneity15,16. This heterogeneity has multiple determinants, including
developmental stage17, brain region18,19, sex20, age21,22, and disease state23–25.
However, technical factors are likely to contribute to this heterogeneity, as
inconsistencies have been reported across studies of the same condition or
disease26. We set out to understand the main factors contributing to

transcriptional heterogeneity in microglia, and how they relate to neuro-
degenerative disease. We collected, curated, and harmonized publicly
available human microglia transcriptomics datasets and performed a sys-
tematic analysis to identify gene expression sets conserved across studies
which we calledmicroglial genemodules.We extended our work to human
genetics by analyzing the overlap between human microglial modules and
loci identified in genome-wide association studies (GWAS). We identified
geneswith genetic variation associatedwith neurodegenerative diseases that
are also dysregulated in disease-associated microglia.

Results
Humanmicroglia transcriptomeprofiles (bulkRNA-seqdatasets)
We identified 21 published transcriptome studies focusing on human
microglia (MGL, Fig. 1a and Supplementary Data 1) and selected the 12
containing purified microglial cells with relevant control samples and with
available raw sequencing data for further analysis (Supplementary Data 1
and “Methods”), 10 datasets (6 bulk RNA-seq and 4 single-cell (sc) RNA-
seq,) from 8 publications were included in the analysis (Figs. 1 and 2 and
Supplementary Data 1).

The six bulk RNA-seq datasets included: (1) purified microglia from
human brain with no reported neurological disease, compared to other cell
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types in the cortex (Fig. S1a26); (2)purifiedmicroglia fromhumanbrainwith
no reported neurological disease compared to the whole cortex (Fig. S1b21);
(3, 4) differentiating (stage 1, 10 days post-injection: maturing microglia)
anddifferentiated (stage 2, 60days post-injection:maturemicroglia) human
induced pluripotent stem cell (iPSC)-derived microglia, compared to
microglial progenitor cells (Fig. S1c27); (5) human iPSC-derived, lipopoly-
saccharide (LPS)-induced microglia compared to control microglia (Fig.
S1d28); and (6) microglia purified from brains from patients with AD
compared to control subjects (Fig. S1a26). After re-processing and differ-
ential expression analysis (“Methods”), differentially expressed genes
(adjustedP-value < 0.01 and fold change > 2, Fig. 1b) were combined across
datasets and the overlapping set (Fig. S1e) was evaluated to establish human
microglial modules (Fig. 1c, Supplementary Data 2 and 3).

First,we determined the upregulated genes betweenMGLvs other brain
cells (dataset 126) and MGL vs whole cortex (dataset 221) datasets to identify
genes upregulated in microglia compared to other brain cells (‘human
microglial gene set’). From that set, we selected transcripts that were not
differentially expressed in any other conditions (differentiation, LPS, or AD)
todefinean ‘MGLCoremodule’ (n= 480, Fig. 1c, box1). ‘MGLCoremodule’
contains genes such as TREM2 and SYK. Some of the known microglia-
related genes such as P2RY12, BIN2, and TYROBP were not assigned to the
‘MGLCore module’ despite their upregulated expression in datasets 1 and 2

due to downregulated expression in LPS treatment. Similarly, from the
human microglial gene set, we selected the microglial genes significantly
regulated in the differentiation data set (dataset 3 and 427) to identify a
‘Differentiation- MGL’ module (box 2 in Fig. 1c). We identified human
microglial genes upregulated (box 3 in Fig. 1c) and downregulated (box 4) by
LPS treatment (dataset 528). These two groups represent microglia-enriched
genes that are regulated upon LPS treatment. Likewise, we identified human
microglial genes upregulated (box 5) and downregulated (box 7 in Fig. 1c) in
AD (dataset 626). We also identified upregulated AD genes that were not
defined as microglial markers in dataset 1 or 2 (box 6). Finally, we used
Euclidean distance to cluster the features (Fig. S1f) and reveal a group of
transcriptsmost highly expressed inmicroglia (MGLTop expressedmodule,
n= 830),which contains knownmicroglial genes suchasTREM2 andSYK, as
well as P2RY12, BIN2,TYROBP, andAPOE. In summary, combining several
differentdatasets allowed the identificationof a core set ofmicroglialmarkers,
and condition-specific subsets of transcripts.

