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ACRISPR/Cas9 screen in embryonic stem
cells reveals thatMdm2 regulates
totipotency exit
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During early embryonic development, the transition from totipotency to pluripotency is a fundamental
and critical process for proper development. However, the regulatory mechanisms governing this
transition remain elusive. Here, we conducted a comprehensive genome-wide CRISPR/Cas9 screen
to investigate the 2-cell-like cells (2CLCs) phenotype in mouse embryonic stem cells (mESCs). This
effort led to the identification of ten regulators that play a pivotal role in determining cell fate during this
transition. Notably, our study revealedMdm2 as a significant negative regulator of 2CLCs, as
perturbation of Mdm2 resulted in a higher proportion of 2CLCs. Mdm2 appears to influence cell fate
through its impact on cell cycle progression andH3K27me3epigeneticmodifications. In summary, the
results of our CRISPR/Cas9 screen have uncovered several geneswith distinct functions in regulating
totipotency and pluripotency at various levels, offering a valuable resource for potential targets in
future molecular studies.

After fertilization, the zygote is formed through the successful fusion of an
egg cell with a sperm cell. The zygote undergoes a crucial transition,
initiating a novel transcriptional program to accommodate the intricate
demands of subsequent embryo development. In mouse, the significant
event, known as zygotic genome activation (ZGA), prominently unfolds
in two-cell (2C) embryos and activates 2C-specific genes such asDux and
Zscan41–4. After ZGA, the totipotent embryos later differentiate into either
extra-embryonic lineages or embryonic tissues, which marks a critical
point in the divergence of cell fates5. Accurate cellular fate determination
depends on the precise coordination of gene activation for subsequent
developmental phases and simultaneous suppression of genes linked to
earlier stages. Indeed, the specific regulators associated with these pro-
cesses have remained elusive. Consequently, deciphering the intricate
regulatory network governing totipotency and pluripotency in early
mammalian development represents a pivotal and compelling research
endeavor.

In the culture of mESCs, a small subset referred to as 2CLCs has
garnered significant attention owing to their exceptional capability to
display totipotency and transcriptional features reminiscent of 2C
embryos6. These 2CLCs were identified using the MERVL reporter and are
characterized by the specific expression of transcripts of Dux and Zscan4
clusters. The emergence of 2CLCs presents an excellent model system for
delving into the molecular mechanisms that regulate totipotency. Recent

research has revealed that certain epigenetic factors and 2C-specific genes
can influence the transition to a 2C-like state in mESCs based on
distinctive features shared with 2CLCs or 2C embryos, such as increased
chromatin mobility, chromocenter decondensation and transcriptional
characteristics2,3,7,8. Nevertheless, the comprehensive and precise under-
standing of the mechanism, particularly the processes facilitating the
transition from totipotency to pluripotency, remains incomplete.

Recently, Rodriguez-Terrones et al. conducted an siRNA screen tar-
geting epigenetic regulators, revealing the involvement of PRC1.6 and the
EP400–TIP60 complex in suppressing the 2C-like state9. However, the
inherent limitations of siRNA screens should be noted, as they often fail to
achieve complete gene expression downregulation. Additionally, the screen
was constrained by a limited repertoire of well-established pathways to
target. This highlights the potential existence of additional, yet undiscovered
factors that play a role in regulating totipotency. Later, Fu et al. employed a
CRISPR/Cas9 screen to investigate the regulators of 2CLCs’ transition in
mESCs with overexpressedDux10. Notably,Dux expression can activate 2C
genes and maintain totipotency, leading to a significant proportion of
2CLCs in mESCs, with rates reaching up to 50%. Consequently, the per-
sistent expression of Dux presents a challenge in screening for factors that
drive the transition from totipotency to pluripotency. This continuousDux
expression sustains the activation of totipotency genes, making it difficult to
facilitate their exit from this state.
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In order to deepen our understanding of cell fate transitions, we con-
ducted a comprehensive genome-wide CRISPR/Cas9 screen in mESCs
using the MERVL-tdTomato reporter system. Our screening identified
genes linked to cell metabolism, RNA biosynthesis, and the G1/S cell cycle
phase through deep sequencing of enriched sgRNApopulations. Validation
studies confirmed that these genes, which had not been previously reported,
serve as potential regulators of the transition between totipotency and
pluripotency. In particular, our research identified Mdm2 as a negative
regulator of totipotency. Disruptions of Mdm2 led to enhanced transcrip-
tional activity of both 2C genes, whileMdm2 overexpression had inhibitory
effects on these genes. Specifically, Mdm2 had the ability to shorten the
duration of theG1phase, indicating the transition to a pluripotent state, and
it could also elevate H3K27me3 modifications at Dux, which served as an
indicator of exiting the totipotent state. Taken together, our research
highlights the validity of our screening approach in identifying crucial
regulators that govern the transition between totipotency and pluripotency.

