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Age-related differences in network
controllability are mitigated by
redundancy in large-scale brain networks

Check for updates

William Stanford1, Peter J. Mucha 2 & Eran Dayan 3

The aging brain undergoes major changes in its topology. The mechanisms by which the brain
mitigates age-associated changes in topology to maintain robust control of brain networks are
unknown. Here we use diffusion MRI data from cognitively intact participants (n = 480, ages 40–90) to
study age-associated differences in the average controllability of structural brain networks,
topological features that could mitigate these differences, and the overall effect on cognitive function.
We find age-associated declines in average controllability in control hubs and large-scale networks,
particularly within the frontoparietal control and default mode networks. Further, we find that
redundancy, a hypothesizedmechanism of reserve, quantified via the assessment ofmulti-step paths
within networks, mitigates the effects of topological differences on average network controllability.
Lastly, we discover that average network controllability, redundancy, and grey matter volume, each
uniquely contribute to predictive models of cognitive function. In sum, our results highlight the
importance of redundancy for robust control of brain networks and in cognitive function in
healthy-aging.

As populations world-wide are aging1, dementia and other degenerative
central nervous system diseases associated with cognitive decline are pro-
jected to increase in prevalence2. Cognitive decline is not restricted to
pathological aging, but also occurs in healthy older adults. Yet healthy
cognitive aging can vary greatly between individuals3. For those that resist
cognitive decline, greater life-satisfaction, well-being, and higher levels of
happiness are reported4. Several lifestyle factors have been found to con-
tribute to successful cognitive aging, such as exercise5, and education6,7, yet
the mechanisms that could support cognitive function late in life remain
incompletely understood.

Studying the topological properties of macroscopic brain connectivity
with tools from network science8 is one method by which the mechanisms
that could promote cognitive function in aging were examined. Studies
focused on measures of network topology that change throughout
healthy9–17, and pathological aging18–23, and attempted to relate alterations in
topology to cognition.One suchcentralmeasure is network controllability24.
Controllability is a concept that originated in engineeringwithin thedomain
of control theory25–27. In networks, controllability examines the ability of key
nodes to enable dynamic state transitions between an initial and target
state24. The two most commonly studied forms of network controllability
are average and modal controllability. Average controllability reflects a

node’s ability to push the network into an easy to reach state28. In the brain
the default mode network, a collection of brain regions more active at
rest29,30, and believed to contain general priors for cognitive function31, has
been observed to have several hubs of average controllability28. This posi-
tions the default mode network to easily direct the brain from a resting state
towards activity relevant for behavioral tasks30,32. In contrast, modal con-
trollability quantifies a node’s ability to push the network into difficult to
reach states33,34, which has been shown to be important in brain networks
associated with cognitive control28,35.

Network controllability has been postulated as a dual mechanism of
brain and cognitive reserve in aging by combining structural connectivity,
typically viewed as a mechanism of brain reserve, and brain dynamics
believed to be necessary to support general cognitive processes to jointly
measure the brain’s ability to respond and adapt to changing cognitive
demands as a unified form of reserve36. In this framework, age-associated
cognitive decline can be viewed as a breakdownofnetwork control, inwhich
individuals have difficulty transitioning to, or maintaining, specific brain
states relevant for cognitive function. Controllability metrics enable
researchers to estimate the ability of dynamic interactions between brain
regions, mediated by the connections between them, to drive the brain
towards brain states relevant for cognitive activity, and thus support the
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cognitiveprocesses associatedwith cognitive reserve.Recentworkhas found
that longitudinal changes in the modal controllability of cognitive control
systems in aging could underlie age-associated declines in executive
function37,38. Other work demonstrated that the ability of temporal-parietal
regions to control other brain regions decreases with age, and is particularly
vulnerable to simulated lesions39. However, it remains unknown how
average controllability is influenced by aging, and whether these putative
changes affect cognition. The properties of underlying network topology
that could mitigate differences in average controllability in aging and thus
facilitate reserve are also unknown.

A mechanism we hypothesize that the brain may use to mitigate age-
associated alterations in average controllability is through increased
redundancy40–43. Redundancy is a general principle ubiquitous in engi-
neering that protects systems from the failure of individual components44.
Redundancy is also evident in biological systems at many scales. Examples
include at the level of genes41,45, organs43, and in population coding within
neural networks46. In the context of brain networks, redundant paths are
hypothesized to provide alternate routes for information transmission that
could serve as a form of brain reserve47–49 supporting information trans-
mission if some paths fail due to the effects of aging and/or disease.
Redundant links have been previously identified as potential mechanisms
that support robust control of complex networks during
disconnections24,50,51, but this has not been investigated in the context of
network control in aging brain networks. Furthermore, the compensatory
effects of redundancy have been postulated as a neuroprotective
mechanism43, but only recently studied within the context of healthy and
pathological aging12,19,23. It was reported that functional hippocampal
redundancy supports cognitive resilience in pathological aging19,23, and that
network-wide functional redundancy mediates the relationships between
age and executive function12. However, redundancy has yet to be investi-
gated in the context of structural brain networks and the alterations in
controllability they undergo in aging. We hypothesize that increased
redundancy could mitigate the effect of age-associated topological degra-
dations to enable robust average controllability of brain networks.

It was recently hypothesized that network controllability and brain
volume, a more traditional measure of brain reserve, should each explain
unique variance related to cognitive status36. In particular, because it is
unlikely that reserve related to volumetric properties of the brain is entirely
explained by the organizational properties of structural networks, like net-
work controllability, they should have additive predictive value as proxies of
cognitive function. In the current studywe investigated this aforementioned
hypothesis, as well as the relevance of redundancy in structural brain net-
works as a potentialmechanismof brain reserve.We chose processing speed
as the cognitive function evaluated because it is believed to be heavily
dependent on communication along white-matter tracts52,53. Relatedly,
processing speed is known to exhibit age-associated declines54, that corre-
spondwith changing topological properties of structural brain networks55,56.
Processing speed is also associated with commonly used measures of brain
reserve, such as hippocampal volume57,58. We hypothesized that processing
speed would be related to measures of regional influence on network
dynamics, such as average controllability, particularly in functional net-
works that have been reported as important in age-related differences in
processing speed (e.g., default mode and frontoparietal control
networks15,59). We expected that redundancy could support rapid com-
munication between task-relevant functional networks52,53,60, and thus be
positively associated with processing speed.

To test our hypotheses we used diffusion MRI (dMRI) data from 480
participants (female = 281, male = 199) between the ages of 40–90 from the
HCP-aging dataset61 (Fig. 1a). We examined how average controllability, a
region’s ability to push a network into easy to reach states, changes in aging.
We constructed structural networks using the functional Schaefer local-
global parcellation62 (Fig. 1b). For results presented in the main text, net-
works were thresholded by removing edges with streamline counts below
0.001 multiplied by the maximum streamline count per network. To
investigate the robustness of our results, we repeated analyses with

thresholds of 0.005, 0.010, and 0.015. After constructing structural net-
works, we computed average controllability for each brain region (Fig. 1c),
and then identified age-related differences in average controllability of
control hubs and large-scale networks (Fig. 1c). We hypothesized that the
average controllability of control hubs and large-scale networks would be
negatively related to participants’ age. Next, we investigated how redun-
dancy, a measure of multi-step paths between nodes, supports average
controllability in middle- and old-aged participants (Fig. 1d). Due to pre-
vious work that has highlighted the role of redundancy for control in
complex systems24,50,51,63, we hypothesized that differences in network
redundancy could mediate age-associated differences in in network con-
trollability in brain networks (Fig. 1e). Finally, we investigated the extent to
which grey matter volume, network controllability, and redundancy, could
serve as partial proxies of age-associated variance in processing speed
(Fig. 1f).We hypothesized that both redundancy and average controllability
would serve as partial proxies of cognitive function that were com-
plementary to the traditional measure of reserve in grey matter volume.