Sc transcriptomics identifies shared microglial states across
conditions
We identified sc or single-nucleus (sn) publicly available RNA-seq datasets
from microglial cells from subjects with neurodegenerative diseases
including AD, MS, and PD. We first identified sc and sn RNA-seq datasets

Fig. 1 |Microglial gene expression. a Summary of datasets reviewed, processed, and
used in this study. A total of 21 datasets were identified focusing on the human
microglia transcriptome. After pre-processing and QC steps, 12 were selected and
analyzed further. Subsequently, 8 of 12 were selected due to biological importance
and relevancy. b Bar plot showing differentially upregulated (red) and

downregulated (blue) genes in each dataset. Differential expression is determined by
DESeq2 (false discovery rate (FDR) < 0.05 and fold change difference > 2). Error
bars are standard errors of themean. cHeatmap showing gene expression patterns of
differentially expressed genes across datasets. Each row is a sample, each column is a
gene. Black boxesmark sets of genes differentially expressed acrossmultiple datasets.
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either profiling purified microglial samples (microglia-specific Fig. S2a, b)
from AD29 and MS19 patients, or reporting sc brain expression data from
PD30 and MS31 patients, from which microglial data could be computa-
tionally derived (Fig. S2c, d). Each dataset was individually processed for
quality control, normalization, dimension reduction, clustering, annotation,
and marker identification using the Seurat package (Fig. S2). The two MS
datasets were combined using Seurat (“Methods”, Fig. S2e). In the AD
dataset (Fig. S2b), 13 clusterswere identified, including somenon-microglial
clusters (e.g., 5, 9, and 10 due to lack of microglia marker genes expression)
and AD-associated clusters (3 and 6). 10 clusters were identified in PD
(Fig. S2c), including clusters 1, 2, and 3 containing PD-associated cells. The
combined analysis of MS datasets (Masuda et al. 19 and Schirmer et al. 31)
identified ten clusters (Fig. S2e).

We then checked the expression of two microglia markers—CSF1R,
which is broadly expressed inmicroglia, and P2RY12, which is expressed in
homeostatic microglia32—to validate and further annotate microglial clus-
ters in these datasets (Fig. S2f).CSF1Rwas expressedbroadly in these cells as
expected, regardless of their disease association. In contrast, P2RY12 was
expressed less uniformly in disease-associated clusters. This helped us to
further categorize diseasedmicroglia in eachdataset. For example, in thePD
dataset clusters, 1, 2, and 3 contained diseased microglia, however,
expression of P2RY12 was decreased only in clusters 2 and 3.

In order to identify a microglial gene expression subcluster associated
withmultiple neurodegenerative diseases,we integratedall four datasets and
further excluded cells not expressingmicroglial markers (see “Methods” for
details). This integrated analysis identified 13 clusters (Fig. 2a) containing

Fig. 2 | Integrated sc RNA-seq analysis for microglia. a Uniform manifold
approximation and projection (UMAP) plot showing microglia clusters for inte-
grated microglia analysis of 18,713 cells from four datasets. Non-microglial cells
were excluded from this analysis. Each dot represents a single cell. Colors correspond

to different clusters. b As in (a), but, colors correspond to different conditions.
cHeatmap of top differentially expressed genes in each cluster compared to all other
clusters. d Top gene ontology terms for differentially expressed genes in each cluster
compared to all other clusters.
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healthy anddisease-associated cells (Fig. 2b). In order tocheck formicroglial
specificity, we (1) reviewed the expression of known microglial markers
including P2RY12, BIN1, CSF1R, and SLCO2B1 (Fig. S3a); (2) checked for
the absence of common B and T-cell markers (including TRAC, TRBC2,
CD52, IL32, CD3D, CD25, CD52, CD3, CD8, CD56, CD1, CD21, CD25,
CD27, CD138, and CD4); and (3) checked for the expression of MRC1 (a
macrophage-specific marker33). Although some cells expressed MRC1 at
high levels, we didn’t observe amacrophage-specific cluster (Fig. S3b).A few
clusters (7, 10, 12, and 13) clustered distantly from the others. Among those,
clusters 10 and 13 expressedknownneuronalmarkers (Fig. S3c), and cluster
13 expressed known oligodendrocyte markers (Fig. S3d), pointing to pos-
sible contaminating cells.

