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Distributed and dynamical
communication: a mechanism for flexible
cortico-cortical interactions and its
functional roles in visual attention
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Perceptual and cognitive processing relies on flexible communication among cortical areas; however,
the underlying neural mechanism remains unclear. Here we report a mechanism based on the realistic
spatiotemporal dynamics of propagating wave patterns in neural population activity. Using a
biophysically plausible, multiarea spiking neural circuit model, we demonstrate that these wave
patterns, characterizedby their richandcomplexdynamics, canaccount forawidevarietyof empirically
observed neural processes. The coordinated interactions of thesewavepatterns give rise to distributed
and dynamic communication (DDC) that enables flexible and rapid routing of neural activity across
cortical areas. We elucidate how DDC unifies the previously proposed oscillation synchronization-
based and subspace-based views of interareal communication, offering experimentally testable
predictions that we validate through the analysis of Allen Institute Neuropixels data. Furthermore, we
demonstrate that DDC can be effectively modulated during attention tasks through the interplay of
neuromodulators and cortical feedback loops. Thismodulation process explainsmany neural effects of
attention, underscoring the fundamental functional role of DDC in cognition.

Brain functions ranging from perception to cognition and behavior fun-
damentally depend on flexible communication between cortical areas1–3.
Understanding the mechanisms underlying flexible interareal commu-
nication is thus of central importance to systems and computational neu-
roscience. One prevalent view suggests that cortical areas interact through a
low-dimensional subspace4 within which population activity in one cortical
area is functionally related to that in another area. This subspace-based
communication has been observed in a variety of cortical areas4–6. However,
the circuit mechanisms underlying the emergence of cortical communica-
tion subspaces and their ability to rapidly reconfigure to facilitate flexible
interareal communication remain unclear.

Another view proposes that interareal synchrony or coherence of
gammaoscillations can coordinate interactionsof neural assemblies to route
information between different brain areas2. Empirical evidence has con-
sistently demonstrated that enhanced gamma-frequency communication is
critical for routing task-relevant neuralmessagesduring cognitive processes,
such as attention7,8, memory9, and learning10. Classical studies suggest that
gamma oscillations are regular and sustained phenomena, a notion that

holds true only when experimental measurements are averaged over many
trials.However, recent studies evaluating data at the level of single trials have
increasingly demonstrated that gamma activity occurs intermittently as
variable bursts11–13, exhibiting large fluctuations. While the bursting prop-
erties of gamma activity might be beneficial for interareal interactions14,
previous studies have mainly focused on the temporal characteristics of
gamma activity. Yet, a growing body of evidence indicates that gamma
activity, and brain activity in general, unfolds not only in time but also in
space, exhibiting rich and complex spatiotemporal wave-like activity
patterns15,16, which potentially enable a powerful mechanism for facilitating
flexible interareal communication. Furthermore, the fundamental question
of whether and how the two prevalent views — the communication sub-
space and oscillation synchrony — can be unified to yield a more com-
prehensive and fundamental understanding of cortico-cortical
communication remains unresolved.

Here, we propose a mechanism based on the coordinated interactions
of rich and complex spatiotemporal dynamics of propagatingwavepatterns,
enabling the implementation of interareal communication in a
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fundamentally distributed and dynamic manner. We illustrate this
mechanism, referred to as distributed and dynamical communication
(DDC), by developing a canonical large-scale cortical circuit model invol-
ving two cortical areas connected through bottom-up (feedforward) and
top-down (feedback) connections, forming cortico-cortical loops. Our
findings demonstrate that localizedwave patterns emerging from this large-
scale circuit can capture and explain a wide variety of neural dynamics
observed at the individual neuron and circuit levels. These dynamics include
correlated neural variability, gamma bursts nested within theta oscillations,
as well as complex propagating dynamics (specifically, anomalous super-
diffusion) of neural activity patterns.