Results
Hubs of average controllability are largely consistent in middle-
and old-aged adults
To begin our investigation of the relationship between network control and
aging, we evaluated if the average controllability of control hubs in middle-
aged participants (n = 305, ages 40–65) were different than in old-aged
participants (n = 175, ages 65–90).We classified a node as a control hub if its
average controllability was greater than one standard deviation above the
mean average controllability for all nodes in middle-aged participants. This
yielded 15hubs,whichwere predominatelywithinnetworks associatedwith
cognitive function (Fig. 2a). These hubsweremostly consistent across global
network thresholds of 0.001, 0.005, 0.010, 0.015 (Supplementary
Tables S1–S4). However, the 15th hub DefaultB – PFCd_1 was only clas-
sified as a hub at lower global network thresholds of 0.001, and 0.005
(SupplementaryTables S1–S2). Thedistributionof hubswithin the different
large-scale networks (shown as percentages in Fig. 2a) were corrected by
network size by normalizing the number of hubs in each network by their
respective size28. Hubs of average controllability were most commonly
within the default mode network (~40%), followed by the salience/ventral
attention network (~25%), similar to previously reported results28. Next, we
examined if average controllability for each of these identified hubs was
different between middle- and old-aged participants (Fig. 2b). For the hubs
with the greatest average controllability, the mean values were consistent
across age groups. However, old-aged participants had less average con-
trollability in two hubs within the default mode network (DefaultA –
PFCm_4: F = 9.78, pbonf. = 0.028, DefaultB – PFCd_1: F = 28.13,
pbonf. = 9.46e−08). The differences in average controllability between mid-
dle- and old-aged participants for the hub DefaultA – PFCm_4, remained
significant at all thresholds tested (Supplementary Tables S1–S4), whereas
the hub classification of DefaultB – PFCd_1 was sensitive to higher
thresholds of 0.010, 0.015 (Supplementary Tables S3 and S4). To assess the
extent towhich the hubswere dependent onour choice of hub threshold, we
performed an additional analysis identifying hubs as regions within the top
10% of average controllability, which corresponds to 40 nodes in our par-
cellation, and repeated the analysis with the global network thresholds of
0.001, 0.005, 0.010, 0.015 (Supplementary Tables S5–S8). The previously
identified hub DefaultB – PFCd_1, was the only region to show significant
differences between middle- and old-aged participants after correction for
multiple comparisons.

Declines inmean average controllability of large-scale networks
are implicated in aging
Next, we investigated if average controllability showed age-associated dif-
ferences at the level of large-scale networks.We calculated themean average
controllability for each of the 17 large-scale networks in our parcellation,
and computed the ranked Spearman’s correlation with age. Age was
negatively associated withmean average controllability in the default mode
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(DefaultB: Spearman’s ρ =−0.307, pbonf. = 1.15e−10), the frontoparietal
control (ContB: Spearman’s ρ =−0.279, pbonf. = 8.92e−09), and the limbic
(LimbicB: Spearman’s ρ =−0.223, pbonf. = 8.92e−09) networks (Fig. 2c and
Supplementary Table S9). Significant associations between age and mean
network average controllability were found for these networks across all
global network thresholds tested (Supplementary Tables S9–S12). For the
frontoparietal control network, this decline appeared to occurmostly before
the age of 61 (Supplementary Fig. S1a), whereas for the default mode and
limbic networks, these declines continued throughout the age range studied
(Supplementary Fig. S1b, c, respectively).

Minimal sex-related differences in mean network average con-
trollability and relationships with age
Sex-related differences are crucial to understand when investigating the
relationships between brain connectivity and aging. To evaluate the extent
to which males and females differed in mean network average controll-
ability, we performed ANCOVAs, with participant’s age and years of edu-
cation included as covariates. In most networks, we did not observe sex-
related differences. However, females showed lower mean network average
controllability in the default mode (DefaultA: F = 13.68, pbonf. = 0.004) and
the salience/ventral attention (SalVentAttnB: F = 10.79, pbonf. = 0.018)

(Supplementary Table S13) networks. These results were consistent across
thresholds assessed (Supplementary Tables S13–S16). Next, we assessed the
degree to which associations betweenmean average network controllability
and age differed between the sexes. We first computed sex-specific rank
correlations between mean network average controllability and age for 17
networks. Then we computed the significance of these differences by
computing the z-scored differences in correlation values using the Fischer’s
z-transform.Males showed stronger negative relationships between age and
mean network average controllability in the default mode (DefaultB) and
frontoparietal control (ContB) networks, but no correlations were sig-
nificantly different between the sexes across all thresholds assessed (Sup-
plementary Tables S17–S20). Since we observed minimal sex-related
differences in mean network average controllability, and no significant sex-
related differences for the relationships between mean network average
controllability and age for each of the 17 networks, we did not partition
participants by sex in any of the following analyses.

Nodal degree and redundancy show similar relationships to
average controllability
To examine if multi-step connectivity was related to average controllability,
we calculated network redundancy42, defined as number of non-circular

Fig. 1 | Study outline. aDiffusionMRI data from 480 subjects from the HCP Aging
dataset were used in our study. bWe constructed structural networks using the
functional Schaefer local-global parcellation with 17 networks and 400 ROIs. c For
each subject, we calculated network controllability, a measure of a node’s ability to
steer the brain into easy to reach states. dWe studied the relationship between
controllability and network redundancy in aging, testing the extent to which

redundancy influences the relationship between age and network controllability.
e We hypothesized that redundancy would mitigate the effects of age-associated
differences in topology on average controllability in brain networks. f Finally, we
investigated the extent to which grey matter volume, network controllability, and
redundancy, can jointly predict age-associated variance in cognitive function.
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paths between nodes up to a designated length L (L = 4 in our study, see
Methods). We summed this measure at the node level, to get the total
number of paths to and from each node for each participant’s structural
brain network. Similarly, we calculated nodal degree for all nodes by sum-
ming the number of first-order edges that each node was involved in. Since
redundancy is typically calculated on binary networks42, we calculated both
degree and redundancy on binarized adjacency matrices where Aij = 1 if a
streamline existed between nodes i and j, elseAij = 0. After computing nodal
degree and nodal redundancy for all brain regions in the parcellation, we
averaged these values, as well as the previously computed average con-
trollability values for each node, across participants to get group level nodal
degree, nodal redundancy, and nodal average controllability values. Next,
we performed rank correlations between these network features and average
controllability (Supplementary Fig. S2a). Both degree and redundancy
showed strong relationships with average controllability (degree: Spear-
man’s ρ = 0.823, p = 1e−99, Supplementary Fig. S2a.i, redundancy: Spear-
man’s ρ = 0.804, p = 7e−92, Supplementary Fig. S2a.ii). To investigate the
relationship between multi-step pathways and average controllability, we
then performed a rank-correlation between degree-regressed redundancy
and degree-regressed average controllability. Degree regressed redundancy
and degree-regressed average controllability still maintained a positive
relationship (Spearman’s ρ = 0.444, p = 1.1e−20, Supplementary Fig. S2b).

Degree mediates differences in average controllability with age
Before assessing the influenceof redundancy in age-associateddifferences in
average controllability, we began by examining the importance of edges
immediately connecting to nodes via degree. The average degree in 15 of 17
networks showed negative rank-correlations with age across all thresholds
tested (pbonf < 0.05, see Supplementary Tables S21–S24). For the threshold
of 0.001(Fig. 3a), the strongest of these associations were in the dorsal
attention network (DorsAttnA: Spearman’s =−0.464, pbonf. = 9.90e−26)

and the salience/ventral attention network (SalVentAttnA: Spearman’s
ρ =−0.446, pbonf. = 1.44e−23) (Supplementary Table S21).With the strong
relationships between degree and average controllability, we expected that
average network degree should influence the association between age and
average controllability. We assessed this putative relationship by testing if
degree mediated age-related differences in mean network average con-
trollability. We performed mediation analyses for each of the 17 networks,
and found that degree influenced the relationship between age and average
controllability for 14 of 17 networks (all pbonf.’s < 0.05, see Supplementary
Table S17) (Fig. 3b), with the degree of the limbic network having the
strongest impact on the relationship between its mean network average
controllability and age (LimbicB, β = 0.0149, pbonf. < 1e−20). These 14
networks consistently mediated the relationship between mean network
average controllability and age across thresholds (Supplementary
Tables S25–S28).

Redundancymediates differences in average controllability with
age over and above the effects of degree
We next turned towards examining the effects of redundancy in the rela-
tionship between age and average controllability. First, we calculated the
average nodal redundancy for each network within our parcellation, and
calculated a Spearman’s rank correlationwith age. Similar to degree, average
network redundancy shows widespread negative relationships with age
(Fig. 3c). Redundancy in the frontoparietal control network showed the
strongest negative relationship with age for the global threshold of 0.001
(ContA: Spearman’s ρ =−0.414, pbonf. = 5.26e−20, Supplementary
Table S29), but all negative associationswere significant across all thresholds
(all pbonf.’s < 0.05; see Supplementary Tables S29–32). Next, we investigated
if the multi-step connectivity indexed by redundancy influenced the rela-
tionship between mean network average controllability and age, over and
above the effects of degree. For each large-scale network in our parcellation,

Fig. 2 | Hub and average network controllability are impacted by aging. a The
affiliations of hubs of average controllability in middle-aged subjects (ages 40–65)
were predominately within the defaultmode network. Percentageswere corrected by
network size, which equalizes the probability of hubs falling within each network.
b Distributions of average controllability for each hub, for middle- and old-aged
participants (ages 65–90). Two hubs in the default mode network exhibited less
average controllability in old-aged participants. c Mean network average

controllability was negatively associated with age in the default mode network
(DefaultA), control network (ContB), and limbic network (LimbicB). In the group
comparisons (Panel b) and the rank-correlations (Panel c), participant education
was included as a covariate. The Bonferroni method for correction for multiple
comparisons was applied to correct for the number of hubs analyzed (16) (Panel b).
and the number of networks (17) (Panel c). *corrected P < 0.05, **corrected
P < 0.001.
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we performed a mediation analysis between age and average controllability
with redundancy as the mediator, and included average degree of the
respective large-scale networks as covariates. Redundancy mediated the
relationship between age and mean network average controllability in 3 of
17 networks, over and above the effects of degree (all pbonf.’s < 0.05, see
Supplementary Table S5) (Fig. 3d). This included the defaultmode network
(DefaultB: β = 0.0005, pbonf. < 0.014), which exhibited an age-associated
decline in average controllability (Fig. 2c), the dorsal attention network
(DorsAttnB: β = 0.0008, pbonf. < 0.010), and the visual network (VisPeri:
β = 0.002, pbonf. < 1e−20). Of these networks, the mediations performed by
redundancy were significant across all thresholds for the dorsal attention
(DorsAttnB) and default model (DefaultB) networks (Supplementary
Tables S33–S36).

