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Regulation of endocrine cell alternative
splicing revealed by single-cell RNA
sequencing in type 2 diabetes
pathogenesis

Check for updates

Jin Wang 1,6 , Shiyi Wen1,6, Minqi Chen 2,6, Jiayi Xie 2, Xinhua Lou3, Haihan Zhao3, Yanming Chen1,4,
Meng Zhao 2 & Guojun Shi 1,4,5

The prevalent RNA alternative splicing (AS) contributes to molecular diversity, which has been
demonstrated in cellular function regulation and disease pathogenesis. However, the contribution of
AS in pancreatic islets during diabetes progression remains unclear. Here, we reanalyze the full-length
single-cell RNA sequencing data from the deposited database to investigate AS regulation across
human pancreatic endocrine cell types in non-diabetic (ND) and type 2 diabetic (T2D) individuals. Our
analysis demonstrates the significant association between transcriptomic AS profiles and cell-type-
specificity, which could be applied to distinguish the clustering of major endocrine cell types.
Moreover, AS profiles are enabled to clearly define the mature subset of β-cells in healthy controls,
which is completely lost in T2D. Further analysis reveals that RNA-binding proteins (RBPs),
heterogeneous nuclear ribonucleoproteins (hnRNPs) andFXR1 family proteins are predicted to induce
the functional impairment of β-cells through regulating AS profiles. Finally, trajectory analysis of
endocrine cells suggests the β-cell identity shift through dedifferentiation and transdifferentiation of
β-cells during the progression of T2D. Together, our study provides amechanism for regulating β-cell
functions and suggests the significant contribution of AS program during diabetes pathogenesis.

Type 2 diabetes (T2D) is a chronic metabolic disease characterized by
insulin resistance and defective insulin secretion resulting from a loss of
β-cell function and cell mass1,2. Alternative splicing (AS) refers to a process
of producing different mRNA isoforms from one gene, contributing to
transcriptomic and proteomic diversity3, while more than 95% of the genes
undergo alternative splicing, and some 50% of disease-related mutations
influence splicing4–6. Interestingly, previous reports have demonstrated that
AS was linked to obesity, insulin resistance, and diabetes7–10.

Aberrantly spliced genes were identified to associate with diabetes11–13.
It has been reported that the shorter human insulin receptor isoform can
prevent downstream insulin signaling, which impairs β-cell survival14.

Exon-skipped Glucokinase (GCK), which is required for glucose-6-
phosphate (G6P) formation to regulate insulin secretion15, relates to
diabetes16,17. The aberrant splicing of PAX4 impairs PAX4 to repress insulin
and glucagon by targeting their gene promoters, which increases apoptosis
in β-cells upon high glucose exposure18. The increase of VEGF165b, which
results from the aberrant splicing of VEGF, may impair angiogenesis, and
further impede wound healing in diabetes19.

Splicing factors are essential in regulating RNA splicing by recognizing
specific cis-regulatory sequences20. The expression levels of some spliceo-
some andRNAbinding proteins (RBPs), whichwere significantly altered in
insulin-resistant or T2D donors, were associated with the progress of the
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disease21,22. Splicing factors, NOVA1, NOVA2, ELAVL4, PRFP8/PRP8, etc.,
which encode splicing factors or major spliceosomes, regulate insulin
secretion or β-cell survivals10,23. Several RBPs, such as hnRNPs, HuR, and
LIN28, have also been linked to diabetes anddiabetic complications21. These
observations add alternative splicing regulators as a novel layer of regulation
in diabetes.

Transcriptomic analysis of islets from diabetes-resistant and diabetes-
susceptible obese mice revealed that AS events were linked to insulin
secretion, which might be modulated by the 54 identified histones and
chromatin modifiers24. A recent study discovered that pro-inflammatory
cytokine treatment in islet cells induced changes in alternative splicing25,
which was associated with ~900 stimulus-specific splicing events with the
majority of them involving a skipped exon9. Moreover, the skipped exon in
HLA-II, which might be regulated by SRSF2, was confirmed in β-cells9.
However, the transcriptomic splicing profiles remain poorly characterized
in endocrine cells of T2D at the single-cell level.

Hyperglycemia-induced β-cell dedifferentiationor transdifferentiation
is a well-recognizedmechanism of β-cell failure in diabetes2,26–29. An “α-cell-
like” shift of β-cells, recognized by the reduction of β-cell identity genes,
increased immature or dedifferentiation genes associatedwith a progenitor-
like state30,31, and increased α-cell identity genes26,32,33, which can ultimately
lead to the defective insulin secretion. Transcriptional factors, metabolic
regulators, epigenetic mechanisms, and microRNAs emerge for the inter-
pretation of compromised β-cell in diabetes30. However, cellular dynamics
ofβ-cell dedifferentiationand transdifferentiationwerenotwell described in
diabetes.

Previous transcriptomic analysis exclusively uncovered cell-type spe-
cific splicing events in endocrine cells based on bulk RNA-seq data. The
contribution of RNA splicing to the diversity of endocrine cell types and the
underlying regulatorymechanismshave not been investigated. In our study,
we used the full-length single-cell RNA sequencing data of human pan-
creatic cells to identify cell-type-specific RNA splicing exons of major
endocrine cells, and differential splicing events associated with T2D by
comparing ND and T2D splicing profiles. We demonstrated that cell-type-
specific splicing events, independent of their gene expression regulation,
drove the clusteringofmajor endocrine cell types.Altered splicingprofiles in
endocrine cells enable the definition of the compromised mature β-cell
subset in T2D, which could be potentially regulated by RBPs, such as
hnRNPs and the FXR family. Finally, pseudotime analysis at the single-cell
level revealed the loss ofβ-cell identity inT2D,whichwas attributed toβ-cell
developmental trajectory reversion and deflection, indicating their ded-
ifferentiation and transdifferentiation.

Results
Pancreatic endocrine cell types revealed by single-cell splicing
profiles
To investigate cell type-specific alternative splicing of pancreatic islets, we
used the two sets of single-cell RNA sequencing data based on full-length
Smart-seq2 technology with higher sequencing depths and cell numbers
among the candidate datasets after evaluating seven independent
datasets34–40 (Table S1), derived from two independent cohorts with no-
diabetic and type 2 diabetic individuals, produced by The Jackson Labora-
tory and Regeneron Pharmaceuticals (denoted as Lawlor and Xin
hereafter)38,39. The Lawlor dataset includes 1050 cells, while the Xin dataset
includes 1600 cells, with the median of 1.53 million and 1.07 million read
counts, respectively (Fig. S1a). In our analysis, 972 cells from the Lawlor
dataset and 1474 cells from the Xin dataset passed the quality control
(minimumof 2500 genes andmaximumof 10,000 genes per cell) (Fig. S1b).
We identified the median of 4435 and 1528 AS events in these high-quality
cells from the Lawlor and the Xin dataset, respectively (Fig. S1c), and then
assigned to the transcriptional cell types, including endocrine cell types
(α-, β-, INS/GCG-, δ-cell, and PP), and exocrine cell types (acinar, stellate,
ductal and endothelial cell), based on specific marker genes as described in
two original work38,39 (Fig. 1a, b, Fig. S2 and S3a, b). A cluster in the Lawlor
dataset simultaneously expressing INS and GCG mRNA as described in

previous studies41–44 annotated as INS/GCG-cells in this study (Fig. 1a and
Fig. S2a), whichdisplayed similar cell quality with other endocrine cell types
(Fig. S2b–d). We then quantified the exon inclusion levels (ψ/Psi, percent
spliced in) of over 30,000 cassette exons with sufficient exon connection
reads (≥20) in the Lawlor and Xin dataset, respectively, using the Quantas
pipeline45,46. We focused on the Lawlor dataset on account of its larger
number of exons and integrated the results with the Xin dataset.