Cluster analysis (Fig. 2a, b) identified clusters 0, 1, 2, and 3, which
included predominantly microglia from control samples from all 4 datasets
(Fig. 2b and Fig. S3f), and a few clusters predominantly containing disease

cells (cluster 4, 6, and 9). Cluster 4 contained cells fromall 3 diseases andwas
defined as a cross-disease-associated microglia (CDAM) cluster (Fig. 2b).
We annotated each cluster by identifying marker genes (Fig. 2c, see
“Methods” for details) and gene ontology annotation (Fig. 2d). Immune
response-related terms were significantly enriched in disease-associated
clusters 4 (P = 1.3E-11) and 9 (P = 1.4E-7).

Characterization of the CDAM cluster
We examined the transcripts associated with cluster 4 (CDAM), containing
cells from patients with AD,MS, and PD, by comparing its gene expression
with that of ‘core’ microglial clusters (0, 1, 2, and 3, Fig. 3a). Transcripts
upregulated in CDAM compared to core clusters 0,1,2,3 (Fig. 3a, b and
Supplementary Data 4) included Apolipoprotein E (APOE), known to be
associated with AD, Leucine-rich repeat kinase 2 (LRRK2), known to be
associated with an increased risk in PD, and glycoprotein NMB (GPNMB),

Fig. 3 | CDAM cluster. a Differential expression analysis comparing genes from
CDAM and healthy-microglia-associated clusters. The top significant genes are
highlighted on the volcano plot.b Log-2 expression levels of representative genes up-
regulated (APOE, LRRK2, and GPNMB) and down-regulated (P2RY12) in CDAM
(cluster 4). c Boxplot showing gene expression in CDAM for microglia modules
identified in bulk-RNA-seq analysis in Fig. 1. Red dots mark median values for each
comparison.P-values between the groups were determined by theWilcoxon test. UP

stands for upregulation and DN stands for downregulation. Error bars on each box
represent the highest and lowest values excluding outliers. d Overlap between
CDAM and publicly annotated microglial gene sets. All gene sets are defined in the
MGEnrichment database. Bar plot showing odds ratio (OR) and -log10 FDR for the
most significant overlapping gene sets for CDAM upregulated and downregulated
genes compared to core clusters.
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known tobeupregulated indisease-associatedmicroglia inmousemodels of
neurodegenerative disease, and recently implicated inPDpathogenesis34. By
contrast, P2YR12, a homeostatic/healthy microglia marker35, was down-
regulated in CDAM.

We examined the overlap between the modules identified in the bulk
RNA-seq and the clusters identified in the scRNA-seq analysis (Fig. 3c).We
observed a significant overlap between disease-associated modules (AD-
MGL upregulated (P = 1.5E-07) and AD-downregulated (P = 0.006)) and
expression CDAM vs clusters 0–3. Overlapping genes include APOE,
GPNMB, PARVG, TGFBI, and TMEM119. Genes that were upregulated in
LPS microglia modules were also upregulated in CDAM.

Wefinally compared the overlap betweenCDAMgenes andmicroglial
gene sets reported in the literature and collected in the MGEnrichment
database, which contains over 100 gene sets from 26 publications36 (Fig. 3d
and Supplementary Data 5). As expected, both CDAM upregulated
(CDAM> core clusters) and downregulated (CDAM< core clusters) genes
showed a significant overlap with microglia core signals, though the
downregulated set showed much higher overlap compared to the upregu-
lated set (OR, 8.1 vs 3.7 and -log10 FDR 68 vs 25). CDAMupregulated genes
showed a significant overlap with publicly annotated neurodegenerative
disease signature microglial genes (MGnD signature increased, DAM>
HOMMG), as well as LPS and age-related microglial genes (Fig. 3d, lower
panel). On the other hand, CDAM downregulated genes overlapped with
homeostatic/healthy state markers (Fig. 3d, upper panel).