Average controllability and redundancy showmoderate rela-
tionships in brain networks when controlling for participant age
Due to similarities in the computation of redundancy and average con-
trollability, it is possible that the results from our mediation analyses are
primarily driven by correlations between redundancy and average con-
trollability, rather than empirical observations specific to age-associated
variance in brain networks. To investigate this possibility, we performed
partial correlations between mean network average controllability and
average network redundancy, while controlling for average network degree,
participant age, and education, across global network thresholds of 0.001,

0.005, 0.010, 0.015 (Supplementary Tables S37–S40). For the lowest
threshold tested, 0.001 (Supplementary Table S37), we did not see sig-
nificant relationships for any of the subnetworks that were identified in our
mediation analyses (DefaultB,DorsAttnB, SupplementaryTables S33–S36).
Moreover, only the defaultmode network (DefaultA) showed a relationship
between mean network average controllability and average network
redundancy, and this relationship was negative. For the second threshold,
0.005 (Supplementary Table S38), there were positive associations between
redundancy and mean network average controllability in 4 of the 17 net-
works, and a negative association with the default mode network identified
in the previousmediation analyses (DefaultB). For the remaining thresholds
we observed positive relationships between mean network average con-
trollability and average network redundancy in the dorsal attention network
(DorsAttnB), but not in the aforementioned default mode network
(DefaultB) (Supplementary Tables S39 and S40).

Average controllability and redundancy are associated with
processing speed
After focusing on age-associated variance in average controllability and
network properties that contribute to it, we studied the relationships
between average controllability, redundancy, and cognitive function. We
first associated themean network average controllability for each large-scale
network with processing speed, assessed by the Pattern Comparison Pro-
cessing Speed Test64. We hypothesized that processing speed would be

Fig. 3 |Multi-step connectivity (redundancy)mediates relationships between age
and mean network average controllability over and above the effects of degree.
aAverage network degree was negatively associated with age for 15 of 17 large-scale
networks. b Changes in degree mediated the relationship between age and mean
network average controllability for 14 of 17 networks. c Average network redun-
dancy also showed age associated declines, but for all networks examined. dAverage
network redundancymediated relationships between age and average controllability
for 3 of 17 networks when including degree as a covariate. These networks included

the visual (VisPeri), dorsal attention (DorsAttnB), and default mode (DefaultB)
networks. In each analysis participant education was included as a covariate. We
used the Bonferonni method to correct for multiple comparisons. In each panel we
corrected for the number of networks analyzed (17). In panelsb andd, themediation
was significant if the confidence intervals did not cross 0 when the α = 0.05/17 to
correct for multiple comparisons. Significant mediations are indicated by black
confidence intervals, while non-significant mediations are indicated by grey con-
fidence intervals.
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related to measures of influence on overall network dynamics, such as
average controllability. We found that processing speed was positively
associated with average controllability in the frontoparietal control (ContB:
Spearman’s ρ = 0.144, pbonf. = 0.026) and the default mode (DefaultB:
Spearman’s ρ = 0.174, pbonf. = 0.002) networks (Fig. 4a). These relationships
were consistent across all thresholds examined (Supplementary
Tables S41–S44). Next, we associated average network redundancy with
processing speed. Redundancy in 6 of 17 large-scale networkswas positively
related to processing speed (all pbonf.’s < 0.05) (Fig. 4b). This also included
the frontoparietal control network (ContB: Spearman’s ρ = 0.168,
pbonf. = 0.004), but redundancy in other networks was also positively

associated with processing speed, including the salience/ventral attention
(SalVentAttnB: Spearman’s ρ = 0.169, pbonf. = 0.004), limbic (LimbicB:
Spearman’s ρ = 0.166, pbonf. = 0.005), visual (VisCent: Spearman’s ρ = 0.156,
pbonf. = 0.01), and dorsal attention (DorsAttnA: Spearman’s ρ = 0.15,
pbonf. = 0.008) networks. These networks exhibited significant positive
relationships across all thresholds tested (Supplementary Tables S45–S48).
However, other networks including the temporal parietal (TempPar),
default mode (DefaultA), salience/ventral attention (SalVentAttnA) and
somatomotor (SomMotA) networks also showed significant positive rela-
tionships at higher thresholds of 0.005, 0.010, and 0.015 (Supplementary
Tables S46–S48).

Fig. 4 | Associations between grey matter volume (GM), mean network average
controllability, and redundancy, and processing speed. aMean average con-
trollability in the frontoparietal control (ContB), and default mode (DefaultB)
networks was positively associated with processing speed. b Processing speed was
positively associated with redundancy in 5 of 17 networks (all pbonf.’s < 0.05). c Total
hippocampal volume did not significantly change until around the age of 67, after
which it showed a negative association with age. d For participants older than 66.92,
IC volume-adjusted total hippocampal volume was positively associated with pro-
cessing speed. e Performance of a general linear models when predicting processing

speed with measures of GM volume, average controllability, and redundancy. For
GM, we used IC-volume-adjusted measures of hippocampal volume, subcortical
volume, and cortical volume. f The z-scored predicted processing speed versus real
z-scored processing speed for the best model shown in e. In panels a and b, we used
the Bonferroni method to correct for multiple comparisons based on the number of
networks analyzed (17). For panels d and e, measures of processing speed and GM
volume were z-scored. In the rank-correlations performed in panels a and
b, participant education was included as a covariate.
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Hippocampal grey matter volume is positively associated with
processing speed in older participants
Next, we investigated the association between hippocampal grey matter
(GM) volume, one of the most commonly used measures of brain reserve,
and processing speed. We only expected hippocampal volume to be a
mechanismofbrain reservewhendeclines in volumebegan innormal aging.
To determine when decline starts within our participants, we used a piece-
wise linear regression that identifies breakpoints in a data-driven manner.
We found that hippocampal volume experiences a non-significant but
positive trend between the ages of 40–66.92 (r = 0.103, p = 0.063), after
which hippocampal volume in our participants showed significant age-
associated decline (r =−0.36, p = 5.70e−06) (Fig. 4c). Total subcortical
GM volume showed a similar trajectory, with a breakpoint at age 65
(Supplementary Fig. S3a), and total cortical GM volume showed continual
decline throughout ages 40–90, with the most rapid decline occurring after
age 75.33 (Supplementary Fig. S3b). Then, we used the residual method65

to determine if total hippocampal volume was a marker of cognitive
reserve for participants with age >66.92. We found that total hippocampal
volume, when adjusting for total intracranial volume66, was positively
associated with processing speed in this older subset of subjects (r = 0.187,
p = 0.021) (Fig. 4d).

Controllability, redundancy, and grey matter volume are syner-
gistically associated with cognitive performance
Finally, we examined if mean network average controllability, and GM
volume served as complementary predictors of cognitive function in our
participants. With the subset of participants older than the previously
identified breakpoint for hippocampal volume (ages >66.92, n = 151, M/
F = 67/84) we trained GLMs to predict processing speed using various
combinations of GM volume, mean network average controllability, and
average network redundancy for each of the 17 functional networks
(Fig. 4e). For GM volume, we used total hippocampal volume, as well as
subcortical and cortical volume. GMvolume and average controllability did
appear to have an almost entirely complementary effect on predicting
cognition, yielding an R2 = 0.115, versus an R2 = 0.036 for GM alone, and
R2 = 0.081 for average controllability alone. However, GM volume and
redundancy showed better performance (R2 = 0.171), although there was
more overlap in the predictive power between these features (redundancy:
R2 = 0.155). The best model included all three sets of features (R2 = 0.233)
(Fig. 4f and Table 1). These results were similar across all global network
thresholds tested (Table 1, and Supplementary Tables S49–S51), for 0.001,
0.005, 0.010, and 0.015, respectively).