Results
Genome-wide CRISPR screen to identify regulators for resis-
tance to totipotency
To identify regulators that impede totipotency in mESCs, we conducted a
comprehensive genome-wide CRISPR/Cas9 screen. For this screening, we
developed a dual fluorescent reporter cell line, OCT4-GFP and MERVL-
tdTomato, in mESCs (Supplementary Fig. 1a). These cells were denoted as
OG2CT mESCs (Oct4-GFP-2C promoter-tdTomato mESCs), and they
exhibited a 0.5% population of 2CLCs (Supplementary Fig. 1b, c), a pro-
portion consistent with previous reports (Supplementary Fig. 1d)6,11. We
also detected the MERVL-tdTomato clones and observed the lack of
chromocenters, a characteristic noted in zygotes and 2-cell-stage embryos
(Supplementary Fig. 1e)12. Subsequently, we sorted GFP+ and tdTomato+
cells from OG2CT mESCs and performed RNA-seq analysis. The volcano
plot and heatmap analysis revealed that tdTomato+ cells upregulated
totipotency genes, while GFP+ cells exhibited high expression of plur-
ipotency markers (Supplementary Fig. 2a, b). This confirmed that OG2CT
mESCs were suitable for in vitro studies of totipotency. Next, we designed a
piggyBac sgRNA library comprising 13,000 sgRNAs to ensure compre-
hensive coverage of the functional genome13,14. We co-electroporated a
Cas9-expressing plasmid with the sgRNA library plasmid into OG2CT
mESCs (Fig. 1a). After 5 days of Neo treatment, we collected and expanded
the resistant positive mESCs to a scale of 3 × 108 cells for subsequent
screening. To assess the mutant cell pool, we amplified sgRNA cassettes
from the genome and performed deep sequencing. This mutant cell pool
covered ~89% of sgRNAs, achieving comprehensive genome coverage
(Supplementary Fig. 2c). In summary, we successfully constructed a
CRISPR/Cas9mutant library inOG2CTmESCs, providing ample coverage
for the screening of totipotency regulatory factors.

Following this, we conducted screening experiments by splitting the
mutant cell pool into three parallel experimental groups, resulting in a
significant increase in the proportion of 2CLCs (Fig. 1b). We isolated
tdTomato+ cells from each group to identify key negative regulators.
Genomic DNAwas extracted and subjected to deep sequencing, revealing a
decrease in sgRNA counts during screening (Supplementary Fig. 2c). Using
the MAGeCK algorithm, we assessed sgRNA enrichment and identified
several negative regulators associatedwith the transition to a 2C-like state in
mESCs, including Zmym2 and Mga8,9,15. Gene ontology and Kyoto Ency-
clopedia of Genes and Genomes analyses indicated that the enriched genes
were associatedwith cellmetabolism, RNA synthesis and the oocytemeiosis
pathway, which are crucial for totipotency regulation (Fig. 1c, d)16–18.

To identify candidate genes, we utilized a combination of the
MAGeCK algorithm and Z-scores to evaluate our screening results. In
addition to the highly ranked overlapping genes, we also considered genes
associatedwith specific pathways such as the glycolysis pathway.As a result,
we selected18hits forCRISPRKOvalidationbasedonpathwayanalysis and
ranking. The selected hits included Thoc1, Tcl1, Mnt, H1foo, Zmym2,

Ddx49, Baz1a, Ppp2r2c, Olfr867, Ttc12, Mapk10, Map2k3, Slc26a4, Orai1,
Mdm2, Uhrf1, Zfp93 and Eno3 (Fig. 1e).

Identification of the candidates in totipotency regulation
Tovalidatewhether the candidate genes regulate totipotency,we transfected
sgRNAs into mESCs containing the MERVL reporter. While most of these
candidates successfully established CRISPR KO cell lines, we encountered
significant challenges in generating homozygousMdm2 KO cell lines. This
observation aligns with existing literature suggesting that the loss ofMdm2
in mouse embryos can lead to lethality around E3.519,20. As a result, we
selected heterozygous Mdm2 knockdown cell lines for subsequent valida-
tion. We quantified the proportion of 2CLCs using FACS analysis in each
cell line (Fig. 2a). Ten candidates showed an increase in the proportion of
2CLCs (Fig. 2b). These ten hits included Mdm2, Tcl1, Zmym2, Ttc12,
Olfr867,Mapk10, H1foo,Map2k3, Orai1 and Eno3. Our findings validated
the enrichment of potential totipotency regulators identified in our
screening. Subsequently, we conducted separate quantitative PCR (qPCR)
analyses to measure the expression levels of pluripotency and totipotency
genes in the cell lines of the ten hits. After perturbing tenhits, the expression
of totipotency markers was upregulated, consistent with the FACS results
(Fig. 2c–l). Interestingly, the expression of pluripotency genes was not
uniformly downregulated (Supplementary Fig. 3a–j), which may be
attributed to the different modes of action of these regulators. Among the
ten genes that were further validated, perturbation of Mdm2, Tcl1 and
Zmym2 exhibited the most significant effects in totipotency regulation.