We performed clustering analysis of the Lawlor dataset based on RNA
splicing profiles with t-distributed neighbor embedding (t-SNE) (Fig. 1c),
and the major endocrine cells were completely apart from non-endocrine
cell typeswhichwerenot clearly defined(Fig. 1d).To examine the regulation
of endocrine cells in T2D, we identified 10 clusters of endocrine cells based
on RNA splicing profiles in the Lawlor dataset (Fig. 2a). For the Xin dataset,
we identified 12 clusters (Fig. S3c, d). Compared to the transcriptional cell
types based on the gene expression profiles, splicing profiles enable the
separation of β- (clusters 1 to 4), α- (clusters 6 to 9), and INS/GCG- (cluster
5) cells (Fig. 2a–c). δ-cell and PP cannot be well separated from major
endocrine cells may be attributed to their low cell numbers leading tomuch
lower resolution (Fig. 2c). We observed similar results in the Xin dataset, in
which RNA splicing profiles revealed major endocrine cell types in pan-
creatic islets of ND and T2D individuals (Fig. S3e). The Lawlor dataset
showed much unequivocal clustering in comparison to the Xin dataset,
possibly associated with its 1.4-fold higher depth of sequencing and 2.9-fold
medianofAS events, and longer sequencing read length than theXindataset
(Fig. S1a, S1c and Table S1).

Exon inclusion levels (defined by ψ) drive the separation of the sub-
populations in β- and α-cells (Fig. 2a, b), showing different AS events that
contribute to distinct isoform expression profiles (Fig. 2d). For example,
exon 2 of SEC13 and exon 2 of C7orf44 gene-splicing made cluster 1, a
subpopulation of β-cells, separate from other clusters, not driven by SEC13
and C7orf44 gene expression (Fig. 2e). Exon 2 of KARS and exon 2 of
SBDSP1, not gene expression, enable the separation of cluster 6, a sub-
population of α-cells (Fig. 2f). In the Xin dataset, gene splicing profiles can
also be used to distinguish subsets (Fig. S3f).

Together, splicing profiles at single-cell levels enable us to determine
the major endocrine cell types exhibiting subpopulations.

Cell-type-specific splicing events in endocrine cells
We next identified the specific splicing events which determined the
endocrine cell-specificity. We detected 1164, 1175, 1418, 1447, and 1508
specific splicing events in β-, α-, INS/GCG-, δ-cell, and PP of the Lawlor
dataset, respectively (|Δ ψ| > 0.1 and adjusted p value < 0.05) (Fig. 3a). To
unravel the potential function associated with endocrine cell type, we per-
formed gene ontology (GO) analysis to depict pathway enrichment of genes
containing cell-type-specific splicing events (Fig. 3b). We found that path-
ways related to “RNA splicing”, “tRNA metabolic process” and “Micro-
tubule organizing center part” are shared by multiple cell types (Fig. 3b),
indicating that a considerable RNA splicing-mediated diversity is required
for these genes related fundamental islet property. On the other hand, we
found that specific pathways were enriched in certain cell types, such as “ER
to Golgi vesicle-mediated transport”, “Golgi vesicle transport”, “Regulation
of protein stability” and “Endoplasmic reticulum-Golgi intermediate
compartment” in β-cells, “Regulation of mRNAmetabolic process”, “tRNA
modification” and “Protein K63-linked deubiquitination” in INS/GCG-
cells, “mRNA export from nucleus”, and “Ciliary transition zone” in
α-cells (Fig. 3b).

However, signature genes expression enriched in different pathways,
such as “Translation initiation”, “Protein targeting to ER” in β-cells,
“Extracellular structure organization”, and “Cell-cell adhesion mediated by
integrin” in α-cells, and no significant pathways in INS/GCG-cells (Fig. 3c).
To further validate the relationship of splicing abundance and transcrip-
tional levels in endocrine cells, we next compared cell-type-specific RNA
splicing genes (|Δ ψ| > 0.1 and adjusted p value < 0.05) and signature genes
( | log2FoldChange | > 0.25 and adjusted p value < 0.05).We found 823, 707,
985, 986, 999 specific splicing events and 105, 1054, 14, 210, 197 signature
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genes, sharing only 11, 117, 1, 41, 37 genes by specific splicing and signature
genes inα-,β-, INS/GCG-,δ-cells andPP, respectively (Fig. 3d).As expected,
the inclusion levels of these genes are not correlated with gene expression
(Fig. 3e). For example, SLC30A8 andMRPS18C enriched exon inclusion in
α- and δ-cells but showed comparable gene expression levels in each cell
type (Fig. 3f-i). We also observed the low correlation of cell-type specific
splicing and gene expression in endocrine cells from the Xin dataset
(Fig. S4). These results showed that cell-type-specific splicing events of each
endocrine cell type are independent of gene expression, indicating an
additional regulation layer of endocrine cell function.

Differential splicing between ND and T2D endocrine cells
We have demonstrated that the splicing profile defined the cell-type spe-
cificity of endocrine cells in both ND and T2D (Fig. 2a–c and S5). In
addition, ND and T2D β-cells shared only around 15% cell-type specific AS
events through separating analysis (Fig. S6). AS acts as a prime source of
transcriptional diversity which is thought to be associatedwith diabetes1. To
evaluate the alternation of the transcriptional diversity in T2D, we next
identified the differential splicing betweenNDandT2Dendocrine cells.We
detected 734 exons including events (Δ ψ > 0.1 and adjusted p value < 0.05)
and 789 exon skipping events (Δ ψ < -0.1 and adjusted p value < 0.05) from
1030 genes inT2Dβ-cells compared toNDcells, as exemplified by the genes
SEC31A, GSTT1 and ASNS (Fig. 4a). Notably, we observed that genes that
altered AS in T2D β-cells were significantly enriched in RNA splicing,
centriole, regulationofmRNAmetabolic process andmitochondrial protein
processing (Fig. 4b), suggesting β-cell failure in T2D individuals47.