Discussion
In this studywe examinedwhether age-associated differences in the average
controllability of brain networks ismitigated by redundancy.We found age-

associated differences in the average controllability of structural networks
within our functional parcellation in the default mode (DefaultB), fronto-
parietal control (ContB), and limbic (LimbicB) networks. Additionally, two
control hubs within the default mode network showed declines in average
controllability among old-aged participants. Furthermore, we investigated
the extent to which these differences were influenced by the presence of
single-step and multi-step pathways between brain regions. Degree, our
measure of single-step connectivity, influenced age-associated differences in
average controllability in 14 of the 17 functional networks. However, multi
-step paths indicative of redundancy in the system19,23, mediated the rela-
tionships between age and average controllability in 3 of 17 networks, these
included the visual (VisPeri), dorsal attention (DorsAttnB, SalVentAttnB),
and default mode (DefaultB) networks. Finally, we investigated a previously
posed hypothesis, that network controllability and GM volume, a more
traditional measure of brain reserve, should each be partial proxies of
cognitive function36. When using simple linear models, our results were
consistent with this hypothesis. However, both redundancy and average
controllability appeared to provide complementary predictive power when
predicting the processing speed abilities of healthy older adults.

Age related differences in average controllability
Structural networks reorganize in brain aging16. Despite these differences in
network organization associated with age, mechanisms that mitigate these
differences to maintain average controllability have been relatively under-
studied. In the present study, we evaluated differences in average controll-
ability associated with aging in control hubs and in the structural
connectivity of large-scale brain networks.We identified 15 hubs of average
controllability, the first 14 of which were robust to threshold selection.
The top 13 exhibited similar levels of average controllability between
middle-aged and old-aged participants. While the 14th and 15th hubs,
which were within the default mode network, exhibited less average con-
trollability in old-aged participants. Many of these hubs were in the pre-
cuneus, and posterior cingulate, overlapping with previously identified
average control hubs28, and regions identified as the structural core67.
However, for two hubs in the default mode network, old-aged participants
showed less average controllability than middle-aged participants. Both of
these hubs were in the prefrontal cortex (PFC), one in themedial prefrontal
cortex (PFCm), and the other in the dorsal prefrontal cortex (PFCd). The
PFC experiences age-related declines in brain volume68,69 and white matter
integrity68. Increased task-based brain activity in the PFC is commonly
reported as a potential mechanism to compensate for declines in brain
volume and white matter44 (for a review see refs. 48,70). Our results suggest
that increased compensatoryPFCactivation could alsobe related to declines
in the average controllability of hubs within the default mode network,
providing further support to the possibility of network controllability as a
measure linking brain and cognitive reserve36.

Multi-step connectivity (redundancy) influences age-associated
differences in average controllability
Nodal degree, a measure of the number edges connected to a particular
node, has been shown to strongly predict nodal controllability within
subjects24,28,71–73. However, the additional properties that influence con-
trollability are largely unknown. In this study we investigated the relevance
of redundant multi-step paths to brain network controllability40–42. We
found that redundancy was positively associated with average controll-
ability, when adjusted for degree, suggesting thatmulti-step pathways could
play a crucial role in the control profiles of complex networks. Furthermore,
ourmediation analyses indicated that redundancy,while holdingdegree as a
covariate, supported the average controllability of several key networks for
cognitive function in aging. These included the default mode (DefaultB),
dorsal attention DorsAttnB), and visual (VisPeri) networks. Of these net-
works, the default and limbic networks identified showed age-associated
declines in average controllability,which indicates that redundancy could be
a neuroprotective mechanism to mitigate these declines43. This work aligns
with findings in other complex systems suggesting that edge redundancy

Table 1 | GM, mean network average controllability (Control),
and average network redundancy (Redundancy), each aid in
the prediction of processing speed in older adults

Features r2 Log
likelihood

AIC BIC

GM 0.036 −208.72 425.447 −581.872

Control 0.081 −205.1 446.191 −518.647

Redundancy 0.155 −198.87 433.747 −529.614

GM+Control 0.115 −202.33 446.654 −508.624

GM+ Redundancy 0.171 −197.46 436.920 −516.969

Control+ Redundancy 0.218 −193.14 459.279 −453.874

GM+Control+Redundancy 0.233 −191.66 459.320 −441.154

The R2, log-likelihood, AIC, and BIC for each GLM trained to predict processing speed in older
participants (ages > 66.92, n = 151, M/F = 67/84) shown in Fig. 4e. Each set of features provided
highly additive effects in the overall goodness-of-fit (R2) for thesemodels. GM volume includes total
hippocampal, cortical, and subcortical volume.
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can promote robust average controllability24, particularly in the context of
changing network topologies, such as edge removal50,51, which is similar to
weakening white matter connectivity observed in aging74,75. Our work
suggests that the existence of multi-step pathways in brain networks could
provide bridges of connectivity that preserve average network
controllability63, to support dynamic brain activity in aging.

Average controllability, redundancy, and processing speed
Processing speed in our study was assessed via the speed of pattern
comparison64. This task requires several cognitive processes, such as visual
search, working memory, and decision making. For both average con-
trollability and redundancy, we found a positive associationwithin the same
subnetwork of the frontoparietal control network (ContB). The fronto-
parietal control network is important for allocation of attention, flexible
goal-driven behavior, working memory, and decision making76,77. Further-
more, the global connectivity of the frontoparietal control network may
allow it to influence brain-wide dynamics78. Our results suggest that the
average controllability, and redundancy, of edges within the frontoparietal
network could be important for enabling the diverse cognitive functions
relevant in processing speed and other similar tasks. Furthermore, we found
that processing speed was positively associated with redundancy in the
dorsal attention (DorsAttnA), visual (VisCent), salience/ventral attention
(SalVentAttnB) and limbic (LimbicB) networks, suggesting that increased
number of communication pathways involving each of these networks
could support guidance of top-down attention and discrimination in this
visually-based processing speed task79–82.

Complementary effects of grey matter volume, average con-
trollability, and redundancy on cognitive performance
In support of the hypothesis that GM volume and network controllability
could each be partial proxies of cognitive function36, we found that GM
volume and average controllability had almost complementary effects on
the goodness of fit for our model’s prediction of processing speed. GM
volume and redundancy also improved performance together versus when
considering either of them alone, but the additive effect on the goodness of
fit was not as dramatic. This is not surprising, as hippocampal volume has
been previously associated with redundancy in brain networks23. Addi-
tionally, we found that average controllability and redundancy showed
highly complementary effects in predicting processing speed, despite
similarities in their calculation. We propose that this is primarily due to the
within-subject normalization performed when calculating average con-
trollability which could mask age-associated variance between subjects.
However, model performance was the best when including GM volume,
average controllability, and redundancy in a single model, suggesting that
they each could play an important role in cognitive function in
healthy-aging.

Mathematical considerations regarding the similarity between
average controllability and redundancy
There are similarities in the computation of redundancy42 and average
controllability28 that should be considered while interpreting our results. In
particular, redundancy and average controllability can both be viewed as
measuring the number of indirect paths associated with a node83,84. From
this perspective, it is possible that redundancy mediating the relationship
between age and mean network average controllability in several networks
could be fundamentally a mathematical, rather than an empirical obser-
vation driven by age-associated variance in brain networks. However, when
controlling for age within our participants, we did not find consistent
relationships between average controllability and redundancy within the
default mode network (DefaultB), suggesting that the observed indirect
effect of DefaultB redundancy on the relationship between age and average
controllability in this network is dependent on age-associated differences.
Furthermore, if redundancy and average controllability indexed extremely
similar features, their ability to predict processing speed should not have
been as complementary as observed. There are two key differences in the

computation of redundancy and average controllability. The first is that
during the computation of average controllability, adjacency matrices are
normalized by dividing by a constant plus the largest eigenvector. Second,
average controllability approximates the diffusion of information across an
infinite time scale, whereas redundancy isfinite. Infinite time-scale diffusion
on other message-passing systems has been proven to cause over-
smoothing85, leading to a steady state that primarily consists of informa-
tion about the number of connected components86 and the loss of infor-
mation related node-specific features85,87,88. This over-smoothing problem is
present in controllability measures, as well as measures of
communicability89, and other metrics that consider paths of infinite length
on a network.