We demonstrate that the coordinated interactions of these wave
patterns within the cortical areas, on one hand, account for the emergence
of transient synchronization of gammabursts, whichplays a crucial role in
facilitating interareal communication. On the other hand, these interac-
tions explain the formation and reconfiguration of communication sub-
spaces, providing a mechanism for flexible switching between different
subspaces, as observed in ref. 17. By exploiting the rich spatiotemporal
dynamics of the cortical circuits, rather than relying solely on regular and
sustained oscillatory activities as in conventional studies, our DDC
mechanism effectively integrates the perspectives of communication
subspaces and oscillation synchrony, providing a unified account of
interareal communication. Importantly, we illustrate that the DDC
mechanism offers crucial functional advantages, such as the ability to
flexibly and rapidly route neural responses to multiple stimuli across
cortical areas. Through the analysis of Neuropixels data from the
Allen Institute18, we further validate the key predictions of the DDC
mechanism, including the interrelations between gamma burst syn-
chrony, theta-gamma coupling, and subspace-based interareal
communications.

Furthermore, we elucidate the essential role ofDDC in brain functions,
particularly in cued top-down attention. Specifically, we demonstrate that
DDC can be effectively modulated during cued attention tasks through the
interplaybetweenneuromodulators (e.g., acetylcholine) and cortico-cortical
loops. This modulation process provides a unified account of a range of
neural effects of attention that otherwise remain disjointed in previous
studies. These effects include the classical observation of biased
competition19,20, local modulation of cortical states21, reductions in neural
variability22 and spike-count correlations23,24, increased gamma synchrony
between sensory andassociation areas (e.g.,V4 and frontal eyefield)8, aswell
as increased theta-gamma coupling triggered by attention cues25. These
results prompt a reconceptualization of cued attention as an emergent
property arising from the orchestrated modulation of DDC across distinct
cortical areas. This perspective offers a DDC-based framework for under-
standing how attention, a central brain function, is implemented in large-
scale neural circuits.

Results
A spiking neural circuit model with interconnected cortical areas
We develop a canonical neural circuit model comprising a lower area (area
1) and a higher area (area 2) positioned along the hierarchical organization
of the cortex (Fig. 1a). The model incorporates several well-established
properties of the cortex, including distance-dependent coupling26, balanced
excitation and inhibition27,28, and neural firing adaptation29. In addition, our
model incorporates the heterogeneity of local circuits across cortical areas,
with excitatory synaptic strengths increasing from sensory to association
areas30. The two areas in the model are coupled through feedforward and
feedback connections, thus interacting with each other through cortico-
cortical loops. Our model serves as a mechanistic framework for under-
standing the flexible communication between any interconnected brain
regions operating at different levels within the cortical structural hierarchy.
For instance, it allows us to quantitatively characterize the interactions
between a sensory area (V4) and an association area (frontal eye field)
during top-down attention tasks, as illustrated below. Both cortical areas are
close to the transition state between different cortical states, as we have

previously identified31; we refer to this transition state as the dynamical
working regime of our model.

Within the dynamical working regime, individual neurons in both
areas fire sparsely and irregularly during spontaneous activity; the firing
rates of neurons in area 1 and area 2 are 6.06 ± 0.01 and 7.39 ± 0.03 Hz
(mean ± SEM, n = 60 networks), respectively. The coefficient of variation
(CV) of interspike intervals and the Fano factor (the ratio of the variance of
spike counts to mean spike counts) of these neurons display broad dis-
tributions, withmean values exceeding 1 (CV in area 1: 1.114 ± 0.004, CV in
area 2: 1.193 ± 0.005; Fano factor in area 1: 1.315 ± 0.008, Fano factor in area
2: 1.764 ± 0.012, mean ± SEM, p < 10−30 for all mean values compared to 1,
two-sided one-sample t-test,n = 60 networks, see “Methods” section); these
values are quantitatively comparable to those measured experimentally32.
Note that neural variability in the higher area (i.e., area 2) is significantly
greater than that in the lower area (i.e., area 1) (p < 10−21 forCVandp < 10−42

for Fano factor, two-sidedpaired t-test,n = 60networks).This heterogeneity
of neural dynamics across cortical regions is consistent with the observa-
tions of increasing neural variability along the cortical hierarchy, as reported
in ref. 33.

We find that inactivating distant sources of either feedforward or
feedback input to area 2 and area 1 leads to a significant decrease in the
spiking variability of their neurons. Specifically, disconnecting the top-down
connection results in a significant decrease in the Fano factor in area 1 to
1.227 ± 0.007 (mean ± SEM, p < 10−34, two-sided paired t-test, n = 60 net-
works). Similarly, disconnecting the bottom-up connection leads to a
reduction in the Fano factor in area 2 to 1.559 ± 0.010 (mean ± SEM,
p < 10−41, two-sided paired t-test, n = 60 networks). This is consistent with
previous experimental studies that have reported reduced spiking variability
upon inactivation of either feedforward or feedback input to cortical visual
areas in alert primates34. These results indicate that the cortico-cortical loops
in ourmodel are as effective as those observed in experimental studies, thus
providing a quantitativemodeling framework for revealing themechanisms
of cortico-cortical interactions and communication.