We also annotated the CDAM module using the dataset reported by
Geirsdottir et al. 37, a cross-species transcriptomic analysis of microglia. We
observed a varied conservation pattern of the CDAMmodule across species
(Fig. S4), supporting the notion that microglial genes relevant for neuro-
degeneration in humans might not be uniformly conserved across non-
human species, and therefore conclusions from work in animal models
might not readily transfer to human neurodegenerative conditions.

In summary, a combined analysis of humanmicroglial gene expression
identified modules associated with microglial states, and an integrated sc
analysis identified a cross-disease-associated cluster that showed high
expression of disease markers and downregulation of homeostatic/healthy
microglia markers.

Microglial signature is enriched for common genetic variants
associated with disease
GWAS have identified many genetic variants associated with traits and
diseases over thepast decades.Our transcription-level analysis revealedgene
expression clusters associatedwithhealthy anddiseased-statemicroglia.We
asked whether these clusters had any overlap with genetic signals associated
with neurodegenerative disease. We used GWAS summary statistics for
AD38, MS39, and PD40 and assigned aggregated variants to genes using the
MAGMA tool41, which provides gene-level and gene set-level enrichment
analysis for GWAS studies by aggregating all the variants while controlling
for confounding effects (Fig. 4a).We identifiedmultiplemicroglialmodules
significantly enriched in AD and MS GWAS (Fig. 4b and Supplementary
Data 6). Interestingly, genes that were upregulated in AD microglia (AD-
MGL upregulated module) were significantly associated with all three
GWAS, while genes that were upregulated in AD, but not identified as
microglia markers (AD-others upregulated) were not (Fig. 4b). CDAMwas
also significantly enriched in bothAD andMSGWAS.Within thismodule,
we identifiedmany genes implicated inADGWAS (Fig. 4c) includingBIN1,
APOE, and PLCG2. We then extended our variant search to exome
sequencing data from the UK Biobank (UKB42) for the CDAM genes that
were identified as significant in the MAGMA analysis, including PLCG2,
which is upregulated in microglia compared to other cells in the cortex and
upregulated in CDAM (Fig. 4d, left panel). We identified three variants
associated with AD for PLCG2 (Fig. 4d, right). The most significant variant
was a missense variant (rs72824905, P = 7.3E-05) associated with a
decreased risk of an AD-related trait (Alzheimer’s in the mother, OR=
0.87). This variant was previously shown as an AD protective variant in
another study43. Interestingly, an additional rare intronic variant

(rs748729362) was nominally associated with an increased risk of AD
(P-value: 8.46E-05). The evidence from our transcriptional analysis further
supports PLCG2 as a microglial gene with relevance for AD.

Disease-associated rare genetic variationalsoaffects theCDAM
signature
WhileGWAScaptures commonvariant associations efficiently, rare coding
variation (especially if predicted damaging) could have stronger con-
sequences on phenotypes. We mined exome sequencing data for rare
(minor allele frequency (MAF) < 1%) coding variants and performed gene
burden testing for genes with microglial expression (see “Methods”). We
identified genes in each microglial module with nominally significant
(P < 0.05) burdenassociationswithAD,MS, andPD(Fig. 5a) and calculated
the enrichment in each module (Fig. 5b). We only observed significant
enrichment in AD ExWAS for disease-associated modules (AD- MGL
upregulated, CDAM,CDAMUP,CDAMDN) (Fig. 5b and Supplementary
Data 7). In CDAM, we identified 160 upregulated and 206 downregulated
genes with nominally significant burden in AD ExWAS (Fig. 5c). For
example, gamma Parvin (PARVG), encoding an actin-binding protein, is
significantly upregulated in microglia compared to other cells in human
cortex and upregulated in AD-MGL and CDAM (Fig. 5d, left panel), con-
firming reports of increased expression inADmousemodels and humans44.
Althoughnot reaching genome-wide statistical significance, a burdenof rare
LOF variants in PARVG is associated with protection from parental AD in
theUKbiobank (Fig. 5d, right panel). Taken together, these results point to a
role for PARVG in AD and will need to be confirmed in a larger series.