Mdm2 is required for totipotency exit
We focused on the function ofMdm2 as a negative regulator of 2C genes.
When we used CRISPR/Cas9 to generateMdm2-deficient mESCs, the cell
morphology did not show significant differences compared to the wild type
(Supplementary Fig. 4a). Western blot analysis revealed a significant
decrease inMdm2 expression levels in three different clones (Fig. 3a). After
perturbing Mdm2, we observed a further downregulation of several plur-
ipotency genes (Supplementary Fig. 4b).We culturedMdm2KDmESCs for
an extended period to detect whether the proportion of 2CLCs could be
maintained. FACS analysis revealed that mESCs maintained a higher pro-
portion of 2CLCs for up to 50days and 17passages, indicating that the effect
ofMdm2deficiency on totipotencywas stable (Fig. 3b).We also conducted a
chimera assay to assess the developmental potential ofMdm2 KD mESCs.
Subsequently, we evaluated the differentiation capabilities of these
tdTomato-positive cells. Our findings revealed that Mdm2 KD mESCs
demonstrated a notable capacity to integrate into the extra-embryonic
trophectoderm in ~17% of chimeric blastocysts. In contrast, WT mESCs
were exclusively observed to contribute to the inner cell mass in all blas-
tocysts (Fig. 3c–e). To further demonstrate the capacity of Mdm2 knock-
down to induce 2CLCs, we performed RNA-seq. We found that the
expression levels of totipotency genes, includingDux and theZscan4 cluster
genes, increased, while the expression of several pluripotency genes was
downregulated, consistent with the quantitative results following Mdm2
knockdown (Figs. 2d and 3f, g). Meanwhile, RNA-seq analysis showed the
upregulation of the ZGA gene set and the downregulation of the spliceo-
some gene set, in line with previously published data (Fig. 3h, Supple-
mentary Fig. 4c)21.Aprevious study reported that the transitionofmESCs to
2CLCs occurs in two steps: first, pluripotent genes were downregulated, and
then totipotency genes were upregulated10. Therefore, we investigated at
which stepMdm2 impeded the transition to 2CLCs. To test this, we iden-
tified significantly different genes in sgMdm2 mESCs (|FC| > 2 and P
value < 0.05).We found that 43of the activated genes afterMdm2deficiency
belonged to the 2C-upregulated gene set, and 46 of the repressed genes after
Mdm2 deficiency belonged to the 2C-downregulated gene set, suggesting
that there was no significant difference in the number of activated or
repressed genes (Supplementary Fig. 4d). However, the expression changes
were more pronounced in 2C-upregulated genes and 2C-downregulated
genes after Mdm2 deficiency, indicating that Mdm2 may preferentially
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Fig. 2 | Validation of potential regulators for 2CLCs. a FACS analysis demon-
strated the population of MERVL-tdTomato reporter upon CRISPR/Cas9 pertur-
bation of 18 candidate genes. b The fold change of 2CLCs proportion for 18
candidates compared to WT. n =3 biological replicates. The data were mean ± SD.
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gene knockout cell lines. n = 3 biological replicates. The data were mean ± SD. Data
are analyzed by Student’s t-test. *P < 0.05, **P < 0.01, ***P < 0.001 and
****P < 0.0001.
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regulate the proportion of 2CLCs by targeting 2C-upregulated genes
(Supplementary Fig. 4e). Furthermore, we successfully constructed a flag-
tagged Mdm2 into mESCs (Fig. 3i). The overexpression of Mdm2 led to a
significant downregulation of totipotency genes (Fig. 3j). These cumulative
findings strongly supported the role of Mdm2 as a negative regulator of
2CLCs and as an impediment to the totipotency state.