To strengthen the credibility of the results, we integrated differential
splicing betweenNDandT2Dendocrine cells from twodatasets, the Lawlor
and Xin datasets. We discovered 178 AS events (74 as including events and
104 as skipping events in T2D compared to ND) from 153 genes showing

splicing differences in the samedirection in two datasets (Fig. 4c). The genes
of these common differential splicing events of these two datasets are
enriched in “Clathrin vesicle coat” (3 genes), “Cilium assembly” (12 genes),
“Regulation of RNA splicing” (13 genes) and “Regulation of vacuole orga-
nization” (7 genes) pathways (Fig. 4d), indicating the impaired insulin
secretion of T2D β-cell.

Individual examples of differential splicing in β-cells in T2D compared
to ND were discovered by differential analysis (Fig. 4e). We also identified
seldom characterized examples, APTX and EXOSC3 (Fig. 4e), which are
important factors to maintain genome integrity48 and play a role in RNA
processing and degradation49. APTX exon 7 is highly included in T2D but
skipped in ND β-cells, whereas EXOSC3 exon 3 is skipped in T2D but
included in ND β-cells (Fig. 4f, g).

Of note, only 8.99% of gene expression level changes in T2D were
associated with AS (Fig. 4H). Moreover, the Δ ψ values of 178 differential
splicing and their gene expression levels are not correlated (Spearman
ρ = 0.121) (Fig. 4h). These suggest that splicing is an additional layer of
regulation of endocrine cells by alternating transcriptional diversity during
T2D, independent of gene expression levels.

To evaluate cell-type-specific differences, we also analyzed α- and INS/
GCG-cells fromNDandT2D islets in theLawlordataset.We identified1688
differential splicing events (821 as including events and 867 as skipping
events in T2D compared to ND) from 1129 genes and 999 differential
splicing events (551 as including events and 685 as skipping events in T2D
compared to ND) from 448 genes in α- and INS/GCG-cells, enriched for
RNAsplicing and centrosome organization pathways, respectively (Fig. S7).

Notably, nearly 50% (939 in α-cells, 789 in β-cells, 444 in INS/GCG-
cells) of the differential splicing events are cell-type specific, while 794 (from
589 genes) and 150 (from 116 genes) differential splicing events are com-
mon in two or three cell types, respectively (Fig. S8a), indicating specifically
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Fig. 1 | The cell type annotation and splicing profiles of islet cells from ND and
T2D individuals at the single-cell level. a t-SNE plots of 972 ND (579 cell) and T2D
(393 cells) islet cells based on gene expression from the Lawlor dataset. b Fraction of

each cell type from ND and T2D islet cells. t-SNE plot clustered by splicing profiles
from the Lawlor dataset (c), and cell types defined by gene expression profiles (d).
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splicing regulate different cell types of endocrine cells while sharing con-
served splicingpatternsof protein catabolic pathway genes in type 2diabetes
pathogenesis (Fig. S8b).

RBPs regulate the skipping of splicing events in T2D β-cells
To examine how differential splicing between T2D andND is regulated, we
employed an unbiased de novo motif enrichment strategy to predict the
potential splicing regulators. In our analysis, we employed an online web
server rMAPS2 (RNA Map Analysis and Plotting Server 2)50 to analyze
differential alternative splicing to figure out potential cis-regulatory motifs
in the cassette exons and their flanking introns (250 bp upstream or
downstream of the target exon). This analysis identified 13motifs (adjusted
p value < 0.05) that are enriched in or around ND or T2D β-cell-specific
exons in the Lawlor dataset. Seven motifs were identified for T2D β-cell-

specific included exons, corresponding to seven predicted RNA-binding
proteins (RBPs) (PCBP2, MBNL1, ESRP1, ANKHD1, FUS, SAMD4A,
ZC3H10) (Fig. S9A).MBNL1 and ESRP1 are inclined to bind to the cassette
exon, whereas PCBP2, ANKHD1, and FUS bind to the upstream intron
(Fig. S9a). These RBPs showed a slight increase (not significant) in T2D
compared toNDβ-cells (Fig. S9b), in linewith the accumulated inclusion of
their corresponding exons in T2D β-cells.Moreover, we found six identified
motifs enriched in ND β-cell-specific included exons, corresponding to six
predicted RBPs (FXR1, HNRNPK, FMR1, SRSF10, HNRNPH1, LIN28A)
(Fig. 5a). hnRNPs accumulate at cassette exons (Fig. 5b), while FXR1 and
FMR2 bind to flanking introns (Fig. 5c, d). We also observed the decreased
expression of these RNPs in T2D compared to ND β-cells, especially
HNRNPH2 and FXR1 which were significantly downregulated (Fig. 5e),
consistent with the corresponding splicing enrichment pattern.
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WefoundHNRNPH2was also significantly decreased inT2Dβ-cells of
theXindataset (Fig. 5f).We thenusedpredictedhnRNPH2 and its regulated
motif GGGAGGG in β-cells of the Lawlor dataset to blindly test whether
HNRNPH2 also exhibited evidence in regulation alternative splicing in
β-cells of the Xin dataset. Further supporting the role of HNRNPH2 in
regulating splicing, exons containing motif GGGAGGG showed

downregulated exon splicing in T2D compared to ND β-cells of the Xin
dataset, as in the Lawlor dataset (Fig. 5g, h). hnRNPs exhibit similar overall
expression profiles in both datasets (Fig. S10). Interestingly, we found other
hnRNP family members, HNRNPA1, HNRNPA2B1, HNRNPA1P10 were
also downregulated in T2D β-cells of the Lawlor dataset (Fig. S10a),
HNRNPR was downregulated in T2D β-cells of the Xin dataset (Fig. S10b).
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These results indicate a notion that hnRNPs might play pivotal roles in
regulating splicing profiles in β-cells during T2D. Besides, exons containing
motif ATGACA, which is regulated by FXR1, showed downregulated exon
splicing in T2D compared to ND β-cells of the Lawlor dataset (Fig. 5i, j).

RBP-mediated splicing alternation as a roadblock of β-cell
maturation during T2D
β-cell functions and development are profoundly associated with diabetics.
To describe the characteristics of β-cell during T2D at the single-cell level,
we compared ND and T2D β-cells which were divided into major four
subpopulations based on splicing profiles (Fig. 6a, b). By comparing the
fractions of the four subpopulations, we found cluster 1 showed a threefold
increase in T2D compared to ND β-cells, while cluster 4 profoundly
decreased (Fig. 6b, c). The four clusters can also be defined by signature gene
expression (Fig. 6d), albeit with fewer signature genes than cluster-specific
AS events (Fig. S11, S12). We noticed that cluster 4 enriched genes in
hormone secretion and insulin secretion pathways (Fig. 6e), indicating the
functional impairment of β-cells might relate to exhausted cluster 4 in T2D.
We found comparable INS expression in these four subpopulations, while
CHL1 expression, regulating insulin release51,52, highly enriches in cluster 4
(Fig. 6f). Interestingly, GLUT2 (SLC2A2), MAFA, RFX6, and PDX1, asso-
ciated with cell maturation, are much more highly expressed in cluster 4
compared to clusters 1–3 (Fig. 6f). To quantify cell state in more detail, we
started with a pseudotime analysis within β-cells using three methodolo-
gically distinct strategies in both the Lawlor dataset and the Xin dataset.We
evaluatedmaturity scores basedonβ-cell developmental genes53,54 (Fig. S13),
while CytoTRACE estimated pseudotime based on gene diversity55, and
Monocle 2 revealed developmental trajectory based on analyzing changes in
relative transcript counts56. Three assessments were highly correlated,
showing higher maturity of cluster 4 compared to clusters 1 to 3 within
β-cells in both datasets (Fig. 6g–i and Fig. S14a–f). In T2D, mature cells
abruptly decreased in both datasets (Fig. 6j and Fig. S14g). Interestingly, we
also validated immature and mature β-cells in another independent drop-
seq dataset (denoted as the Fang dataset hereafter)35 using these three
methods described above and found the mature β-cells dramatically
decreased in T2D (Fig. S14h–o). These findings indicate that the mature
β-cell subset may play a key role in functional β-cells and blocking this
mature subpopulation may result in insulin secretory failure leading to a
progressive elevation in plasma glucose levels and diabetes.