Propagating wave patterns emerging from the neural circuit
capture a wide range of realistic neural dynamics
Despite the variable spikes of individual neurons, coherent localized activity
patterns (wave packets) emerge at the circuit level within the dynamical
working regime. Our previous study has demonstrated that these patterns
exhibit rich and complex dynamics, serving as a spatiotemporalmechanism
for bottom-up stimulus-driven visual attention35. This mechanism explains
a variety of neural features of visual bottom-up attention, including
superdiffusive Lévy motion and theta oscillations, which facilitate flexible
switching between exploitation and exploration35, a hallmark feature of
flexible attention sampling. Building upon these findings, our current study
explores the fundamental role of the rich spatiotemporal dynamics of wave
patterns in enabling flexible communication between interconnected cor-
tical areas along the cortical hierarchy.

Figure 1b shows a coherent, localized spiking pattern emerging in area
1 and 2 circuits, respectively. This localized pattern hovers around one
location for awhile and then switches to another location, exhibiting clusters
of small movement step-sizes that are intermittently interspersed by long
jumps (Supplementary Fig. 1 and Supplementary Movie 1). This inter-
mittent propagation of the localized activity patterns can be characterized as
superdiffusive Lévy motion (Supplementary Fig. 2a), as in our previous
study35. Notably, superdiffusive Lévy motion has been demonstrated to
underlie the propagation of neural population activity in the MT area of
monkeys36 as well as in the hippocampus of mice37,38. We first illustrate that
the propagating wave patterns capture a range of realistic neural dynamics.
By tracking the center ofmass of thesewave patterns (seeMethods), we find
that when a pattern dwells around one location, spiking activity at the
corresponding location exhibits vigorous ensemble, which then return to a
relatively quiescent state after the pattern moves away (top rows in Fig. 1c
and d); consequently, neurons fluctuate between phases of vigorous (On
state) and faint (Off state), resulting in bursting activity.Note that it has been
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shown that such On-Off transitions in spontaneous activity are a general
feature across multiple brain regions of behaving monkeys21,39.

To characterize these bursts, we detect them by thresholding the
instantaneousmultiunit activity (MUA),which represents the averagefiring
rate of a local groupof excitatoryneurons in a circular regionwith a radius of
5 grid points positioned at the network center (indicated by the green circle
in Fig. 1b, see Methods for burst detection details, which are consistently
applied throughout this study). Given that the bursts arise from localized
wave patterns, the radius of this region for MUA definition is chosen
according to the spatial scale of these patterns (~8 grid points); any radius
close to the patterns’ spatial scale would yield similar burst detection results.

Our analysis reveals that in area 1, the duration of the On state of bursts is
ton=54.46 ± 1.98ms (mean ± SEM,n = 30networks),while theOff statehas
a duration of toff = 280.44 ± 13.89ms (distributions are shown in Supple-
mentary Fig. 3a); these durations are quantitatively comparable to those
measured in the spontaneous activity of macaques V421, with ton =
97 ± 36ms and toff = 118 ± 47ms (mean ± SD). In the area 2 circuit, we find
that the dynamical patterns can similarly explain the burst-like, On-Off
transitions of spiking activity, with ton = 43.60 ± 0.66ms and toff =
302.62 ± 14.53ms (distributions are shown in Supplementary Fig. 3a).