Mdm2 deficiency causes cell cycle arrest at G1 phase
Gene set enrichment analysis (GSEA) analysis showed a notable reduction
in the cell cycle gene set in Mdm2 KD mESCs when compared to WT
mESCs. This reduction is consistent with the downregulation observed in

2CLCs versusWTmESCs (Supplementary Fig. 5a, b). Furthermore, in line
with theGSEA results,Mdm2 knockdown led to decreased cell proliferation
compared to mESCs (Supplementary Fig. 5c). To comprehend the role of
Mdm2 in cell cycle regulation,we analyzed the proportions of cells inMdm2
KD,Mdm2OE andWTmESCs.We observed significant changes in theG1
phase (Fig. 4a, b). The reduction of Mdm2 expression resulted in an
increased proportion of mESCs arrested in the G1 phase, promoting the
emergence of a 2C-like state18. Conversely, the overexpression ofMdm2 led
to a shortened G1 phase, a characteristic feature of pluripotency22. Next, we
sought to confirm the functional role of Mdm2 by subjecting mESCs to
Nutlin-3 treatment, a specific inhibitor ofMdm223. Initially, we assessed the
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impact of different concentrations of Nutlin-3 and found that 10 μM
Nutlin-3 significantly induced a substantial proportion of 2CLCs (Fig. 4c).
Notably, exposure to Nutlin-3 resulted in a pronounced cell cycle arrest at
the G1 phase (Fig. 4d, e). Consistent with these observations, we observed a
significant upregulation of 2C genes following Nutlin-3 treatment (Fig. 4f).
In summary, the cumulative data strongly suggested thatMdm2 deficiency
had the potential to initiate totipotency activation by inducing cell cycle
arrest at the G1 phase18,24,25.

Mdm2 affects H3K27me3 modification at Dux locus
Dux functions as a master activator of the 2C-like state. Initially, we sought
to determine whetherMdm2, as a transcription factor, would bind to Dux.
Using FLAG CUT&Tag in Mdm2 OE mESCs, we found no evidence of
Mdm2 occupancy at the Dux locus or other 2C genes such as Zscan4. This
led us to hypothesize that Mdm2 might exert its regulatory role in the
totipotency state through alternative nuclear mechanisms. Recent studies
have reported an interaction between Mdm2 and the polycomb repressor
complex 2 (PRC2), which enhances the trimethylation of histone H3 lysine
27 (H3K27me3)26,27. To investigate the interaction between MDM2 and
PRC2, we conducted co-immunoprecipitation (Co-IP) assays in 293T cells.
Our results indicated that the SUZ12 antibody, a core component of PRC2,
selectively precipitated MDM2. Reciprocal Co-IP experiments further
demonstrated thatMDM2was able to co-precipitate SUZ12aswell (Fig. 5a).
To investigate this further,we assessed the levels ofH3K27me3modification
inMdm2KD,Mdm2OE andWTmESCs. Our observations demonstrated
thatMdm2 perturbation reduced H3K27me3 modification levels, particu-
larly at the Dux locus, while Mdm2 overexpression increased H3K27me3
levels at the Dux locus (Fig. 5b). Furthermore, upon knocking down Dux
using siRNA in theMdm2 KD mESCs, we found that the upregulation of
totipotency geneswas abolished (Fig. 5c). This indicated thatMdm2had the
potential to enhance H3K27me3 modification by influencing Dux expres-
sion, thereby influencing the regulationof totipotency.Westernblot analysis
unveiled no substantial alteration in the global H3K27me3 modification
levels in bothMdm2 KD andMdm2 OE mESCs (Supplementary Fig. 6a).
We further scrutinized H3K27me3 modifications within the promoter
region, and theoutcomes indicated a lackof statistical significance across the
specified mESCs (Supplementary Fig. 6b). These observations collectively
suggested that Mdm2 selectively inhibited Dux expression through its
H3K27me3-mediated regulatory mechanism.

Some literature has described the H3K27me3 profile in mouse pre-
implantation embryos, revealing that the H3K27me3 features in the 2CLCs
resemble those of mESCsmore closely than 2C embryos. This suggests that
only a few critical genes acquire the 2C embryo-specific epigenetic sig-
natures during the transition to the 2C-like state28,29. Given these observa-
tions, we investigated whether H3K27me3 modification levels influenced
the 2C-like state. The PRC2 complex is responsible for H3K27methylation
and the production of H3K27me3modification30. In mouse early embryos,
we observed the expression of core PRC2 subunits, namely EZH2, SUZ12
and EED (Supplementary Fig. 6c)31. Notably, Suz12 exhibited strong
expression in 2-cell embryos and maintained high expression in the inner
cell mass (ICM). Therefore, we focused on the function of Suz12 and found
that Suz12 knockout resulted in the erasure of overall H3K27me3 inmESCs
(Fig. 5d). Depletion of Suz12 also led to an increased proportion of 2CLCs
and elevated expression levels of 2C genes (Fig. 5e, f). To gain further insight
about Suz12, we reanalyzed H3K27me3 epigenomic datasets in Suz12
knockout mESCs32. We observed a decrease in H3K27me3 intensity spe-
cifically at the Dux locus in Suz12 knockout compared to WT mESCs,
resulting in a profile more similar to 2C embryos than mESCs (Fig. 5g)28,29.
Conversely, H3K27me3 binding to other 2C key genes, such asZscan4c and
Zscan4d, remained unaffected following Suz12 knockout (Supplementary
Fig. 6d). Furthermore, upon evaluating the H3K27me3 profiles of plur-
ipotent genes, we observed an augmentation rather than a reduction in
H3K27me3 modification. This heightened modification could conceivably
impede pluripotent genes, thereby facilitating the emergence of the 2C-like
state (Supplementary Fig. 6e). To further validate the contribution of

H3K27me3 modification during embryonic development, we treated
zygotes with EED226, a specific inhibitor of the PRC2 complex33. This
treatment resulted in a delay in zygote development in vitro (Fig. 5h, i).
These results underscore the significance of H3K27me3 in regulating toti-
potency and Mdm2 could dictate cell fate by H3K27me3 modification
at Dux.