To further explore alternative exons in regulating β-cellmaturation, we
next detected 936 and 807 exons as cluster 4 specific included and skipped
exons (|Δ ψ| > 0.1 and adjusted p value < 0.05) from 688 and 620 genes
within β-cells, respectively (Fig. 6k). As expected, we foundADAL exonwas
significantly included in cluster 4 (Fig. 6k) while skipped in T2D (Fig. 4a),
and GSTT1 exon was skipped in cluster 4 (Fig. 6k) while included in T2D
(Fig. 4a). Moreover, we found cluster 4 included exons also enriched
pathways, such as “RNA splicing”, “Autophagy”, “Chromatin modifica-
tion”, and “Cell cycle phase transition” (Fig. 6l and Fig. S15), which are
identical to items enriched in T2D skipped exons (Fig. 4d). These indicated
that the function of β-cells is attributed to the profile regulation of RNA
splicing-associated cell maturation during T2D.

To discern regulators driving this process, we therefore, identified
trans-regulators of splicing events enriched in cluster 4 using the onlineweb

server rMAPS2. This analysis predicted six RBPs that could bind to the
enriched exons of cluster 4 or their flanking sequence (Table S2). As
expected, we found FXR1 binds to the cassette exon and its downstream
(Fig. 6m), and FXR1 expression enriched in mature β-cells (Fig. 6n). We
identified 79 exons or their flanking sequence from 70 genes containing
potential FXR1 binding motifs across β-cells, with 29 of them described in
previous report57 (Fig. 6o and Fig. S16a, b). Gene expression levels of FXR1
correlated with inclusion levels of these exons, suggesting that higher FXR1
expression levels are linked to higher exon inclusion levels inmature β-cells,
whereas lower FXR1 expression levels with lower exon inclusion levels in
immature cells (Fig. 6o and Fig. S16a). Interestingly, β-cell subsets exhibited
cluster-specific targeted exon inclusion, indicating the diverse targets of
FXR1 at different stages of β-cell maturation (Fig. 6o and Fig. S16a).
Moreover, another FXR family member FMR1 and hnRNP members
showed enriched gene expression in mature β-cells (Fig. 6n), which have
been identified by comparing ND and T2D β-cells (Fig. 5). These results
suggested that FXRs and hnRNPs link to β-cell maturation by regulating
their RNA splicing profiles during T2D.

Splicing impairment is associatedwith β-cell identity shift in T2D
The endocrine cell types were assigned based on the hormone expression
levels (Fig. 1a and S2a)39. The previous results showed that insulin expres-
sion is comparable in mature and immature β-cells (Fig. 6f). It’s impossible
to use these alone to interrogate the identity shifts of endocrine cells.
Therefore, we used published genesets39,40,42,58 that reported to reflect β- and
α-cell identities to score cell identity. By comparing ND β- and α-cells, we
found scores of β-cells are much higher in clusters 1–4 (majority of β -cells)
than clusters 6–9 (majority of α-cells), and the opposite is true for scores of
α-cells (Fig. 7a, b), showing effective quantification of cell identities. In T2D,
clusters 2 and 3 exhibited a significantly reduced β-cell score and a sig-
nificantly increased α-cell score compared to ND clusters (Fig. 7a, b). We
found β-cell enriched gene expression (MAFA, CHL1)51,59 reduced and
α-cell enriched gene ARX expression60 increased in T2D compared to ND
(Fig. 7c). These suggested that cluster 2 and 3, which were characterized as
lower maturity of β-cell, were losing their β-cell identity, and shifting
towards an “α-cell-like” phenotype.

Some evidence so far suggests that β-cell can dedifferentiate by
reduced expression of β-cell identity genes2,27,30, and transdifferentiate to
α-cells by increased α-cell markers in diabetes28,32,33. To obtain cellular
details in trajectory analysis, we employed RNA velocity, a kinetic model
based on measuring transcriptional dynamics61, to enable predictive cell
fates. The directional flows of RNA velocity in ND β-cells exhibited
consistency with maturity scores, CytoTACE analysis and Monocle 2
trajectory analysis (Figs. 7d and 6g–i). However, T2D β-cells showed
β-cell dedifferentiation from cluster 2 to cluster 1, and transdifferentia-
tion from cluster 3 to cluster 5 (INS/GCG-cells) or cluster 6 (α-cells)
(Fig. 7d). Furthermore, developmental trajectory analysis by Monocle 2
confirmed the differentiation from cluster 1 to cluster 4 in ND β-cells,
which exhibited different trajectory in T2D (Fig. 7e). The mature branch
of β-cells was significantly decreased in T2D compared to those in ND,
which we have observed in three independent datasets (the Lawlor
dataset, the Xin dataset and the Fang dataset) (Fig. 7e and Fig. S14g,
S14o).We also note that the terminal branch of the trajectory tree of T2D