Similarly, Interleukin-1 receptor-associated kinase-like 2 (IRAK2),
which is a microglia marker gene, is downregulated in CDAM (Fig. S5, left
panel), confirming a literature report implicating IRAK2 in AD45. A mis-
sense variant in IRAK2 is associated with increased risk for AD in siblings
(OR = 8.9, P = 1.28E-06) suggesting that a decrease in gene expression,
possibly caused by variants in IRAK2, is a risk factor for AD.

Discussion
We have compiled multiple publicly available human microglia RNA-seq
datasets profiling microglia in health and disease states. This analysis led to
the identification of human microglial gene modules including core (high
expression in human microglia (compared to other cells, but not in disease
state), differentiation (high expression in differentiating human microglia),
LPS (high expression in LPS-induced, IPSC-derived microglia), and AD
(high expression inmicroglia fromADpatients)modules.Weexamined the
genes identified in our combined analysis to see if they were consistent with
previous reports on similar studies. Gosselin et al. 46 identified a core
microglial signature by comparing microglia to cortex, which is similar to
our approach for datasets 126 and 221. Human microglial set (upregulated
genes in both datasets 126 and 221) in our study overlaps with Gosselin et al.
over 70%. We also observed a similar overlap with the microglia signature
defined by Patir et al. 47. Genes that were previously identified as microglial
markers, such as TREM2, TYROBP, P2RY12,CSF1R, were also upregulated
in human microglial set (microglia vs other cells) in our analysis. We
observed that disease-associated genes, such as APOE, were highly expres-
sed in human microglia and upregulated in AD patients and LPS-induced
microglia. In addition to confirming known microglial markers, this ana-
lysis provides potential novel targets for investigation. For example, we
identified an upregulation of PARVG in human microglia compared to
other cells and observed a slight, but significant PARVG increase in AD,
LPS-induced microglia (Fig. 5d), and in our sc, CDAM cluster. PARVG
expression has been recently reported as higher in microglia compared to
other cells48, and upregulated in the brains of AD patients44. This and other
genes identified in our combined analysis could be considered for further
investigation.

Our study’s primary contribution lies in the integration of sc RNA
sequencing (scRNA-seq) data to identify a CDAM cluster. While previous
studies have defined disease-specificmicroglia clusters, our work does so by
amalgamating multiple datasets across different diseases. This analysis
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revealed a specific cluster of microglia (the CDAMmodule) associated with
neurodegenerative disease (AD, MS, PD), and showed upregulation of
several markers, including APOE and LRRK2, and downregulation of the
homeostaticmicrogliamarker P2YR12. One of the top upregulated genes in
CDAM was transforming growth factor beta-induced (TGFBI)
(log2FC = 15.1 and P-value = 1.27E-217). We found that this gene is highly
expressed in human microglia (compared to whole cortex), AD-MGL, and
LPS-induced microglia in our bulk RNA-seq analysis. A mouse study
showed that TGFBI promotes amyloid-beta clearance in microglia49, and a
2012 report showed that TGFBI is involved in amyloid aggregation in
corneal dystrophies50. Considering AD is an amyloid aggregation disease,
there could be a potential role of TGFBI in disease-associated microglia.

Dihydropyrimidine dehydrogenase (DPYD) has been recently repor-
ted as increased in human AD-associated microglia in bulk RNA-seq
analysis26. Our sc analysis also identifiedDPYD as the top expressed and the
most significant gene in CDAM (log2FC = 15.1 and P-value < 1E-304).

One of the topmarkers of CDAMwas a long noncoding RNA nuclear
enriched abundant transcript 1 (NEAT1) (log2FC = 3.3 and P-value = 6E-
304). The regulatory role ofNEAT1 in inflammation in the central nervous
system has been an interest of researchers in recent years51. A 2020 study
showed NEAT1 expression is upregulated in oxygen–glucose deprivation/
reoxygenation-inducedmicroglial cell culture52.NEAT1 regulation has also
been reported in stroke and PD studies51. Our study showed a NEAT1
upregulation in CDAM, warranting further study of this transcript.

In summary, our analysis provides valuable resources to be further
explored to understand the transcription profile of microglia in health and
disease.