Greatermean network average controllability inmaleswithin the
default mode and salience/ventral attention networks
Males and females exhibit different white matter network connectivity
topologies in development90,91, adulthood92,93, and in aging94. In develop-
ment, white matter differences contribute to differing network controll-
ability profiles that are predictive of poorer executive function inmales90. In
adulthood, differing hemispheric connectivity contributes to males having
higher average controllability in regions involving motor and auditory
function, which could facilitate motor activation 93. In our study, males had
higher mean network average controllability of the default mode
(DefaultA), and salience/ventral attention (SalVentAttnB) networks of
middle- and old-aged adults.We did not find that average controllability in
these networks was related to processing speed, the only cognitive function
assessed in this study. However, future studies could investigate if these
differences are associated with measures of executive function in aging,
where females tend to show more initial reserve, but faster decline after a
tipping point is reached95,96.

Limitations and future directions
The goals of our study included assessing the extent to which redundancy
could mitigate age-associated differences in network control, and evaluate
network control in the context of traditional measures of brain reserve. We
used mediation analyses within our study which relied on a cross-sectional
sample. Cross-sectional age-associated variance does not always hold in
longitudinal settings97, thus replication of our findings in a longitudinal
setting would be ideal. When studying a traditional measure of reserve, we
used the residual method65 to assess if increased hippocampal volume was
positively associated with processing speed. While we did observe hippo-
campal atrophy (reduction in GM volume) in older participants, this
method is primarily used in the context of neurodegenerative diseases65.
Future studies may consider including participants with later stages of
dementia-associated atrophy to further evaluate network controllability in
the context of reserve. Another limitation of our study is that we performed
limited investigation into sex-related differences in our results. Our initial
analyses in this direction yielded minimal sex-related differences in mean
network average controllability, and no significant differences in the rela-
tionships between mean network controllability and age for each of the 17
networks. Future work could expand on these results to consider if differ-
ences in network controllability drive observed sex-relateddifferences in the
rates of cognitive decline95,96, particularly for executive function, which has
been associated with faster degradation of white matter tracts in females94.
Finally,whilewe focusedonaverage controllability in this study, futurework
could expand upon existing studies of modal controllability in aging, to
further our understanding of how age-associated changes in network
topology influence network controllability, and the relevance of these
changes in cognitive and brain reserve.

Methods
Dataset and participants
We used preprocessed dMRI data obtained from the 2.0 release of the
Human Connectome Project – Aging database61. Ages of participants
ranged from 40 to 90 (n = 646), of these we used data from a subset of 545
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participants with valid cognitive assessments for the cognitive scores we
used in our study.We restricted participants to those with normal cognitive
function as assessed by the Montreal Cognitive Assessment (MoCA)98. For
subjects older than 65, we used a cutoff of 23/30, which has been found to
limit false diagnosis of mild cognitive impairment99. There are forms of
dementia that theMoCA can be insensitive to, such as vascular dementia100,
semantic dementia101 and frontotemporal dementia102, each with differing
patterns of cognitive impairment. To reduce the likelihood of inclusion of
participants with early stages of these forms of dementia, we also excluded
subjects between the ages of 65–90 with poor performance on measures of
cognitive flexibility103,104, vocabulary comprehension103,105,106, and executive
function17,103,104,107. Poor performance was defined as a performance level
worse than two standard deviations below the mean. These restrictions
removed another 65 participants from eligibility, leaving us with data from
480 (281 females, 199males) participants for this study.All participants gave
written informed consent and all procedures had been pre-approved by
local Institutional Review Boards. All ethical regulations relevant to human
research participants were followed.

Image acquisition and processing
T1-weighted structural images were acquired in a 3 Tesla Siemens Prisma
Scanner. A multi-echo magnetization prepared rapid gradient echo
(MPRAGE) sequence (voxel size: 0.8 × 0.8 × 0.8mm, TE = 1.8/3.6/5.4/
7.2ms, TR = 2500ms, flip angle = 8 degrees) was used. Diffusion MRI
(dMRI) images were generated from multi-shell diffusion with b-values of
1500 and 3000 s/mm2, with 93 and 92 sampling directions, a slice thickness
of 1.5mm, and an in-plane resolution of 1.5mm. We used preprocessed
dMRI data for our study. For details on the preprocessing pipeline see:
https://brain.labsolver.org/hcp_a.html. Briefly, the pipeline involved sus-
ceptibility artifact detection with the TOPOP, from the Tiny FSL package
(http://github.com/frankyeh/TinyFSL), alignment with the AC-PC line,
restricted diffusion imaging108, and generalized q-sampling109. These ana-
lyses were conducted at Extreme Science and Engineering Discovery
Environment (XSEDE)110 resources using the allocation TG-CIS200026.

Network construction
Preprocessed dMRI datawas reconstructed inDSI Studio (http://dsi-studio.
labsolver.org). We performed whole-brain fiber tracking with
5,000,000 streamlines. (Fig. 1a). Structural networks were constructed
according to theSchaeferLocal-Global cortical parcellationwith400cortical
regions62, which subdivides the human cortex into 17 large-scale (func-
tional) networks (Fig. 1b). Each brain parcelwas considered a node,with the
number of streamlines between any pair of parcels used as the weighted
edge. Edges were removed if they were below 0.001 of the maximum edge
weight per network. Additionally, we repeated major analyses with
thresholds of 0.005, 0.01, 0.015, to assess the robustness of our results.

Average controllability calculations
Average controllability, defined as the average energy from a set of control
nodes on dynamic state trajectory over all possible states, was calculated
using the trace of the finite time controllability Gramian111. The finite time
controllability Gramian is computed via:

Wk ¼
X1

t¼0

AtBkB
t
kA

t ð1Þ

WhereA is the adjacencymatrix, normalized by dividingmy one-plus
the largest absolute eigenvector, Bk is an input matrix of dimension
1 × nROIs, and k represents the set of nodes specified as control nodes. In
our study we calculated the average controllability of each of the nodes
within the 400 node parcellation. In several analyses we averaged these
values at the level of large-scale networks, which we referred to as themean
average controllability of the respective large-scale network.

Redundancy calculations
Redundancy was calculated as the number of simple (non-circular) paths
between a pair of nodes up to a specified length (here we used L = 4)42,
according to the equation:

Ri;j ¼
XL

k¼1

P i; j; k
� �

: ð2Þ

Where P(i, j, k) was the number of paths non-circular paths between
nodes i, and j, calculatedwith the all_simple_paths function inNetworkX112.
To get nodal redundancy, we summed the total number of paths from each
node to all other nodes. After calculation of nodal redundancy for all nodes
in each subject’s structural networks, we calculated the average redundancy
in the structural connectivity of each of the 17 large-scale networks per
subject. We used the binarized structural connectivity matrices for these
calculations.

Cognitive measures
We focused on the cognitive measure of processing speed within our study
because processing speed is believed to be limited by communication along
white-matter tracts52,53. Processing speed was assessed via the Pattern
Comparison Processing Speed Test64. Subjects were shown pairs of objects
and asked to judge whether two objects, presented simultaneously, were the
same or different. They were given 85 s to judge asmany objects as possible.
We used participant’s MoCA scores to determine if they were healthy
(score >= 23/30). Additionally, we used measures of cognitive flexibility,
assessed via the Dimensional Card Sort Test113, executive control, assessed
via the Flanker Inhibitory Control and Attention Test114, and vocabulary
comprehension, assessed via the Picture Vocabulary Test107, to exclude
subjects with forms of dementia that the MoCA is insensitive to17.

Grey matter volume extraction
From the T1-weighted images, we extracted grey matter volume using the
run_first_all command within Freesurfer115. This included extraction of
hippocampal volume, and the volume of subcortical structures, in the Aseg
atlas116, as well cortical grey matter volume and estimated total intracranial
volume.

Statistics and reproducibility
Weperformed group comparisons of average controllability inmiddle-aged
(40 ≤ age < 65, n = 305, M/F = 120/185) and old-aged (65 ≤ age < 90,
n = 175, M/F = 79/96) adults. We performed rank-correlations between
features of network controllability and redundancy with age and processing
speed, as well as rank-correlations between redundancy, degree, and net-
work controllability measures. We then performed parallel mediation
analyses to investigate the effects of degree and redundancy on the rela-
tionships between age and average controllability. In themediation analyses
with redundancy, ranked-degree was included as a covariate to highlight
influence of multi-step pathways on the relationships between age and
average controllability. For allmediationanalyses, participant educationwas
included as a covariate. Inferential statistics were estimated with 10,000
bootstraps. The correlations and mediation analyses were performed using
the entire sample of participants (n = 480, M/F = 199/281). Following these
experiments, we performed a breakpoint analysis using a piece-wise linear
regression to determine the starting point of hippocampal atrophy in our
healthy cross-sectional sample.Using participants older than the discovered
breakpoint (age >66.92, n = 151, M/F = 67/84), we used general linear
models (GLMs) to investigate the extent to which linear combinations of
GM and network features aided in the prediction of processing speed.
ANCOVAs, Spearman’s correlations, Pearson’s correlations, andmediation
analysis, were performed using the python package Pingouin117. Welch’s
ANOVAswereused to compare average controllability in 15 identifiedhubs
in middle-aged and old-aged adults. We used the Bonferroni method to
correct for multiple comparisons which set the p-value necessary for
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significance to p < 0.05/15. For Spearman and Pearson correlations, we
required p < 0.05/17 to correct for the number of functional networks
analyzed. Mediation analyses were performed with the α = 0.05/17 for the
confidence intervals, with significance determined by whether or not the
confidence intervals for each coefficient crossed the value of zero. Piece-wise
linear regression to determine breakpoints in rates of change for greymatter
volume was performed using the pwlf python package118. Our GLMs were
constructed using the python package Statsmodels119. Additional stats
derived from these models (R2, log-likelihood, AIC120, BIC121) were also
computed using the Statsmodels package.