Fig. 3 | Cell-type-specific splicing events in endocrine cells. a Heatmaps showing
relative exon inclusion level (ψ) of specific exons in each endocrine cell type. Red and
blue represent significant included (Δψ > 0.1 and adjusted p value < 0.05) and
skipped (Δψ < -0.1 and adjusted p value < 0.05) in each cell type, respectively. Col-
umns denote cells; rows denote splicing events. Z-score, row-scaled Δψ of the sig-
nificant inclusion or skipping in each subpopulation. b GO analysis of cell-type-
specific exons. Shared GO terms by multiple comparisons (significant in ≥ 3 com-
parisons) are shown at the top, while specific GO terms are shown at the bottom.
c Heatmap of signature gene expression in endocrine cell subpopulations (fold-
change > 0.25 and adjusted p value < 0.05) with GO analysis of signature genes listed

on the right (color-coded by subpopulations). Columns denote cells; Z-score, rows
denote genes. Row-scaled expression of the signature genes in each subpopulation
scaled. d Overlapped gene numbers of cell-type-specific exons and cell-type sig-
nature genes in β-, α-, INS/GCG-, δ- and PP cells. e Scatter plots showing the
association of cell-type-specific splicing genes and their gene expression in β-, α-,
INS/GCG-, δ- and PP cells. Heatmap unraveling inclusion levels (ψ) (f, h) and violin
plots representing gene expression levels (g, i) of SRSF2 (f, g) and RNH1 (h, i) gene.
Mean ψ values across the genomic coordinates corresponding to the flanking con-
stitutive exons and alternatively spliced exon. Shaded regions represent 95% con-
fidence interval (CI) of the mean.
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β-cells enriched more cells of cluster 1 than cluster 2 (Fig. 7e), suggesting
the dedifferentiation from cluster 2 to cluster 1 as described in RNA
velocity (Fig. 7d). As expected, we observed marker genes of dediffer-
entiated β-cells, CD81 and HES131,62, were generally increased in β-cells
(Fig. 7f), while maturation genes, RFX6, CREB1 and PFKFB263, showed a

decrease (Fig. 7g).Moreover, clusters 5 and 6 in T2D showed increased β-
cell scores, but not α-cell scores, may be attributed to their transdiffer-
entiation from cluster (Fig. 7a, b). Cluster 5, which enriched the dual
hormonal cells, showed bidirectional flows to both β- and α-cells in ND
individuals, while a biased streamline towards α-cells in T2D (Fig. 7d,

660 74

339

685

306104

�� > 0.1

Lawlor Xin

Lawlor

Xin

Lawlor

Xin

�� < -0.1

20
30
40
50

-log10 p adjust

G
ene num

ber
a b

c

Clathrin vesicle coat (3.77)
Cilium assembly (3.00)

Cellular component morphogenesis (2.25)
Transport vesicle (2.37)
Glycoprotein metabolic process (2.84)

Regulation of RNA splicing (4.80)
Regulation of vacuole organization (3.37)

Autophagy (2.09)
tRNA metabolic process (2.60)
DNA-templated transcription (3.44)

d

e

Enrichment network of  included AS events in T2DM 
                  (�� > 0.1) 

Enrichment network of  skipped AS events in T2DM 
                 (�� < -0.1) 

Lawlor Xin
ND T2D ND T2D

−1

0

1

ASNS
GSTT1

ANXA2

Spearman

 = 0.121

h

Androgen receptor signaling pathway
H4 histone acetyltransferase complex

Mitochondrial protein processing
Spliceosomal complex

Nuclear speck
Centriole

Regulation of mRNA metabolic process
Protein−containing complex localization

RNA splicing

0 2 4

●

●

●

●●

●

●

●●

●

●●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●●

●
●

●

●●

●

●
●●

●

●

●

●

●

●
●●

●
●
●●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●
●

●●

●

●●●●

●

●

●

●
● ●

●

●
●

●●

●

●

●

●

●●●

●●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●
●●

●

●●

●

● ●

●

●

●

●

●●
●

●

●●

●

●

●

●

●●
●●

●
●●

●

●

●
●●

●

● ●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

EXOSC3
−0.4

0.0

0.4

0 0.25

GSTT1 

-0.25

log2 FoldChange

��

ZBTB20

RGN

MYL6

SEC31A

XIST
0

50

100

150

��

-lo
g 10

p 
ad

ju
st

ADAL

CEP95
GSTT1

ASNS

APTX

APTX

EXOSC3

Overlap differential AS events analysis

f gAPTX

Exon type

5' Cons. exon
Alt. exon
3' Cons. exon

−2
2

0

1

M
ea

n 
(	

)

EXOSC3

ND
T2D

0

1

M
ea

n 
(	

)

−2
2

Exon type

5' Cons. exon
Alt. exon
3' Cons. exon

ND
T2D

CAMK2G
EFNA1
MYO1B

PRUNE
ST7
GPBP1L1
SKA2

Fig. 4 |Differential splicing events in β-cells betweenNDandT2D. aVolcano plot
showing differential splicing exons (|Δψ| > 0.1 and adjusted p value < 0.05) between
ND and T2D β-cells. Red indicates exon included (Δψ > 0.1) and blue for exon
skipped (Δψ < -0.1) in T2D β-cells. b GO analysis of differential splicing genes
between ND and T2D β-cells. c Numbers of differential splicing exons with higher
(red) or lower (blue) inclusion in T2D β-cells were detected in the Lawlor dataset and
the Xin dataset. d Enrichment networks of common differential AS events in the
Lawlor dataset and the Xin dataset showing in (c). Included (upper) or skipped
(bottom) splicing genes in the T2D cells compared to ND. Number in bracket

indicates -log10 p value. e Heatmap showing included or skipped splicing genes in
T2D β-cells detected both in the Lawlor dataset and the Xin dataset. Examples of
differential splicing genesAPTX (f) and EXOSC3 (g) showing included or skipped in
T2D β-cells, respectively. Heatmap (upper) unraveling inclusion levels. Mean ψ
values (down) across the genomic coordinates corresponding to the flanking
constitutive exons and alternatively spliced exon. Shaded regions represent 95%
confidence interval of the mean. h Scatter plot showing the association of signature
genes fold change and Δψ in β-cells.

https://doi.org/10.1038/s42003-024-06475-0 Article

Communications Biology |           (2024) 7:778 7



down), indicating these dual hormonal cells may contribute to the
compensation for the loss of β-cell mass, which impaired in T2D
pathogenesis.

Discussion
Previous studies using single-cell RNA-seq analysis of the pancreatic islets
aimed to annotate new cell types or subtypes and to refine cell-type specific
genes. Transcriptomics from endocrine cells profiled during development
anddisease benefits the community to extendourunderstandingof the roles

and functional status of endocrine cells in the pathogenesis of diabetes.
However, the observations and predictions were mainly based on gene
expression levels. Higher eukaryotes exhibit prevailing alternative splicing
that plays a major role in expanding transcriptomic and proteomic
complexity64 to regulate the biological process, including the pathogenesis of
obesity, insulin resistance, and diabetes65–67. Cell-specific splicing has been
elucidated to define tissue compartments and cell types at the single-cell
level68,69. In the current study, we characterized the genome-wide alternative
splicing landscape of human pancreatic endocrine cells from ND and T2D
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Fig. 5 | Decreased RBPs regulate the skipping of splicing events in T2D β-cells.
a Bubble plot showing the predicted splicing factors from unbiased motif analysis of
skipping AS events of T2D β-cells compared to ND β-cells in the Lawlor dataset.
Motif sequences of corresponding splicing factors were labeled on the right. The dot
color represents the smallest p value in each enriched region, while the dot size
indicates the median expression level of the splicing factors in ND β-cells. TPM,
transcripts per million reads. Positional distribution of HNRNPH2- (b), FXR1- (c),
and FMR1- (d) binding motifs of skipping AS events in T2D β-cells. Motif
enrichment scores (top, solid line) and p values (bottom, dashed line) were plotted