One additional strength of this approach is the integrationwith human
genetics data. We examined the overlap between the gene sets we identified
based on transcriptional datawith signals fromGWASandExWAS in three
neurological diseases. Multiple microglial modules were significantly enri-
ched with GWAS variants for AD and MS, however, we didn’t observe

Fig. 4 | Common-variant enrichment analysis for microglial modules.
a Schematic of common variant analysis. Microglial module enrichment for com-
mon variants (minor allele frequency (MAF) > 1%) was tested byMAGMA analysis
using AD, MS, and PD GWAS summary statistics. b Summary of common variant
enrichment analysis. Bubble plot showing enrichment P-values obtained from
MAGMA analysis of each module for AD, MS, and PD GWAS studies. The size of

the dot represents the number of genes in eachmodule. P-values < 0.05 are shown in
red. cVolcano plot showing genes in CDAMmodule that are significantly associated
with the AD GWAS. d Bar plot showing PLCG2 gene expression changes in our
datasets (left). Breakdown of PLCG2 variants associated with AD or related
traits (right).
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significant enrichments in PD data. One reason could be that we did not
observe PD-specific microglial modules, unlike AD. Another possibility is
that this lack of overlap denotes a minor role of microglia in PD patho-
genesis.One of themoduleswith significant enrichment forADGWASand
ExWAS was CDAM. We focused on genes in this module and further
discovered the relationship between transcription and genetic variants
(Figs. 4 and 5). Other modules with significant enrichment in GWAS and
ExWAS can be individually explored in further studies.

We acknowledge the limitations of this study. First, we exclusively used
human microglia datasets, which limited the size of our meta-analysis.
Another potential problem is the technical variability due to the hetero-
geneity of tissue/cell processing, library preparation, and RNA isolation

techniques across studies. We addressed these issues by applying normal-
ization methods and outlier elimination at each step of the analysis. On the
other hand, since we used many different datasets from different labs,
consistent findings across various datasets bring a level of confidence for the
targets we identified.We also note that three out of four scRNA-seq studies
were derived from the cortex, while the PD sampleswere extracted from the
midbrain. This introduces an additional element of technical variability that
we were unable to account for in the scope of this study. Finally, the datasets
utilized in our study are derived from human postmortem brain tissue,
which can introduce additional confounders compared to freshly isolated
tissue53. In our sc analysis, we did not observe the artefactual signature
described byMarsh et al. 53 within specific clusters or datasets. However, it is

Fig. 5 | Rare-variant enrichment analysis for microglial modules. a Schematic of
rare variant analysis. Gene burden test was done formicroglial genes for rare variants
(MAF < 1%). Microglial module enrichment for rare variants was tested by Fisher’s
Exact Test using AD, MS, and PD ExWAS summary statistics. b Summary of rare
variant enrichment analysis. Bubble plot showing enrichment P-values obtained
from MAGMA analysis of each module for AD, MS, and PD ExWAS studies. The

size of the dot represents the number of genes in each module. P-values < 0.05 are
shown in red. cVolcano plot showing genes in CDAMmodule that are significantly
associated with AD ExWAS (rare variants). d Bar plot showing gene expression of
PARVG in our datasets (left). Breakdown of gene burdens in PARVG associated with
an AD-related trait (parental history of AD, right).
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important to note that a direct comparison between postmortem tissue and
freshly isolated tissue was not feasible in this study.

Another possible technical challenge in this study is the use of both sc
and sn RNA-seq data. It has been recently suggested that sn RNA-seq may
fail to detectmicroglial transcripts associated with disease states54, including
APOE, APOC1, and CST3. We examined the expression levels of the
transcripts characterized as “microglia activation genes depleted in the
single nucleus” from Thrupp et al. 54. We detected expression of this set of
transcripts in our disease-associated cluster (Fig. S6a), both in both sc (MS)
and sn datasets (AD, PD, and MS, Fig. S6b).

In conclusion, we have performed a multi-level analysis of human
microglia, identified microglial gene expression changes in health and dis-
ease, and discovered subclusters of microglia by combining several sc-level
microglial disease data sets. Using expression-based microglial markers, we
identified microglial genes with genetic associations for neurodegenerative
diseases includingAD,MS, andPD.This pipeline revealed knownandnovel
genes that are regulated in microglia and associated with disease. Our
findings provide a comprehensive resource to the field to investigate the
complexity of microglia in health and disease.