In both areas, the bursts of spiking arising from the local pattern
dynamics are associated with gamma bursts in either local field potential

Fig. 1 | Spatiotemporal dynamics of localized wave patterns emerging in the two-
area neural circuit can explain neural dynamics at the individual-neuron and
population levels. a Schematic of the circuit model with two interconnected areas.
Each network consists of excitatory (orange triangles) and inhibitory (orange circles)
neurons. Spiking activity patterns (black dots) in both areas exhibit intermittent
synchronization at different topographically aligned regions (big circles, color-
coded over time). During synchronized events, local population neural activities,
particularly in the gamma band, exhibit transient phase locking between areas (blue
and red curves). b Snapshot of localized spiking activity patterns (marked by blue
and red circles) in area 1 (bottom) and area 2 (top). Excitatory neuron spike counts
over a 10 ms period are indicated by gray dots. Trajectories of the center of mass of
patterns over the preceding 180ms are shown as lines, with colors representing time.
The green circle indicates the region of neurons sampled for analyses in c–e. c Top:
Raster plot of spiking activity (vertical lines) of a local group of excitatory neurons at

the center of area 2 (green circle in b, only 40 out of 80 neurons' spikes are shown),
showing transitions betweenOn (marked by yellow epochs) and Off states. The gray
line shows the distance between the center of mass of the localized spiking activity
pattern and the center of area 2. Bottom:Wavelet time-frequency spectrogram of the
MUA at the center of area 2 during the same period as the raster plot, showing
gamma bursts (circled by yellow lines) aligned with On states. d Same as (c) but for
area 1. e Average power spectrum of MUA and LFP at the centers of area 1 (bottom
row) and area 2 (top row). Two distinct peaks appear in the theta and gamma bands.
The black lines show the separated arrhythmic 1/f components, with the exponents
indicated by the dashed lines. The shaded regions around the lines represent ± 1
SEM (n = 30 random network realizations). f Average comodulograms across 30
network realizations quantifying theta phase-gamma amplitude coupling in the LFP
of areas 1 (bottom) and 2 (top). Source data can be found in Supplementary Data 1.
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(LFP; which is calculated based on the sumof incoming synaptic currents of
excitatory neurons; see “Methods” section) or MUA. To demonstrate this
association, we perform wavelet transform-based time-frequency analysis
on LFP andMUA(see “Methods” section), wefind that during the transient
epochs of spiking bursts, there exist gamma bursts in both LFP and MUA
(bottom rows in Fig. 1c and d, only the spectrograms forMUA are shown).
Our further statistical analysis of the duration and power of these gamma
bursts indicates that they exhibit large fluctuations, as measured in experi-
mental studies (Supplementary Fig. 4). On average, these gamma bursts
would give rise to a gammapeak in the power spectrumofMUAandLFP in
both areas (Fig. 1e). As in other spiking neural circuits, in our model the
gamma activity emerges via the pyramidal-interneuron gamma (PING)
mechanism.

The spiking bursts (i.e., On states) caused by the dynamical wave
patterns in both areas occur ≈3 times per second (Fig. 1c and d), indicating
the presence of theta oscillations35. This is supported by the power spectrum
analysis of both LFP andMUA,which exhibits a theta peak sitting on top of
1/f activity; the 1/f component can be separated from the oscillatory activity
by using the irregular resampling method developed in ref. 40 (Fig. 1e). In
our model, theta oscillations arise from the mechanism of spike frequency
adaptation (SFA), leading to the formation of an oscillatory activity pattern
known as a ‘breather’, as described in dynamical systems theory.

To gain a theoretical understanding of this mechanism, we use a firing
rate model that incorporates the firing rate adaptation mechanism and the
overall coupling structure of the spiking neural circuit model. Through a
dynamical stability analysis for the stationary localized activity pattern in
response to perturbations (see Supplementary Methods 1), it is shown that
the onset of instability of this pattern leads to the onset of localized oscil-
latory pattern (breather). The analytically obtained oscillatory frequency at
the onset of instability (fc) increases with the firing rate adaptation strength,
with f c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�ðτ=τAÞ½ �=ðττAÞ

p
=ð2πÞ, where k is the adaptation strength, τ is the

decay time constant of firing rate, and τA is the decay time constant of
adaptation41 (Supplementary Fig. 5b).We further validate this prediction in
our full spiking neural circuit model; as shown in Supplementary Fig. 6, the
frequency of theta activity in the circuit model increases as SFA increases,
indicating that neural adaptation is the mechanism underlying the forma-
tion and modulation of theta oscillations.