Mdm2 deficiency influences embryonic development
Dux exhibits elevated expression levels in 2C embryos, corresponding to the
early developmental phases characterized by active ZGA, and subsequently,
its expression is downregulated and ultimately silenced34. We assessed the
expression levels of Mdm2 in pre-implantation embryos31 and observed a
decrease inMdm2 expressionduring the 2-cell stage, followedbyan increase
at the 4-cell stage, in contrast to the expression pattern ofDux (Fig. 6a). This
suggested that the upregulation ofMdm2 was required for the termination
of ZGA and the exit from the totipotent state. To gain deeper insights into
the role ofMdm2 in early embryodevelopment,we treated single-cellmouse
fertilized embryos with Nutlin-3. Remarkably, Nutlin-3 had a significant
adverse effect on the development of early mouse embryos, resulting in a
higher number of embryos arrested at the 2-cell stage (Fig. 6b, c). This
observation underscored the essential role ofMdm2 in the process of pre-
implantation embryo development. Given the critical involvement of
Mdm2 in the regulation of ZGAand subsequent embryonic development in
mouse embryos, we sought to explore whether a similar mechanism oper-
ates in porcine embryos. Porcine ZGA occurred during the four- to eight-
cell stages35.Our investigation into the expressionprofiles ofMDM2and the
porcine double homeobox gene, DUXA, revealed expression patterns clo-
sely resembling those observed in mice (Fig. 6d)36. As expected, the group
treatedwithNutlin-3 exhibited a reducedblastocyst development rate, and a
higher proportion of embryos were arrested at the early embryos state
(Fig. 6e, f). In conclusion, the mechanism of Mdm2-mediated regulation
appeared to be conserved betweenmice and porcine, highlighting its critical
significance in mammalian embryo development.

Discussion
Here, we performed a genome-wide CRISPR KO screen to elucidate the
precise regulation of totipotency and pluripotency by employing totipotent-
like models in mESCs. In contrast to previous CRISPR KO screens, our
screen did not rely on totipotency activators for completion10. This method
presented challenges,mainly due to technical difficulties stemming from the
lower proportion of 2CLCs. To address these challenges, we expanded the
mutant pool to encompass 3 × 108 cells. Our screen achieved a successful
identification of authentic hits, which are well-recognized for their invol-
vement in orchestrating the transitionof totipotency andpluripotency, such
as Zmym2, Uhrf1, Mga10,15,37. We carefully selected 18 candidates for vali-
dation, and nearly 50% of the candidates were perturbed to effectively
increase the proportion of 2CLCs, thereby uncovering several factors pre-
viously unassociated with the 2C-like state. These candidates arise from
disparate pathways; however, they may exhibit interconnections. We have
observed thatNutlin-3, an inhibitor targetingMdm2, possesses the ability to
reduce Tcl1 expression in primary B chronic lymphocytic leukemia cells38.
Tcl1, recognized as a crucial pluripotency factor, was recently reported to
facilitate metabolic shifts implicated in the transition to the totipotent
state16,39. Our screening has unveiled that, besides Tcl1’s involvement in
energy transition promotion, Eno3, an enzyme associated with glycolysis,
acts as a regulator of totipotency. Additionally, our findings suggested that
these candidates played a role in modulating Dux expression, potentially
positioning them as regulators acting upstream of Dux. Therefore, a more
in-depth analysis of these newly identified candidates promises to provide
profound insights into the underlying network of totipotency.

In our validation studies, we noted a significantly higher proportion of
2CLCs, with a remarkable tenfold increase observed following the pertur-
bation ofMdm2, Tcl1 and Zmym2. Furthermore, the perturbation of these
factors exerted anotable influenceon the expressionof genes associatedwith
both totipotency and pluripotency. Zmym2 had been previously identified,
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and its knockout was found to result in compromised transitions from
totipotency to pluripotency15.Zmym2 facilitated the recruitment ofHDAC-
containing complexes, leading to their binding to MERVL and subsequent
repression of MERVL expression. Therefore, further investigations are
necessary to study other unreported factors.