according to AS event positions. Arrows indicate peaks of enrichment for exons.
Violin plots representing the expression of indicated splicing factors in T2D com-
pared to ND β-cells in the Lawlor dataset (e) and Xin dataset (f). gAn example gene
ofHNRNPH2 targeted exons with a bindingmotif upstream of the exon. h Inclusion
levels of TMEM222 (exon3) in ND compared to T2D β-cells. i An example gene of
FXR1 targeted exons with a binding motif upstream of the exon. j Inclusion levels of
ST7 (exon7) in ND compared to T2D β-cells. Lines in (e, f) indicate the mean gene
expression. A two-sample KS test was performed to assess statistically significant
(e, f), * p < 0.05.
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individuals at the single-cell level. We identified cell-type-specific and dif-
ferential splicing events which were independent of gene expression reg-
ulations inNDandT2Dendocrine cells. By comparingNDandT2Dβ-cells,
we figured out that impaired RBP expression, such as hnRNPs and FXRs,
may result in β-cell maturation arrests by altering their splicing profiles.
Here, we investigated the gene splicing of human endocrine cells at the

single-cell level andpotentially provided regulatorymechanisms and targets
of β-cell fate determination during the pathogenesis of T2D.

In this study, we uncovered numerous specific splicing events in each
cell type duringT2Dprogression that occurred in the absence of appreciable
changes at gene expression levels. For example, splicing events of “clathrin
vesicle coat” pathway genes were illustrated to relate to T2D. These genes

Fig. 6 | A decreased subset of the mature β-cells in
T2D links to RBP-mediated splicing profiles.
a, b t-SNE plot of ND and T2D endocrine cells from
the Lawlor dataset. Cells are colored by cluster based
on the gene expression profiles (a) and splicing
profiles annotated by diabetic conditions (b). c A
neighborhood graph showing cluster enrichment
and depletion in T2D compared to ND by Milo
differential abundance testing. Nodes are neigh-
borhoods, colored by their log fold change between
T2D and ND. Nhood sizes correspond to the
number of cells in each neighborhood. Graph edges
depict the number of cells shared between neigh-
borhoods. The layout of nodes is determined by the
position of the neighborhood index cell in the t-SNE
in (b). d Bubble plot showing signature genes of
clusters 1 to 4. Dot size indicates the percentage
expressed cells and color is the normalized average
gene expression. e GO analysis of cluster 4 specific
expressed genes compared to clusters 1–3. f Selected
gene expression in clusters 1–4. g t-SNE plot
showing maturity scores of clusters 1–4 overlaid
with a contour map corresponding to maturity
scores. The color indicates maturity scores.
h CytoTRACE t-SNE plot of clusters 1–4. The color
indicates the level of differentiation from low (blue)
to high (red). i The pseudotime trajectory of clusters
1–4 (left) and their distribution over the tree struc-
ture (right) by Monocle 2 using DDRTree. Arrows
indicate the trajectory of pseudotime pathway.
jArea plots showing the estimated cell proportion of
clusters 1–4 from ND and T2D, respectively.
k Volcano plot showing cluster 4 specific splicing
exons (|Δψ| > 0.1 and adjusted p value < 0.05)
compared to clusters 1 to 3. Red indicates exon
included (Δψ > 0.1) and blue for exon skipped
(Δψ < –0.1). l GO analysis of cluster 4 specific spli-
cing genes shown in (k).m Positional distribution of
FXR1-binding motif of including AS events in
cluster 4 compared to clusters 1–3 based on rMAPS
results. Motif enrichment scores (top, solid line) and
p values (bottom, dashed line) were plotted
according to AS event positions. Arrows indicate
peaks of enrichment for exons. n Violin plots
representing the expression of indicated splicing
factors in clusters 1–4. o Heatmap showing the
inclusion level of exons potentially targeted by FXR1
in β-cell subsets. Dot size indicates the percentage of
FXR1 expression in each cluster, and color is the
z-scores of FXR1 average expression (upper) and
z-scores of ψ (down).
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Fig. 7 | Splicing impairment is associated with endocrine cell identity shift
in T2D. Scores of β-cell identity genes (a) and α-cell identity genes (b) of clusters
1–10 inNDandT2Dendocrine cells. c Selected gene expression of β-cell identity and
α-cell identity in clusters 1–10 from ND and T2D endocrine cells. d RNA-velocity
analysis of ND and T2D endocrine cells with velocity arrows and corresponding
principal arrows between subpopulations projected onto t-SNE plot of clusters 1–10.
Purple boxes indicate the locations of regions magnified in the inserts with velocity

arrows. e The pseudotime trajectory for clusters 1–4 and their distribution over the
tree structure in ND (upper) and T2D (down) by Monocle 2. Arrows indicate the
trajectory of pseudotime pathway. Selected gene expression of β-cell dedifferentia-
tion (f) and β-cell maturation (g) in clusters 1–10 fromND and T2D endocrine cells.
A two-sample KS test was performed to assess statistical significance (a, b),
* p < 0.05, ** p < 0.01.
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play key roles in the regulation of (pro)insulin production and control
insulin secretion in β-cells70, and this process is precisely regulated by
senescing glucose. Moreover, besides “RNA splicing” genes25, skipped
splicing events of “autophagy” pathway genes are associated with T2D,
which impaired with the mature subpopulation depletion in T2D β-cells
(Fig. 4d and Fig. S15b), confirming the findings from other reports showing
the altered β-cell autophagic activity was implicated in T2D patients and
rodents71–73. Interestingly, RNA alternative splicing was reported to regulate
autophagy, especially indisease settings74. In addition,ASof “cell cycle phase
transition” genes in themature β-cells changed in T2Dwere consistent with
the previous observation of cell cycle arrest in diabetes (Fig. S15b)75. Several
RNA-binding proteins (RBPs), including hnRNPs, SRSFs, and HuD76–78,
especially hnRNPH2 significantly downregulated in both the Lawlor and
the Xin dataset (Fig. 5e, f), have been identified as the regulators to guide the
autophagic process in pancreatic hemostasis and tumors. hnRNPswere also
reported to regulate insulin mRNA processing, translation, and insulin
secretion in β-cells, and have been implicatedwith T2D79. Another group of
RBP genes, such as FXR1 and FMR1, were related to neurogenesis and
cancers80, while it remains unclear in regulatingβ-cell functions anddiabetes
despite the involvement of FMR1 in glucose homeostasis81. Accordingly,
further functional assessment of their potential roles in regulating β-cells
would benefit from their putative splicing program and targets.