As illustrated above, the On-Off state alternation in the slow time scale
results in theta oscillations while the neuronal fluctuation in the fast time
scale within the On state gives rise to the gamma bursts35. This suggests a
coupling between the theta and gamma activities. To quantify such theta-
gamma coupling in our model, we calculate the phase-amplitude coupling
modulation index42 forLFP inboth areas (seeMethods); this indexmeasures
the intensity of the modulation of the amplitude of oscillations at one
frequency band by the phase of oscillations at another frequency band. As
shown in the theta phase - gamma amplitude comodulograms (Fig. 1f), the
phase-amplitude coupling is strongest between the amplitude of≈70Hz
oscillation and the phase of ≈3Hz oscillation, indicating the gamma
amplitude is modulated by the theta phase. These results indicate that the
theta-gamma coupling in our spiking neural circuit is an intrinsic, emergent
property, unlike existing modeling studies43 in which one oscillatory com-
ponent (i.e., theta) was externally imposed on circuit models that only
generate another (i.e., gamma). As illustrated below, gamma bursts orche-
strated by theta activity play a crucial functional role in preventing inter-
ference when routing multiple stimuli across cortical areas.

Distributed dynamical communication based on wave pattern
interactions
We next elucidate that how the coordinated interactions of the localized
wave patterns with rich and complex spatiotemporal dynamics in areas 1
and 2 enable communication to occur in a fundamentally distributed and
dynamical way, providing a mechanism that unifies gamma synchrony-
based communication and subspace-based communication.

By tracking the trajectories of these wave patterns in both areas, we
find that once they align spatially at a topographically matched position,

which is indicated by those periods when the patterns in both areas are
simultaneously close to a topographically aligned position (Fig. 1c and d),
they interact due to the cortico-cortical loops and then become syn-
chronized at this location for a period of time. Because of the large jumps
and large fluctuations inherent in the Lévy motion, they may rapidly
switch to and are synchronized at another location for another transient
epoch. These transiently synchronized wave patterns give rise to simul-
taneous burst spiking activity occurring at the topographically aligned
positions across both areas. We denote the epoch of simultaneous burst
activity across the areas as the simultaneous On state (S-On) and the
epoch of simultaneous faint spiking activity as the simultaneous Off (S-
Off) state. As demonstrated above, the spiking bursts are associated with
the gamma bursts, suggesting that the aligned spiking bursts might be
associated with gamma synchronization. To confirm this, we calculate the
phase locking values44 (PLV; measured as the mean resultant length of
relative phase; see Methods) between MUAs in the centers of the two
cortical areas, and find that the gamma band PLV during the S-On state is
greater than that during the S-Off state, indicating strong interareal
gamma synchronization during the aligned bursts activities (Fig. 2c;
average PLV between 40 and 60 Hz is 0.20 ± 5 × 10−3 for the S-On state
and 0.10 ± 7 × 10−3 for the S-Off state, p < 10−12, mean ± SEM, two-sided
paired t-test) and the peak PLV value appears at around 50 Hz which is
close to thepeak gamma frequency shown in thepower spectrum(Fig. 1e).

Due to the superdiffusive Lévy motion nature of the wave patterns,
these synchronized events exhibit remarkable flexibility and rapid transi-
tions among spatially distributed neural groups over time. As shown in
Fig. 2a,weobservewavepattern synchronizationoccurring at three different
positions in a mere 260milliseconds (Fig. 2a, dashed circles). This behavior
underscores the fundamentally distributed and dynamic property of these
synchrony events and the resultant communication; hence, we refer to this
communication mechanism, based on wave pattern interactions, as DDC.

The enhanced synchronization occurring in DDC suggests that these
synchrony epochs are key time intervals duringwhich the two cortical areas
interact effectively. To illustrate such effective interactions, we examine the
changes in firing rates for neurons in both areas during and outside these
synchrony events (Fig. 2b). Firing rates are highest when both areas are in
theOn state, compared towhen only one is in theOn state or both are in the
Off state (area 1 firing rate is 20.40 ± 0.94 Hz for S-On, 16.94 ± 0.78 Hz for
area 1 On only, 4.69 ± 0.16 Hz for area 2 On only, and 2.86 ± 0.07 Hz for S-
Off; area2firing rate is 43.67 ± 2.46Hz for S-On, 5.04 ± 0.22Hz for area 1on
only, 34.35 ± 1.94 Hz for area 2 On only, and 2.51 ± 0.07 Hz for S-off;
mean ± SEM, p < 10−13 for all the comparisons between the mean at S-On
state and other states, two-sided paired t-test). These increased firing rates
occur because once spiking bursts in both areas synchronize, the bursting
neurons in the lower area (area 1) activate those in the higher area (area 2),
which, in turn, send descending activation to the lower area. It is intriguing
to note that this scenario of amplification in firing rates bears similarities to
the concept of “ignition” proposed to understand cortico-cortical interac-
tions underlying cognitive processing45. However, unlike the global ignition
involving the entire network, the ignition observed in our model is a local
phenomenon, involving only a subset of neurons with neural networks
being “sparsely" activated.