Mdm2 is traditionally known as a primary inhibitor of P53 and many
studies develop Mdm2 inhibitors to activate P53 for cancer treatment40.
Recent studies have shown thatMdm2 individual function independent of
P53 and its knockout in P53 deficiency also promotes cancer cell death27,41.
Obviously,Mdm2 and P53 are highly valued in cancer therapy. Recently, a
report has elucidated that P53 serves as a definitive activator of Dux to
induce 2CLCs42. This discovery suggests that Mdm2 may regulate 2CLCs
through its interaction with P53. However, the exact role ofMdm2 in this
scenario has not been fully understood until now.

Our study observed a contrasting pattern in the expression levels of
Mdm2 during the 2-cell and 4-cell developmental stages, which differed
from that of Dux, which is 2C activators. This discrepancy suggested the
necessity ofMdm2 emergence for the transition out of totipotency.Mdm2
played a dual role in cellular processes. First, it exhibited the capacity to
modulate the cell cycle, thereby influencing cell fate determination.Mdm2
induced a speeding up of the G1 phase, leading to the establishment of the
pluripotent state18,43,44. The control of the cell cycle is crucial for tightly
regulating cell numbers in early embryo development and it also plays a
fundamental role in governing the balance between self-renewal and dif-
ferentiation in stem cells. Second, Mdm2 facilitated the augmentation of
H3K27me3 modifications, particularly at the Dux locus to facilitating the
exit of totipotency. This histonemodification, H3K27me3, is recognized for
its role in gene silencing45,46. And Mdm2 KO embryos display post-
implantation lethality at E3.519,20. These data signify that Mdm2 activity
primarily played a vital role in early embryos and is essential for ensuring
normal embryo development.

In summary, our findings support a novel model that underscores the
pivotal role ofMdm2 in orchestrating the precise transition of totipotency to
pluripotencywhile preventing its protracted totipotent state.This regulatory
function is paramount for the successful advancement of pre-implantation
development (Fig. 6g). Notably, our observations in pig embryos revealed
that Nutlin-3, an inhibitor of Mdm2, treatment could impede pre-
implantation development, suggesting a conserved mechanism of Mdm2-
mediated ZGA regulation across mammalian species. Furthermore, our
screening efforts unveiled a spectrum of negative factors implicated in
totipotency and the 2CLCs, thus contributing to illuminate an expanded
regulatory network.

Materials and methods
Mice
All mice were housed at the China Agricultural University Laboratory
Animals Resource Center, where they were subjected to a standard
light–dark cycle of 12 h each, andmaintained at a temperature of 20–22 °C.
All animal experiments were conducted in Sen Wu’s laboratory and were
approved by the Institutional Animal Care and Use Committee of China
Agricultural University (Approval Number: SKLAB-2012-11). We have
compliedwith all relevant ethical regulations for animal use.The5weeksold
female ICRmicewere procured fromBeijingVital RiverLaboratoryAnimal
Technology.

Cell culture
The OG cell lines were maintained on feeder cells using a basic serum/LIF
medium. This medium comprised DMEM (Gibco, 10829018), 15% FBS
(Gibco, 10099), 1% penicillin/streptomycin (Gibco, 15104122), 1% non-
essential aminoacids (Gibco, 11140050), 1%GlutaMAX(Gibco, 35050079),
106 units/L of mouse LIF (Millipore, ESG1106) and 100mM β-
mercaptoethanol (Gibco, 15104122). The feeder cells were treated with
mitomycinC (Amresco,MJ594) to inhibit their growth andwere cultured in
DMEM (Gibco, 11960) supplemented with 10% FBS (Gibco, 10099), 1%
penicillin/streptomycin (Gibco, 15104122), 1% non-essential amino acids

(Gibco, 11140050) and1%sodiumpyruvate (Gibco, 15104122).Other small
molecules mentioned in our article were procured from Selleck and added
individually to the basal serum/LIF medium at varying concentrations.
Subculturing of all cell lines was performed every 2–3 days at a ratio ranging
from 1:6 to 1:10 using Tryple (Gibco, 12605028). To establish theMERVL-
tdTomato reporter cell lines, the OG cell lines underwent transfection via
electroporation and were subsequently selected using 1 µg/ml puromycin
for 7 days. Clones were then isolated and confirmed through polymerase
chain reaction (PCR) analysis. All cell linesweremaintained in a humidified
incubator at 37 °C with 5% CO2.

Genome-wide CRISPR KO screens
The CRISPR-Cas9 DNA library contained 130,209 sgRNAs about 20,611
genes constructed by our laboratory. To obtain the mutant cell library, we
transfected 108 OG cells with the MERVL reporter by electroporation (2B
Nucleofector System, Lonza). After 24 h transfection, the cells were selected
with 350 ng/µl G418 (InvivoGen, ant-gn-5) for 7 days. We expanded these
cells to 3 × 108 for primary screen. We collected 2C-positive cells using
FACS and amplified them for consecutive screen. Each round of screening
was repeated three times. Medium needed to be changed every day.