Methods
Dataset selection, data processing, and analysis for bulk
RNA-seq
Datasets were selected by applying two primary criteria. First, we required
the dataset to pertain to health or disease states, meaning the experiment
should represent a microglial state in a disease (AD, LPS, MS, and PD) or
healthy condition, such as development or differentiation. The second cri-
terion was technical suitability. We included RNA-seq datasets on RNA
isolated from humans (for scRNA-seq), or ex-vivo (for bulk RNA-seq).

Raw fastq files were downloaded from the NCBI GEO database (see
Supplementary Data 1 for accession numbers). Fastq files were pre-
processed for adapter trimming and filtering short reads using the
bbduk tool (http://jgi.doe.gov/data-and-tools/bb-tools/). STAR align-
ment tool was used to map fastq files to the human genome (GRCh38)
with the following parameters: STAR—runThreadN 24—out-
FilterMultimapNmax 1—outSAMtype BAM SortedByCoordinate—
quantMode TranscriptomeSAM55. RSeQC was used for QC56. Gene
counts were calculated in R by applying the summarizeOverlaps func-
tion on reads mapping to exonic regions. Library size normalization was
done by DESeq2 package by estimateSizeFactors57. Samples in each
dataset were clustered using Euclidean distance and Pearson correlation
using normalized read counts in order to identify outlier samples in R
with the pheatmap function.We employed an outlier removal strategy to
ensure the integrity of our RNA-seq data analysis. This strategy involved
both statistical and qualitative assessments to identify and exclude
outliers. Initially, we evaluated several quality control metrics for each
sample, including library size, library preparation, the percentage of
reads mapped to the genome and genes, and overall read quality scores.
Samples exhibiting low performance in any of thesemetrics were flagged
as potential outliers. We then performed clustering analysis on nor-
malized gene counts by DESeq2 for each data set using both Euclidean
distance and Pearson correlation metrics to visually observe samples
that significantly deviated from their assigned biological group with
pheatmap function in R. Samples exhibiting expression patterns that
were inconsistent with those of their biological group, particularly those
with a z-score exceeding ±3, were flagged as outliers. PCA plots were also
generated in R using the prcomp function to further validate and
visualize outlier samples in each dataset. ComBat batch effect adjust-
ment was applied to each dataset, and clustering and PCA analysis were
repeated.

After applying these initial criteria, we analyzed the data for differential
expression between groups, within each dataset, and only included those
with significant gene expression changes that overlapped with microglial-
enriched genes defined by Galatro et al. 21. and Srinivasan et al. 26 (Supple-
mentary Data 1 andNotes). Differential expression analysis was carried out

by DESeq2 when there were 2 conditions (Fig. S1a, d), using default para-
meters. Genes with an adjusted P-value less than 0.05 and a fold change
greater than 1.5-foldwere included in the downstreamanalysis (Fig. 1b, c)57.
ANOVAanalysiswas carried out formultiple groups (Fig. S1a, b heatmaps),
comparing one group (e.g., microglia) vs other groups (e.g., neuron,
endothelial, and astrocytes). Significant geneswere selected for downstream
analysis using the same criteria as DESeq2.

To combine datasets, genes with adjusted P-values less than 0.05 and
fold change greater than 1.5 in each dataset were included. UpSet plots were
generated to identify common genes across datasets (Fig. S1e).

Sc RNA-seq analysis
For each dataset, we used preprocessed 10X Genomics Cell Ranger
output aligned to GRCh38 human reference genome if available.
For Masuda et al., the processed gene count table was used. Gene
matrices were loaded into R using the Seurat package58. Each dataset
was individually processed for quality control, normalization,
dimension reduction, clustering, annotation, andmarker identification
using the Seurat package (Fig. S2). The ‘LogNormalize’ function in
the Seurat package was used for initial normalization. Filters for
Feature_RNA > 500 and nFeature_RNA < 2500 and percent.mt < 20
were applied to exclude low-quality cells. PCA, Uniform Manifold
Approximation and Projection (UMAP), and tSNE were used for
dimension reduction. If the dataset was not microglia-specific, we only
used identified microglia from each dataset. We further filtered cells by
requiring the expression of either CSF1R or P2RY12 before moving to
the next steps. We identified subclusters in each microglia dataset.