To further elucidate that in DDC, these synchronized burst events are
related to interareal communication, we performan information theoretical
analysis (see Methods). Specifically, we measure the transfer entropy (TE)
between MUAs in the center regions of the two areas in the bottom-up
direction for both S-On and S-Off states (Fig. 2d). TE quantifies howmuch
information can be provided by the past MUA in area 1 in predicting the
future MUA in area 2. Our analysis reveals that information transfer pri-
marily occurs during the synchronous bursts (S-On), peaking at the time
delay of ≈ 10 ms, which is consistent with the interareal spike transmission
delay in our model (8–10 ms, see Methods). In contrast, information
transfer is low outside the synchronous epochs (S-Off) (at 10ms time delay,
TE = 0.004 ± 5 × 10−4 nats for S-On and TE =− 4 × 10−5 ± 2 × 10−4 nats for
S-Off, mean ± SEM, p < 10−8, two-sided paired t-test; note that although the
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TE is theoretically non-negative, the variance in the TE estimator causes the
small negative TE for S-Off).

DDC enables the flexible formation and reconfiguration of com-
munication subspaces
We next illustrate how the coordinated interactions of localized spiking
wave patterns underlying DDC provide a dynamical mechanism for
implementing subspace-based communication. To this end, we relate the
fluctuations of neuron firing in two areas by linear regression. Specifically,
during spontaneous activity, we simultaneously record the number of spikes
in 20 ms nonoverlap windows, referred to as single-unit activity, for each
neuron in the center regions of both areas. We then divide the single-unit
activity time series into On state and Off state periods, and calculate the
fluctuations of the single-unit activity for each neuron during these state
periods by subtracting themean single-unit activity of eachneuron from the
raw single-unit activity in the corresponding state periods. To test whether
the fluctuations in area 1 that are predictive of area 2 reside in a low-
dimensional subspace, we perform the reduced-rank regression (RRR) as in
ref. 4 for both S-On and S-Off states (see “Methods” section). RRR is a
variant of linear regression that constrains the regressionweights into a low-
dimensional subspace during fitting. We find that only 3 dimensions are
needed for the prediction performance of RRR during S-On states to be
comparable to that of the full linear regression model (ridge regression; see
Methods; Fig. 2e, black circle; p = 0.27 for the difference in the performance
at S-On states between the full linear regression model and the RRR with
three dimensions, two-sided paired t-test). This result indicates that the
communication is realized through a subspace with a low dimension of≈ 3.
During the S-Off state, however, the prediction performance of RRR is

much lower compared to the S-On state (gray circle; p = 0.017 for the
difference between the performance of RRR with 3 dimensions at the S-On
state and S-Off state, two-sidedpaired t-test). These results thus suggest that
the synchronized or correlated spiking burst patterns in the two areas
underlie the emergence of communication subspace.

Due to the transient nature of burst pattern synchrony, the com-
munication subspace persists for approximately 30 ± 0.72 ms (mean ±
SEM). As illustrated above, burst synchrony events can flexibly shift space
over time; this property thus enables natural reconfiguration and shifting
of communication subspaces among different groups of neurons. The
ability to flexibly switch between different neural groups for dynamical
communication is a core prediction of our proposed mechanism. It is
worth noting that recent investigations have revealed that distinct subsets
of neurons in mouse V1 were affected by neurons in LM at different
temporalmoments, within a timescale of tens ofmilliseconds17, consistent
with the dynamical communication mechanism proposed in our
modeling study.

Taken together, our results indicate that the DDC mechanism har-
nesses the realistic and complex spatiotemporal dynamic ofwavepatterns to
enable flexible interareal communication; these dynamics include transient
gamma and theta oscillations with the former locked to the latter,
arrhythmic 1/f activity accompanying these oscillations, and superdiffusive
motion of wave patterns in space with heavy-tailed, non-Gaussian (Lévy)
statistics, beyond eitherpersistent or transient gammaactivity as explored in
existing studies. Crucially, the DDC mechanism can explain the subspace-
based and gamma synchronization-based communication mechanisms,
thus providing a unifying framework for understanding interareal
communication.