Plastic β-cells undergo dedifferentiation in humans and mice with
diabetes revealed by lineage tracing27. As apoptosis was thought to be over-
evaluated during β-cell failure, dedifferentiation was supposed to be the
major mechanism, thus, redifferentiation of the dedifferentiating or ded-
ifferentiated β-cells to insulin-producing β-cells is expected to restore blood
glucose levels2,27. By analyzing the dedifferentiating and transdifferentiating
subsets of T2D β-cells, we identified AS alteration of “RNA splicing” and
“mRNA process” genes may serve as common factors associated with T2D
β-cell fate defect (Fig. S17). Interestingly, splicing of “nucleotide tripho-
sphate metabolic process” and “mitochondrial inner membrane” would
alter the β-cell determination through DNA synthesis and energy meta-
bolism (Fig. S17)78,82. Combining the comparison of splicing inNDandT2D
β-cell, our study through profiling RNA splicing at the single-cell level
determined the dominant subset of c-cells for insulin secretion and pre-
dicted the developmental trajectory of dedifferentiation and transdiffer-
entiation of β-cells in T2D associated with altered splicing diversity, energy
status and cell cycle at AS regulation layers. This analysis provides sources
and a paradigm to obtain novel therapeutic targets.Meanwhile, we revealed
that RBPs, hnRNPs, and especially FXR family proteins as regulators of
β-cell functions, alongwith various unidentified functions RBPs in different
tissues. These findings would provokemore thoughts and investigations on
the complex functions of RBPs and potential targeting strategies in diseases.

The activation of the nonsensemediated RNAdecay (NMD) pathway,
which could affect transcript levels, might be associated with proin-
flammatory levels in diabetes83. We investigated the NMD gene expression
in the Lawlor dataset. We did not find significant differential expression
between T2D and ND β-cells (Fig. S18). More experimental evidence
remains needed to facilitate the understanding of NMD and T2D.

We incorporated diverse independent human datasets in our study;
however, we refrained from directly combining these data because there
were no appropriate normalization and batch effect correctionmethods for
AS event profiles. Despite significant discrepancy among these datasets
arising from the complex etiology of diabetes84, we individually analyzed
these datasets and integrated their results, identifying an observation and
conclusion of commonality as the strategy described46. Specifically, AS
events were found to reveal major types of endocrine cells, associated with
hnRNPs and β-cellmaturemarkerswhich exhibited similar gene expression
profiles in both the Lawlor dataset and the Xin dataset (Fig. S10 and S13).
Additionally, there was a common observation of β-cell fate determination
arrest from three independent datasets in T2D by incorporating multiple
trajectory analysis methods. Therefore, our analysis revealed consistently
robust conclusions from datasets with great disparities. Nevertheless,

methodological development would largely improve the integration of
diverse single-cell splicing data, thereby expanding sample sizes.

Besides cassette exons (or referred to as skipped-exons, SE) used in this
study, we also included other six types of AS events, mutually exclusive
exons (MXE), retained-introns (RI), alternative 5’ and 3’ splice sites (A5SS
and A3SS), and alternative first and last exons (AFE and ALE) in our
analysis using Quantas and MARVEL methods85. Both methods con-
sistently identified SE as the predominant alternative splicing event, fol-
lowed by MXE and A3SS as the second- and third-most prevalent types
according toQuantas, andA3SS andAFEaccording toMARVEL (Fig. S19a,
b). We also notice that identified A3SS are more than A5SS (Fig. S19a),
possibly due to the 3’ bias of smart-seq. Subsequently, we performed clus-
tering based on these AS types (SE, MXE, A3SS. AFE), and observed that
MXE, A3SS, AFE failed to clearly define the major endocrine cell types
(Fig. S19c–h),We further included six AS event typeswith SE for clustering,
but they did not significantly improve the clustering resolution compared to
using SE only (Fig. S19i, j)46, due to the lower AS event numbers of other six
AS event types. So, it remains challenging to quantify adequate events of
these AS types aiming for a higher resolution clustering at the single-cell
level. In addition. SE contributes to the most influential factors in β-cells
when identifying cell-specificAS events with the inclusion of sevenAS types
(Fig. S20). Therefore, we focused on the cassette exons/SE which represent
the primary type of AS events46.

In endocrine cells, cell-type-specific and differential splicing between
ND and T2D were independent of their gene expression. This feature of
transcriptomics was also observed in hematopoietic cells86. To separate
major endocrine cell types, the gene expression and splicing profiles lead to
the equifinality, which was emphasized in different tissues by independent
studies using scRNA-seq46,68,86. Furthermore, an atlas across human tissues
at the single-cell level revealed the fundamental rules for cell-type- or
compartment-specificity of the alternative splicing programs69. Technically,
bulks of tools have been developed for deep scRNA-seq data and 10x
data46,87–89. Two sets of full-length Smart-seq2 data denoted as the Lawlor
dataset and the Xin dataset have been used in our study andwe noticed that
the Lawlor dataset with 1.53 million reads and 128 thousand detected
junctions per cell show more unequivocal clustering in comparison to the
Xindataset,with only 1.07million reads and73 thousanddetected junctions
per cell (Figure S1a-c). This observation indicates that deeper sequencing
allows more detected junctions to reflect the more complete profiles of the
splicing program at the single-cell level. We also note that the Xin dataset
was captured with lower sequencing read length than the Lawlor dataset
(Table S1). Thus, sequencing depth and read length, as well as sequencing
mode, is worthy to take elaborate consideration and evaluation during
splicing analysis. A recent study implemented long-read RNA-seq to
directly analyze isoformsof transcripts anddepicted themRNAarchitecture
as a dominant mechanism in regulating hematopoiesis86. Single-molecule
sequencing will make appreciable advances in this field. Collectively, our
study provides additional insights into the understanding of diabetes
pathogenesis and transcriptomic alternative splicing. Our findings not only
suggest thatRNAarchitecture is an important step of gene regulation aswell
as transcriptional levels, but also provides alternative strategies for alle-
viating β-cell dysfunction and diabetes.

Methods
scRNA-seq data preprocessing
Islet cell RNA-seq data were mapped by OLego (v1.1.2)90 to the reference
genome (hg19). Only reads unambiguouslymapped to the genome or exon
junctions were used for downstream analysis.

AS and gene expression quantification
We used the Quantas pipeline (http://zhanglab.c2b2.columbia.edu/index.
php/Quantas) to quantify AS based on the number of exon junction reads,
and only exon skipping events were analyzed in this study. The level of
inclusion of alternative exons was represented by percent spliced in (PSI) or
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ψ.We required exons to have junction read coverage≥20when estimatedψ.
Gene expression quantification was quantified using the same pipeline.

For MARVEL pipeline85, splice junction count matrix, intron count
matrix, alternative splicing events, gene and sample metadata, normalized
gene expressionmatrix and gene transferfile (GTF)were required as inputs.
Then the gene metadata information was parsed and retrieved from gen-
code.v38lift37.annotation.gtf (https://www.gencodegenes.org). Trimmed
reads weremapped to the hg19 reference genome using STAR v2.7.10b91 in
2-pass mode. rMATS92 was used to identify SE, MXE, RI, A5SS and A3SS
splicing events using gencode.v38lift37.annotation.gtf. The intron coverage
was computed using Bedtools93. MARVEL R objects were created by Cre-
ateMarvelObject function. AFE and ALE events were detected by Detec-
tEvents function. We required splice junction reads ≥10 when estimated ψ.