Two MS datasets were combined using SCTransform in the Seurat
package.MS-associated clusters in individual-level analysis (cluster 5 in Fig.
S1a and cluster 1 in Fig. S1d) clustered closely in the integrated analysis
(Fig. S2e), indicating that the two MS datasets were consistent with each
other. We then integrated all datasets using the SCTransform method in
Seurat. Clusters were identified after integration using the “FindClusters”
function with a resolution of 0.4. Cluster markers were identified using the
FindMarkers algorithm algorithm with “min.pct = 0.25” and “logfc.thres-
hold = 0.25” parameters.

To assess cluster robustness, we used chooseR59 and clustAssess60

(Fig. S7). We calculated Element-Centric similarity for different algorithms
in Seurat (Fig. S7a). In addition, we calculated co-clustering frequency and
silhouette score using chooseR (Fig. S7b).

Gene Ontology analysis was performed for each cluster marker using
GOStats and redundant terms were removed if there was more than 75%
overlap between terms61. Top Biological Process GO terms are reported
in Fig. 3c.

Common variant analysis
To aggregate common variants in each GWAS and apply gene sets analysis
we used the MAGMA (Multi-marker Analysis of GenoMic Annotation)
tool41,62. AD GWAS summary statistics were based on Jansen et al. 38. PD
summary statistics were based on Nalls et al. 40 and MS summary statistics
were based on the International MS Genetics Consortium 2019
publication39. ForMAGMA analysis, first, we annotated gene windows and
SNPs by following arguments: window = 35, 10. Then we performed the
gene-based analysis with the following parameters: --gene-model snp-
wise = top,1,000,000,000 use =Name, Pval ncol =N. Finally, we performed
pathway analysis byMAGMAusing gene-based results whichprovided aP-
value for each gene set and each gene within the gene set.

Rare variant analysis
Exome sequencing data from the UKBiobank were processed as previously
described42,63.

To performgene burden analysis, rare coding variantswere aggregated
per gene, based on different categories; (i) predicted loss of function (pLoF),
referred to as an “M1”burdenmask; (ii) pLoFormissense (“M2”); (iii) pLoF
ormissense variants predicted tobedeleterious by 5/5prediction algorithms
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(“M3”); (iv) pLoF or missense variants predicted to be deleterious by 1/5
prediction algorithms (“M4”)64.

Each of these variant-burden categories was tested at four thresholds
basedonminor allele frequencies: less than 1%, less than 0.5%, less than0.1%,
and less than 0.01%. We then selected the most significant P-value for each
gene across these thresholds. We recognize that selecting the lowest P-value
result for each gene skews thedistribution.However, our enrichment analysis
does not directly consider the gene burden test P-values. Instead, it compares
them in the gene set of interest versus the rest of themicroglial genes. Byusing
microglial genes as a background, we reduce bias in the enrichment analysis.
We then performed the Fisher’s Exact test by comparing the significant
burden in the microglial module vs the significant burden in the other gene.
The OR (greater than 1) and P-value (less than 0.01) were used to determine
whether therewas an overrepresentation of rare burden variants in each gene
set. This analysis was performed for each microglial module and all three
ExWAS (AD, MS, PD).

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The integrated sc RNA-seq data is available at https://aysegulguvenek.
shinyapps.io/shinyapp/, a web application created with R ShinyCell65. The
bulk RNA-seq datasets that were used in this study can be accessed through
NCBI GEO database with accession numbers; GSE125583 (Srinivasan et
al.), GSE99074 (Galatro et al.), GSE139194 (Svoboda et al.), GSE133434
(Hasselman et al.). For the scRNA-seqdata, accessionnumbers forGEOare
GSE120747 (Masuda et al.), GSE160936 (Smith et al.), GSE157783 (Smajic
et al.), and for the SequenceReadArchive (SRA) is PRJNA544731 (Schirmer
et al.). Source data to generate all the figures and plots are available as
Supplementary Data 8.

Code availability
Scripts used in this manuscript are available at: github.com/aguvenek/
human-microglia66.
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