Genomic DNA were extracted from 108 cells of the mutant cell pool
and 5–10 × 106 cells of 2C-postive from the consecutive screen. The inte-
grated sgRNA sequences were amplified by PCR using Gotaq DNA Poly-
merase (Mei5bio, MF002) with the left primer (5′-AATGATACGG
CGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCG
ATCTNNNNNNNNTGAAAGTATTTCGATTTCTTGG-3′) and the
right primer (5′- CAAGCAGAAGACGGCATACGAGATNNNNNNNN
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTGTTGATAAC
GGACTAGCCTTATT-3′). Then PCR products were purified and
sequenced by Illumina HiSeq TM4000. We used MAGeCK package to
analyze our screening results and took Z-score into consideration. Ggplot2
was used to summarize these results.

Generation of CRISPR KO cells
To generate CRISPRKOcells, we designed two sgRNAs for each target gene
and cloned them into the pSg6 Plasmid. Subsequently, we transfected 106

mESCs using the Lonza 2B Nucleofector System. Twenty-four hours after
transfection, cells were subjected to selection with 350 ng/µl G418 for a
durationof 7days. Following selection, individual cloneswere isolated into a
48-well plate, and their targeted regions were verified. Detailed sequences of
the sgRNAs can be found in Table S1.

Overexpression of MDM2 in mESCs
Total RNA was extracted to amplify the CDS of Mdm2 by PCR. Subse-
quently, the amplified fragment was cloned into the PB vector under the
control of the EF1α promoter. A total of 4 µg of the vector was transfected
into 106 mESCs using the Lonza 2B Nucleofector System. Following
transfection, mESCs were cultured for 24 h and then subjected to selection
with 350 ng/µl G418 for a period of 7 days. Clones were subsequently
isolated and expanded in a 48-well plate to allow for the extraction of RNA
and protein.

RNA extraction and qPCR
Total RNA was extracted from cells using the RaPure Total RNA Kits
(Magene, R4011) following themanufacturer’s protocol. Subsequently, 1 µg
of RNA was reverse transcribed into cDNA using the ABScript III RT
Master Mix (Abclonal, RK20429). qPCR was conducted using the 2x
RealStar Green Power Mix (Genestar, A311-10) on a Roche PCRmachine.
The relative quantification of each gene was achieved by normalizing to
Gapdh. A complete list of primers utilized for qPCR can be found in
Table S2.

RNA sequencing and bioinformatics analysis
Total RNAwas purified usingmagnetic beads withOligo (dT) to selectively
isolate mRNA. RNA-seq libraries were subsequently constructed and
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assessed using a combination of TIANGEN Biotech and the Agilent 2100
BioAnalyzer. The sequencing process generated 150 bp paired-end reads
using PE150 on an Illumina platform. To analyze the data, clean reads were
mapped to the Mus musculus genome using HISAT2. Read counts were
quantified using HTSeq-count (v0.6.0) and then normalized to obtain the
Fragments Per Kilobase of transcript sequence per Millions base pairs
sequenced (FPKM) values. Differentially expressed genes (DEGs) were
identified using edgeR with criteria including an absolute log2 (fold
change) > 2 and a p value < 0.05. Subsequently, the datasets were further
analyzed using the R programming language.

Flow cytometry
Cell sorting and analysis were carried out using the FACS CaliburTM flow
cytometer (BD, San Jose, CA,USA).Data visualizationwas conducted using
FlowJo software version 10. For our gating strategy, we employed wild-type
(WT) mESCs with the MERVL reporter.

Co-immunoprecipitation
Collect 293T cells cultured in 10 cm culture dishes using 1mL of IP lysis
buffer (Beyotime, P0037), and transfer them to 1.5mL centrifuge tubes. Let
them lyse on ice for 30min. After centrifugation at maximum speed (4 °C,
21,100 g, 10min), collect the supernatant for subsequentCo-IP experiments.
Supernatantswere incubatedwithPierce™beads (ThermoScientific™, 88802)
for 6–8 h at 4 °C with rotation. Antibodies used include FLAG (Sigma,
F1804, 1:200 mouse) and HA (Beyotime, AH158, 1:200 mouse), IgG
(Beyotime, A7028, 1:200 mouse). The protein solution collected was dena-
tured at 95 °C for 10min using 10% SDS–PAGE for western blot analysis.