Plotting
We used custom python scripts for plotting and data visualization based on
the Matplotlib122, Pandas123, and Seaborn124, packages.

Data availability
All data used in this study is publicly available via the Human Connectome
Project – Aging dataset61.

Code availability
Supporting code for statistical analyses can be found here: https://github.
com/WilliamStanford/ControllabilityInAging/.

Received: 20 March 2023; Accepted: 28 May 2024;

References
1. Population Division, Department of Economic and Social Affairs,

United Nations. World Population Ageing 2020 Highlights: Living
Arrangements of Older Persons (United Nations, 2020).

2. Sleeman, K. E. et al. The escalating global burden of serious health-
related suffering: projections to 2060 by world regions, age groups,
and health conditions. Lancet Glob. Health 7, e883–e892 (2019).

3. Novotný, J.S. et al. Physiological pattern of cognitive aging. J.
Alzheimers Dis. 88, 1147–1155 (2022).

4. Mhaske, R. Happiness and aging. J. Psychosoc. Res. 12, 71 (2017).
5. Anton, S. D. et al. Successful aging: advancing the science of physical

independence in older adults. Ageing Res. Rev. 24, 304–327 (2015).
6. LeCarret,N. et al. Theeffect of educationoncognitiveperformances

and its implication for the constitution of the cognitive reserve. Dev.
Neuropsychol. 23, 317–337 (2003).

7. Wilson, R. S. et al. Education and cognitive reserve in old age.
Neurology 92, e1041–e1050 (2019).

8. Rubinov, M. & Sporns, O. Complex network measures of brain
connectivity: uses and interpretations. Neuroimage 52, 1059–1069
(2010).

9. Fair, D. A. et al. Development of distinct control networks through
segregationand integration.Proc.Natl Acad.Sci.104, 13507–13512
(2007).

10. Chan, M. Y., Park, D. C., Savalia, N. K., Petersen, S. E. & Wig, G. S.
Decreased segregation of brain systems across the healthy adult
lifespan. Proc. Natl Acad. Sci. 111, E4997–E5006 (2014).

11. Betzel, R. F. et al. Changes in structural and functional connectivity
among resting-state networks across the human lifespan.
Neuroimage 102, 345–357 (2014).

12. Sadiq,M. U., Langella, S., Giovanello, K. S.,Mucha, P. J. &Dayan, E.
Accrual of functional redundancy along the lifespan and its effects
on cognition. Neuroimage 229, 117737 (2021).

13. Sala-Llonch, R., Bartrés-Faz, D. & Junqué, C. Reorganization of
brain networks in aging: a review of functional connectivity studies.
Front. Psychol. 6, 663 (2015).

14. Cohen, J. R. & D’Esposito, M. The segregation and integration of
distinct brain networks and their relationship to cognition. J.
Neurosci. 36, 12083–12094 (2016).

15. Malagurski, B., Liem, F., Oschwald, J., Mérillat, S. & Jäncke, L.
Functional dedifferentiation of associative resting state networks
in older adults–a longitudinal study. Neuroimage 214, 116680
(2020).

16. Coelho, A. et al. Reorganization of brain structural networks in aging:
A longitudinal study. J. Neurosci. Res. 99, 1354–1376 (2021).

17. Stanford, W. C., Mucha, P. J. & Dayan, E. A robust core architecture
of functional brain networks supports topological resilience and
cognitive performance in middle-and old-aged adults. Proc. Natl
Acad. Sci. 119, e2203682119 (2022).

18. Chen, X. et al. The functional brain favours segregated modular
connectivity at old age unless affected by neurodegeneration.
Commun. Biol. 4, 1–16 (2021).

19. Langella, S., Sadiq,M. U.,Mucha, P. J., Giovanello, K. S. &Dayan, E.
Lower functional hippocampal redundancy in mild cognitive
impairment. Transl. Psychiatry 11, 1–12 (2021).

20. Malek-Ahmadi, M. et al. Age-and education-adjusted normative
data for the Montreal Cognitive Assessment (MoCA) in older adults
age 70–99. Aging Neuropsychol. Cognition 22, 755–761 (2015).

21. Chan, M. Y. et al. Long-term prognosis and educational
determinants of brain network decline in older adult individuals.Nat.
Aging 1, 1053–1067 (2021).

22. Ewers, M. et al. Segregation of functional networks is associated with
cognitive resilience in Alzheimer’s disease. Brain 144, 2176–2185
(2021).

23. Langella, S.,Mucha,P. J.,Giovanello, K. S., Dayan, E. & Initiative,As.
D. N. The association between hippocampal volume andmemory in
pathological aging ismediatedby functional redundancy.Neurobiol.
Aging 108, 179–188 (2021).

24. Liu, Y.-Y., Slotine, J.-J. & Barabási, A.-L. Controllability of complex
networks. nature 473, 167–173 (2011).

25. Kalman, R. E.Mathematical descriptionof linear dynamical systems.
J. Soc. Ind. Appl. Math. Ser. A Control 1, 152–192 (1963).

26. Luenberger, D. G. Introduction to dynamic systems: theory, models,
and applications 1 (Wiley, New York, 1979).

27. Slotine, J.-J. E. & Li, W. Applied nonlinear control 199 (Prentice hall,
Englewood Cliffs, NJ, 1991).

28. Gu, S. et al. Controllability of structural brain networks. Nat.
Commun. 6, 1–10 (2015).

29. Greicius, M. D., Krasnow, B., Reiss, A. L. & Menon, V. Functional
connectivity in the resting brain: a network analysis of the default
mode hypothesis. Proc. Natl Acad. Sci. 100, 253–258 (2003).

30. Raichle,M. E. &Snyder, A. Z. A defaultmodeof brain function: a brief
history of an evolving idea. Neuroimage 37, 1083–1090 (2007).

31. Sulpizio, V., Galati, G., Fattori, P., Galletti, C. & Pitzalis, S. A common
neural substrate for processing scenes and egomotion-compatible
visual motion. Brain Struct. Funct. 225, 2091–2110 (2020).

32. Bassett, D. S., Yang, M., Wymbs, N. F. & Grafton, S. T. Learning-
induced autonomy of sensorimotor systems. Nat. Neurosci. 18,
744–751 (2015).

33. Hamdan, A. & Nayfeh, A. Measures of modal controllability and
observability for first-and second-order linear systems. J. Guidance
Control Dyn. 12, 421–428 (1989).

34. Pasqualetti, F., Zampieri, S. & Bullo, F. Controllability metrics,
limitations and algorithms for complex networks. IEEE Trans.
Control Netw. Syst. 1, 40–52 (2014).

35. Medaglia, J. D. Clarifying cognitive control and the controllable
connectome.Wiley Interdiscip. Rev. Cogn. Sci. 10, e1471 (2019).

36. Medaglia, J. D., Pasqualetti, F., Hamilton, R.H., Thompson-Schill, S.
L. & Bassett, D. S. Brain and cognitive reserve: Translation via
network control theory. Neurosci. Biobehav. Rev. 75, 53–64 (2017).

37. Tang, R. et al. Longitudinal association of executive function and
structural networkcontrollability in the agingbrain.GeroScience,45,
837–849 (2022).

https://doi.org/10.1038/s42003-024-06392-2 Article

Communications Biology |           (2024) 7:701 10

https://github.com/WilliamStanford/ControllabilityInAging/
https://github.com/WilliamStanford/ControllabilityInAging/


38. Tang, R. et al. Brain Controllability of Cognitive Control Networks is
Associated with Executive Functions in Older Adults. Alzheimer’s
Dement. 18, e060583 (2022).

39. Bassignana, G., Lacidogna, G., Bartolomeo, P., Colliot, O. & De Vico
Fallani, F. The impact of aging on human brain network target
controllability.Brain Structure and Function, 227, 3001–3015 (2022).

40. Tononi, G., Sporns, O. & Edelman, G. M. Measures of degeneracy
and redundancy in biological networks. Proc. Natl Acad. Sci. 96,
3257–3262 (1999).