Unsupervised dimensionality reduction and hierarchical clus-
tering of single cells using splicing profiles
Seurat v394 was used to analyze splicing and gene expression profiles. Cells
expressing < 2500 or >10,000 genes were removed (n = 74 in Lawlor data
and n = 126 in Xin data).

We next performed the t-SNE analysis of single cells based on the
splicing profile of cassette exons in Lawlor’s data. To filter unquantifiable
exons, we maintained exons (4616 exons in Lawlor data and 2974 in Xin
data passed this filtering) with junction read coverage ≥20 in ≥10% of 972
cells. The missing values in y matrix were replaced by an extract value far
from all y. Then using the Bayesian principal component analysis (PCA)
method to impute the remaining exons and the topPCs of the variancewere
further clusteredusingFindClusters, a sharednearest neighbor (SNN)based
clustering algorithm, within Seurat to identify clusters (using top 10 PCs
with a resolution of 1.2 for the Lawlor dataset, and top 10 PCs with a
resolution of 1.2 for the Xin dataset) and using t-SNE for data visualization
(Fig. 2). Similar analyses were repeated using only the endocrine cell.

Nine islet cell types have been assigned based on the expression of
specific signature genes INS (β),GCG (α), SST (δ),PPY (PP/gamma),GHRL
(epsilon),PRSS1 (acinar),COL1A1 (stellate) andKRT19 (ductal)39.We used
these marker genes to determine the representation of each islet cell type
among our 972 single cells (Fig. 1). Thenwe counted the proportion of each
cell type inNDandT2D, respectively (Fig. 1b) and calculated the fraction of
each splicing cluster during cell types and patient status (Fig. 2c).

Detection of differentially spliced exons
Differential splicing of cassette exons (DEs) was performed using the
Quantas pipeline. For the Lawlor dataset, we performed one vs. other
comparisons between each splicing cluster and defined the exons with the
following criteria as significant: junction read coverage ≥ 20, False discovery
rate (FDR, BH correction) ≤ 0.05, exon quantifiable in ≥ 10% of cells in
different groups and | Δ ψ | ≥ 0.1. Alternative splicing marker events were
definedby the topDEs after rankingby |Δψ |.Differentially expressed genes
were identified by Seurat. Gene with log2 FoldChange > 0.25 and adjusted p
value < 0.05 was reported as significant. For MARVEL, Anderson-Darling
test was used for comparing the overall ψ distribution between two cell
populations. Exons with adjusted p value < 0.1 and outlier = FALSE were
defined as differential splicing exons.

We also identified exons differentially spliced between T2D and ND,
and betweenfive endocrine islet cell types. IGV95 andVALERIE96 were used
to visualize DEs specific splicing sites.

Enrichment analysis
GO term enrichment analysis was performed on genes containing exons
with differential splicing and differential expression genes (DEGs, calculated
using a non-parametricWilcoxon rank sum test with p values adjusted using
Bonferroni correction) between endocrine cell types, endocrine alternative
splicing clusters, as well as T2D vs. ND in β-cells by clusterProfiler97. Heat
maps were performed using the pheatmap package. The intersections
between DEs and DEGs were identified using the Venndiagram package.
Enrichmentnetworkwasperformedusing theMetascapeonlineweb server98

with the “Express analysis” option. Differential abundancy testing between
ND and T2D in the endocrine cells from the Lawlor dataset was performed
with the R package MiloR99. To test for differential abundance, we used the
QLmethod in edgeR to analyze neighborhood counts, and use theQL F-test
with a specified contrast to compute a p value for each neighborhood.

De novo motif enrichment analysis and RBP prediction
De novomotif enrichment analysis and inferring RBP activity in regulating
β-cells specific splicing exons was performed using rMAPS250 with default
parameters. Sequences of significantdifferential or cell-type-specific splicing
exons (junction read coverage ≥ 20, FDR ≤ 0.05, exon quantifiable in ≥10%
of cells in different groups and | Δ ψ | ≥0.1) with unregulated exons
(FDR > 0.05 or | Δ ψ | < 0.1) set out as background events were analyzed.
Enrichmentmotif and relatedRBPwere defined as theminimum p < 0.05 in
at least one of four regions (upstream intron, target exon 5’, target exon 3’,
downstream intron), adding themaximummeanmotif enrichment score >
0.01 in at least one of the four regions. The smallest p value in each enriched
region was adopted to generate the bubble plot.

Pseudotime trajectory analysis
We implemented CytoTRACE analysis by inputting the normalized
expression matrix to the CytoTRACE webtool (https://cytotrace.stanford.
edu/).The output CytoTRACE score of each cell was then integrated with
scRNA-seq data to be projected onto the UMAP.

We used RNA velocity to infer directionality of endocrine cell differ-
entiation implementing the velocyto pipeline (version 0.17.17)61. In brief,
spliced and unspliced reads were quantified and integrated with annotated
scRNA-seqdatausing the scVelopythonpackage (version0.2.4)100. velocyto-
drived countswere preprocessed,filtered (counts≥20) andnormalized based
on 3000 highly variable genes. First-order and second-order moments for
each cell were computed across its nearest neighbors. Velocities were esti-
mated using a stochastic model of transcriptional dynamics with scVelo and
projected onto UMAP embedding. Partition-based graph abstraction
(PAGA) analysis was performed with Scanpy using default settings.

For the pseudotime trajectory analysis by Monocle 2101, CellDataSet
objects were created and the ‘differentialGeneTest’ function was used to
derive DEGs of each cluster and pseudo-time analysis by genes with
q value < 0.01. Then the differentiation trajectory was inferred with the
default parameters after dimension reduction and cell ordering.

Cell maturity and identity scores were evaluated with the AddModu-
leScore function of Seurat using published gene lists: INS, SLC2A2,MAFA,
RFX6, PDX1, CHL1, GCK, PPARGC1A, MDH1, NEUROD1, CREB1,
G6PC2, PFKFB2, PFKM, SIX2, SIX3, ENTPD3, GPD2, DNMT3A,
MTOR51,54,63,102–104.

Statistics and reproducibility
For scRNA-seq data, the Lawlor dataset contains 5 ND and 3 T2D patients,
the Xin dataset contains 12 ND and 6 T2D patients. A two-sample KS test
was performed to assess statistical significance to compare means where
appropriate. The threshold for statistical significance was p < 0.05. All
correlationswere calculated based onnormalized expression valueswith the
Spearman’s Correlation.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Two single-cell sequencing FASTQ data produced by The Jackson
Laboratory and Regeneron Pharmaceuticals were downloaded from NCBI
Sequence Read Archive (SRA) under accession numbers SRP075970 and
SRP075377, respectively. Another scRNA-seq FASTQ data by Department
of Genetics and Genome Sciences was downloaded from NCBI SRA under
accession number GSE101207. The source data behind the graphs in the
paper can be found in the Supplementary Data 1105.
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Code availability
The code used in the study is available from the Zenodo repository106.
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