Western blotting
The cells were lysed using IP lysis buffer supplemented with 100× PMSF and
incubated on ice for 30min. The supernatantwas obtained by centrifuging at
4 °C and 20,000 × g for 15min. To determine protein concentration, we
utilized the BCA protein assay kit (Beyotime, P0012) according to the
manufacturer’s instructions. Equal amounts of protein were denatured using
10%SDS–PAGE.Forwesternblotting, the followingprimary antibodieswere
used: MDM2 (Abcam, ab259265, 1:1000 rabbit), SUZ12 (Cell Signal Tech-
nology, 3737, 1:1000 rabbit), ACTIN (Beyotime, AA128, 1:1000 mouse),
TUBULIN (Beyotime, AF2835, 1:1000 mouse), HA (Beyotime, AH158,
1:1000mouse), FLAG(Sigma,F1804, 1:1000mouse),H3 (Elabscience,E-AB-
22003, 1:1000 mouse) and H3K27me3 (Sigma, 07-449, 1:10,000 rabbit).

Immunofluorescence
Embryos were subjected to fixation with 4% paraformaldehyde for a
duration of 30min and subsequent permeabilization using 0.5% Triton
X-100 for 30min at room temperature. Blocking of embryos was treated
with 1% BSA in PBS supplemented with 0.1% Tween 20, lasting for 60min
at room temperature. IncubationwithCDX2primary antibodies (Biogenex,
MU392A, 1:200mouse) occurred overnight at 4 °C, followed by incubation
with secondary antibodies (Invitrogen, A32723, 1:500) for 1 h at room
temperature. Lastly, the nuclei of the embryos were stained with DAPI
(Beyotime, P0131), and images were acquired using the fluorescence
microscope.

Cell cycle analysis
Cells were fixed by incubating with 70% ethanol at −20 °C overnight. The
next day, the fixed cells were centrifuged at 4 °C, 300 × g, and washed once
withPBS.Afterward,RNaseA treatmentwasperformedat 37 °C for 30min.
Finally, the cells were stainedwith propidium iodide (PI) at 4 °C for 30min.
Cell cycle analysis was performed using a BD flow cytometer, and the data
were analyzedwithModfit LT software to determine the distribution of cells
across different phases of the cell cycle.

Nutlin-3 treatment
To inhibit the expression of Mdm2 in pre-ZGA embryos, zygotes were
cultured in KSOM or HM medium supplemented with Nutlin-3 (Selleck,

S1061) at a final concentration of 5 μM. DMSO was included as a negative
control. The embryos were cultured at 37 °C andmonitored daily until they
reached the blastocyst stage.

CUT&Tag
CUT&Tag assay was conducted using the NovoNGS CUT&Tag 3.0 High-
Sensitivity Kit (Novoprotein, N259). Approximately 1 × 105 mESCs were
incubated with 10 μL of Binding ConA beads. Primary antibodies targeting
FLAG (Sigma, F1804, 1:50 mouse) and H3K27me3 (Sigma, 07-449, 1:100,
rabbit) were incubated overnight at 4 °C. Subsequently, secondary anti-
bodies were added, and themixture was incubated at room temperature for
1 h. Following this, the samples were treated with 1 μL of Transposome and
incubated at room temperature for 1 h. DNA was then collected for sub-
sequent PCR analysis. The libraries were amplified and subjected to
sequencing using the Illumina NovaSeq PE150 platform following the
manufacturer’s instructions.

ChIP-seq and CUT&Tag data analysis
The raw data underwent quality filtering using Trimmomatic to obtain
clean data. These clean data were then aligned to the mm10 genome using
Bowtie2. For the identificationof peaks,weutilizedMACS2.Heatmapswere
generated using Deeptools, and ChIPseeker was employed to annotate the
promoters.

Public datasets reanalyzed
Weconducted a re-analysis of publicly available datasets.H3K27me3ChIP-
seqdata formESCsandSUZ12KOmESCswere obtained fromGSE103685.
Additionally, H3K27me3 modification data for 2C embryos were acquired
from GSE73952, and RNA-seq data for mouse and pig pre-implantation
embryos were retrieved from GSE71434 and GSE163709.

Statistics and reproducibility
The statistical differences were analyzed by the Student’s t-test when two
independent groups were compared. Data are displayed in a bar graph with
error bars representing themean ± SDand individual sample points shown.
GraphPad Prism was used for the statistical analysis of data. *P < 0.05,
**P < 0.01,***P < 0.001 and****P < 0.0001.Three independent biological
replicates were included and the figure legends specify the sample sizes.

Reporting summary
Detailed information on the research design can be found in the Nature
Portfolio Reporting Summary associated with this article.

Data availability
Additional data are accessible from the corresponding authors. Supple-
mentary Fig. S8 contains uncroppedblot images. Source data underlying the
article’s graphs and Supplementary Information can be found in Supple-
mentary Data 1. The RNA-seq and Cut Tag data produced in this study are
available at GEO with accession numbers GSE269168 and GSE269169.
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