41. Navlakha, S., He, X., Faloutsos, C. & Bar-Joseph, Z. Topological
properties of robust biological and computational networks. J. R.
Soc. Interface 11, 20140283 (2014).

42. Di Lanzo,C.,Marzetti, L., Zappasodi, F., DeVicoFallani, F. &Pizzella,
V. Redundancy as a graph-based index of frequency specific MEG
functional connectivity. Comput. Math. Methods Med. 2012,
207305 (2012).

43. Glassman, R. B. An hypothesis about redundancy and reliability in
the brains of higher species: Analogies with genes, internal organs,
and engineering systems. Neurosci. Biobehav. Rev. 11, 275–285
(1987).

44. Billinton, R. & Allan, R.N. Reliability evaluation of engineering
systems (Springer, 1992).

45. Kafri, R., Springer, M. & Pilpel, Y. Genetic redundancy: new tricks for
old genes. Cell 136, 389–392 (2009).

46. Pitkow, X. &Angelaki, D. E. Inference in the brain: statistics flowing in
redundant population codes. Neuron 94, 943–953 (2017).

47. Barulli, D. & Stern, Y. Efficiency, capacity, compensation,
maintenance, plasticity: emerging concepts in cognitive reserve.
Trends Cogn. Sci. 17, 502–509 (2013).

48. Cabeza, R. et al. Maintenance, reserve and compensation: the
cognitive neuroscience of healthy ageing. Nat. Rev. Neurosci. 19,
701–710 (2018).

49. Stern, Y., Barnes, C. A., Grady, C., Jones, R. N. & Raz, N. Brain
reserve, cognitive reserve, compensation, and maintenance:
operationalization, validity, and mechanisms of cognitive resilience.
Neurobiol. aging 83, 124–129 (2019).

50. Zhang, Z., Yin, Y., Zhang, X. & Liu, L. Optimization of robustness of
interdependent network controllability by redundant design. PloS
one 13, e0192874 (2018).

51. Sun, P., Kooij, R. E. & Van Mieghem, P. Reachability-based
robustness of controllability in sparse communication networks.
IEEE Trans. Netw. Serv. Manag. 18, 2764–2775 (2021).

52. Bullmore, E. & Sporns, O. The economy of brain network
organization. Nat. Rev. Neurosci. 13, 336–349 (2012).

53. Lynn, C. W. & Bassett, D. S. The physics of brain network structure,
function and control. Nat. Rev. Phys. 1, 318–332 (2019).

54. Carlozzi, N. E., Beaumont, J. L., Tulsky, D. S. & Gershon, R. C. The
NIH toolbox pattern comparison processing speed test: normative
data. Arch. Clin. Neuropsychol. 30, 359–368 (2015).

55. Madden, D. J. et al. Diffusion tensor imaging of adult age differences
in cerebral white matter: relation to response time. Neuroimage 21,
1174–1181 (2004).

56. Nilsson, J., Thomas, A. J., O’Brien, J. T. & Gallagher, P.Whitematter
and cognitive decline in aging: A focus on processing speed and
variability. J. Int. Neuropsychological Soc. 20, 262–267 (2014).

57. O’Shea, A., Cohen, R. A., Porges, E. C., Nissim, N. R. &Woods, A. J.
Cognitive aging and the hippocampus in older adults. Front. Aging
Neurosci. 8, 298 (2016).

58. Papp, K. V. et al. Processing speed in normal aging: effects of white
matter hyperintensities and hippocampal volume loss. Aging
Neuropsychol. Cognition 21, 197–213 (2014).

59. Ng, K. K., Lo, J. C., Lim, J. K., Chee, M. W. & Zhou, J. Reduced
functional segregation between the default mode network and the

executive control network in healthy older adults: a longitudinal
study. Neuroimage 133, 321–330 (2016).

60. Imms, P. et al. Navigating the link between processing speed and
network communication in the human brain. Brain Struct. Funct.
226, 1281–1302 (2021).

61. Harms, M. P. et al. Extending the Human Connectome Project
across ages: Imaging protocols for the Lifespan Development and
Aging projects. Neuroimage 183, 972–984 (2018).

62. Schaefer, A. et al. Local-global parcellation of the human cerebral
cortex from intrinsic functional connectivity MRI. Cereb. Cortex 28,
3095–3114 (2018).

63. Wang, L., Zhao, G., Kong, Z. & Zhao, Y. Controllability and
optimization of complex networks based on bridges. Complexity
2020, 1–10 (2020).

64. Carlozzi, N. E. et al. NIH toolbox cognitive battery (NIHTB-CB): the
NIHTB pattern comparison processing speed test. J. Int.
Neuropsychological Soc. 20, 630–641 (2014).

65. Reed, B. R. et al. Measuring cognitive reserve based on the
decomposition of episodic memory variance. Brain 133,
2196–2209 (2010).

66. Elman, J. A. et al. Issues and recommendations for the residual
approach to quantifying cognitive resilience and reserve.Alzheimers
Res. Ther. 14, 1–10 (2022).

67. Hagmann, P. et al. Mapping the structural core of human cerebral
cortex. PLoS Biol. 6, e159 (2008).

68. Park, D. C. & Reuter-Lorenz, P. The adaptive brain: aging and
neurocognitive scaffolding. Annu. Rev. Psychol. 60, 173–196
(2009).

69. Resnick, S. M., Pham, D. L., Kraut, M. A., Zonderman, A. B. &
Davatzikos, C. Longitudinal magnetic resonance imaging studies
of older adults: a shrinking brain. J. Neurosci. 23, 3295–3301
(2003).

70. Grady, C. L. Cognitive neuroscience of aging. Ann. N. Y. Acad. Sci.
1124, 127–144 (2008).

71. Tu, C. et al. Warnings and caveats in brain controllability.
NeuroImage 176, 83–91 (2018).

72. Medaglia, J. D. et al. Network controllability in the inferior frontal
gyrus relates to controlled language variability and susceptibility to
TMS. J. Neurosci. 38, 6399–6410 (2018).

73. Beynel, L. et al. Structural controllability predicts functional patterns
and brain stimulation benefits associated with working memory. J.
Neurosci. 40, 6770–6778 (2020).

74. Bennett, I. J. & Madden, D. J. Disconnected aging: cerebral white
matter integrity and age-related differences in cognition.
Neuroscience 276, 187–205 (2014).

75. Liu, H. et al. Aging of cerebral white matter. Ageing Res. Rev. 34,
64–76 (2017).

76. Cole, M. W., Repovš, G. & Anticevic, A. The frontoparietal control
system: a central role in mental health. Neuroscientist 20, 652–664
(2014).

77. Marek, S. & Dosenbach, N.U. The frontoparietal network: function,
electrophysiology, and importance of individual precision mapping.
Dialogues Clin. Neurosci. 20, 133–140 (2018).

78. Cole, M. W., Pathak, S. & Schneider, W. Identifying the brain’s most
globally connected regions. Neuroimage 49, 3132–3148 (2010).

79. Wong, C.H. et al. Causal influences of salience/cerebellar networks
on dorsal attention network subserved age-related cognitive
slowing. GeroScience, 45, 889–899 (2023).

80. Seeley, W. W. et al. Dissociable intrinsic connectivity networks for
salience processing and executive control. J. Neurosci. 27,
2349–2356 (2007).

81. Corbetta,M. &Shulman,G. L.Control of goal-directed and stimulus-
driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215 (2002).

https://doi.org/10.1038/s42003-024-06392-2 Article

Communications Biology |           (2024) 7:701 11



82. Ruiz-Rizzo, A. L. et al. Decreased cingulo-opercular network
functional connectivity mediates the impact of aging on visual
processing speed. Neurobiol. aging 73, 50–60 (2019).

83. Parkes, L. et al. Network controllability in transmodal cortex predicts
positive psychosis spectrum symptoms. Biol. Psychiatry 90,
409–418 (2021).

84. Parkes, L. et al. Asymmetric signaling across the hierarchy of
cytoarchitecturewithin thehumanconnectome.Sci.Adv.8, eadd2185
(2022).

85. Li, Q., Han, Z. &Wu, X.-M. in Proceedings of the AAAI conference on
artificial intelligence, Vol. 32 (2018).

86. Oono, K. & Suzuki, T. Graph neural networks exponentially lose
expressive power for node classification. Preprint at https://arxiv.
org/abs/1905.10947 (2019).

87. Kipf, T. N. & Welling, M. Semi-supervised classification with graph
convolutional networks. Preprint at https://arxiv.org/abs/1609.
02907 (2016).

88. Wu,Z. et al. A comprehensive surveyongraphneural networks. IEEE
Trans. Neural Netw. Learn. Syst. 32, 4–24 (2020).

89. Estrada, E. & Hatano, N. Communicability in complex networks.
Phys. Rev. E 77, 036111 (2008).

90. Cornblath, E. J. et al. Sex differences in network controllability as a
predictor of executive function in youth. NeuroImage 188, 122–134
(2019).

91. Perrin, J. S. et al. Sexdifferences in the growth ofwhitematter during
adolescence. Neuroimage 45, 1055–1066 (2009).

92. Gur, R. C. et al. Sex differences in brain gray and white matter in
healthy young adults: correlations with cognitive performance. J.
Neurosci. 19, 4065–4072 (1999).

93. Li, D. et al. Gender effects on the controllability of hemispheric white
matter networks. Cereb. Cortex 33, 1643–1658 (2023).

94. Hsu, C.-C. H. et al. Differential age trajectories of white matter
changes between sexes correlate with cognitive performances.
Brain Connectivity 11, 759–771 (2021).

95. Levine, D. A. et al. Sex differences in cognitive decline among US
adults. JAMA Netw. open 4, e210169–e210169 (2021).

96. Lee, B.H., Richard, J.E., de Leon, R.G., Yagi, S. & Galea, L.A. Sex
differences in cognition across aging. In Sex Differences in Brain
Function and Dysfunction, 235–284 (2022).

97. Lindenberger, U., VonOertzen, T., Ghisletta, P. & Hertzog, C. Cross-
sectional age variance extraction: what’s change got to do with it?
Psychol. Aging 26, 34 (2011).

98. Nasreddine, Z. S. et al. TheMontreal Cognitive Assessment, MoCA:
a brief screening tool formild cognitive impairment. J. Am. Geriatrics
Soc. 53, 695–699 (2005).

99. Carson, N., Leach, L. & Murphy, K. J. A re‐examination of Montreal
Cognitive Assessment (MoCA) cutoff scores. Int. J. Geriatr.
Psychiatry 33, 379–388 (2018).

100. T O’Brien, J. & Thomas, A. Vascular dementia. Lancet 386,
1698–1706 (2015).

101. Hodges, J. R. & Patterson, K. Semantic dementia: a unique
clinicopathological syndrome. Lancet Neurol. 6, 1004–1014 (2007).

102. Bang, J., Spina, S. & Miller, B. L. Frontotemporal dementia. Lancet
386, 1672–1682 (2015).

103. Harciarek, M. & Cosentino, S. Language, executive function and
social cognition in the diagnosis of frontotemporal dementia
syndromes. Int. Rev. Psychiatry 25, 178–196 (2013).

104. Pantsiou, K. et al. Inhibitory control, task/rule switching, and
cognitive planning in vascular dementia: are there any differences
from vascular aging? Front. Aging Neurosci. 10, 330 (2018).

105. Adlam, A.-L. R., Patterson, K., Bozeat, S. & Hodges, J. R. The
Cambridge Semantic Memory Test Battery: Detection of semantic
deficits in semantic dementia and Alzheimer’s disease. Neurocase
16, 193–207 (2010).

106. Hodges, J. R., Graham, N. & Patterson, K. Charting the progression
in semantic dementia: Implications for the organisation of semantic
memory.Memory 3, 463–495 (1995).

107. Gershon, R. C. et al. IV. NIH Toolbox Cognition Battery (CB):
measuring language (vocabulary comprehension and reading
decoding). Monogr. Soc. Res. Child Dev. 78, 49–69 (2013).

108. Yeh, F. C., Liu, L., Hitchens, T. K. & Wu, Y. L. Mapping immune cell
infiltration using restricted diffusion MRI.Magn. Reson. Med. 77,
603–612 (2017).

109. Yeh, F.-C., Wedeen, V. J. & Tseng, W.-Y. I. Generalized ${q}
$-sampling imaging. IEEE Trans. Med. imaging 29, 1626–1635
(2010).

110. Towns, J. et al. XSEDE: accelerating scientific discovery. Comput.
Sci. Eng. 16, 62–74 (2014).

111. Kailath, T. Linear systems, Vol. 156. (Prentice-Hall Englewood Cliffs,
NJ, 1980).

112. Hagberg, A., Swart, P. & Chult, D. S. (Los Alamos National
Lab.(LANL), Los Alamos, NM (United States), 2008).

113. Zelazo, P. D. The Dimensional Change Card Sort (DCCS): A method
of assessing executive function in children. Nat. Protoc. 1,
297–301 (2006).

114. Zelazo, P. D. et al. II. NIH ToolboxCognitionBattery (CB): Measuring
executive function and attention.Monogr. Soc. Res. Child Dev. 78,
16–33 (2013).

115. Fischl, B. FreeSurfer. Neuroimage 62, 774–781 (2012).
116. Fischl, B. et al. Whole brain segmentation: automated labeling of

neuroanatomical structures in the human brain. Neuron 33,
341–355 (2002).

117. Vallat, R. Pingouin: statistics in Python. J. Open Source Softw. 3,
1026 (2018).

118. Jekel, C. & Venter, G. (2019).
119. Seabold, S. & Perktold, J. Statsmodels: econometric and modeling

with Python. In Proc. 9th Python in Science Conference 57–61
(SCIPY, 2010).

120. Akaike, H. in Selected Papers of Hirotugu Akaike. Springer Series in
Statistics (eds Parzen, E., Tanabe, K. & Kitagawa, G.) 199–213
(Springer, 1998).

121. Schwarz, G. Estimating the dimension of a model. Ann. Stat. 6,
461–464 (1978).

122. Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci.
Eng. 9, 90–95 (2007).

123. McKinney, W. in Proceedings of the 9th Python in Science
Conference, Vol. 445, 51–56 (2010).

124. Waskom, M. L. Seaborn: statistical data visualization. J. Open
Source Softw. 6, 3021 (2021).

Acknowledgements
Research reported in thispublicationwassupportedby theNational Institute
On Aging of the National Institutes of Health under Award Number
R01AG062590. The content is solely the responsibility of the authors and
does not necessarily represent the official views of the National Institutes of
Health. Additionally, we thank Dr. Kelly Giovanello for helpful suggestions.

Author contributions
W.S.: Conceptualization, methodology, investigation, visualization,
supervision, writing, review & editing. E.D.: Conceptualization, supervision,
writing, review & editing. P.J.M.: Conceptualization, supervision, writing,
review & editing.

Competing interests
The authors declare no competing interests.

https://doi.org/10.1038/s42003-024-06392-2 Article

Communications Biology |           (2024) 7:701 12

https://arxiv.org/abs/1905.10947
https://arxiv.org/abs/1905.10947
https://arxiv.org/abs/1905.10947
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907


Ethics approval
All ethical regulations relevant to human research participants were
followed. Data collection procedures in the original HCP-Aging study were
approved by local Institutional Review Boards.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s42003-024-06392-2.

Correspondence and requests for materials should be addressed to
Eran Dayan.

Peer review informationCommunications Biology thanks Fabrizio de Vico
Fallani and the other, anonymous, reviewer(s) for their contribution to the
peer review of this work. Primary Handling Editors: George Inglis, Aylin
Bircan, Joao Manuel de Sousa Valente.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’sCreativeCommons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

https://doi.org/10.1038/s42003-024-06392-2 Article

Communications Biology |           (2024) 7:701 13

https://doi.org/10.1038/s42003-024-06392-2
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Age-related differences in network controllability are mitigated by redundancy in large-scale brain networks
	Results
	Hubs of average controllability are largely consistent in middle- and old-aged�adults
	Declines in mean average controllability of large-scale networks are implicated in�aging
	Minimal sex-related differences in mean network average controllability and relationships with�age
	Nodal degree and redundancy show similar relationships to average controllability
	Degree mediates differences in average controllability with�age
	Redundancy mediates differences in average controllability with age over and above the effects of�degree
	Average controllability and redundancy show moderate relationships in brain networks when controlling for participant�age
	Average controllability and redundancy are associated with processing�speed
	Hippocampal grey matter volume is positively associated with processing speed in older participants
	Controllability, redundancy, and grey matter volume are synergistically associated with cognitive performance

	Discussion
	Age related differences in average controllability
	Multi-step connectivity (redundancy) influences age-associated differences in average controllability
	Average controllability, redundancy, and processing�speed
	Complementary effects of grey matter volume, average controllability, and redundancy on cognitive performance
	Mathematical considerations regarding the similarity between average controllability and redundancy
	Greater mean network average controllability in males within the default mode and salience/ventral attention networks
	Limitations and future directions

	Methods
	Dataset and participants
	Image acquisition and processing
	Network construction
	Average controllability calculations
	Redundancy calculations
	Cognitive measures
	Grey matter volume extraction
	Statistics and reproducibility
	Plotting

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Ethics approval
	Additional information