Fig. 2 | Coordinated interactions of wave patterns in two interconnected cortical
areas result in gamma burst and subspace-based interareal communication.
a Trajectories spanning 260 ms of the wave patterns in areas 1 (blue) and 2 (red) are
shownwithin the same 2D space. Dashed circles mark synchronized events, and the
green circle indicates the region of sampled neurons for On-Off states analysis in
b–e. b Average firing rates of area 1 neurons (left panel) and area 2 neurons (right
panel) sampled at the network center (green circle in a) during different states: S-Off
(simultaneous-Off), S-On (simultaneous-On), 1-On (only area 1 in On states),
2-On (only area 2 in On states). Dots represent the average rates of individual
random network realizations (n = 30). ***p < 10−13, two-sided paired t-test. Light
and dark colors in each bar indicate the Off and On states, respectively, of the center
region of each area. For example, the 1-On state is represented by a bar with the

bottom half part dark blue/red and the top half part light blue/red. c Average phase
locking value betweenMUA at the centers of areas 1 and 2 during S-Off (gray circle)
and S-On states (black circle) within the frequency range of 30 to 120 Hz. dAverage
transfer entropy from area 1 to area 2 during S-Off (gray circle) and S-On states
(black circle) at various time delays. eAverage performance of predicting the spiking
activity in the center of area 2 using the spiking activity in the center of area 1
through reduced-rank regression (circle) and the full model (triangle) during S-Off
(gray) and S-On (black) states. All data in b–e are presented as averages across
random network realizations (n = 30 realizations for b, c, and e; n = 60 realizations
for d). Error bars denote ± 1 SEM. Source data can be found in Supplemen-
tary Data 1.
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DDC underlies flexible interareal communications of neural
responses to external inputs
Wenext illustrate that ourDDCmechanismunderlies the flexible and rapid
routing of external input information across cortical areas and validate the
key predictions of ourmechanisms by analyzing theAllenNeuropixels data.

We first add one input at the center of area 1 (Fig. 3a). Following its
onset, the wave patterns exhibit prolonged presence around the center
locations of both areas compared to spontaneous activity. However, the
patterns still intermittently switch to other locations over time with their
propagation dynamics following superdiffusive Lévy motion (Supplemen-
tary Fig. 7 and 2b). Consequently, spiking activities at the center of areas still
exhibit coordinated On-Off transitions (Fig. 3b). For this scenario, con-
sistent with the spontaneous activity, we find that the S-On state exhibits
stronger gamma phase locking values (PLV) compared with the S-Off state
(Fig. 3c). The average PLV between 40-60 Hz is 0.29 ± 3.5 × 10−3 for the
S-On state and 0.19 ± 2.9 × 10−3 for the S-Off state (p < 10−37, two-sided
paired t-test). Next, we calculate the transfer entropy (TE) as we did for the
spontaneous activity.We find that the information is primarily transmitted
inside the synchronized bursts (Fig. 3d). The average TE across time delays
from7 to 10ms is TE=8.7 × 10−4 nats for the S-Off andTE=6.8 × 10−3 nats
for the S-On (p < 10−29, two-sided paired t-test). Additionally, we find that
the interareal communication occurs through a low-dimensional subspace
preferentially during the S-On state in this stimulus-evoked condition, as
revealed by the RRR analysis (Fig. 3e). For the S-On state, the performance
for RRR is comparable to that for full linear regression (0.066 ± 0.003,
mean ± SEM) when the number of dimensions is 3 (p = 0.84, two-sided
paired t-test) and is significantly higher than that for S-Off state for all
number of dimensions (p < 10−18). The interareal communication during
the S-On state is coordinated by theta oscillations. We illustrate this by
examining the occurrence of S-On states with respect to the theta phase of

MUA(seeMethods). Figure 3f shows that the S-On states primarily occur at
the zero phase of the MUA’s theta oscillations (mean phase: 8.76°). This
alignment arises because the period of high MUA during the On states
corresponds to the zero phase of MUA theta oscillations; thus,
simultaneous-On states, during which the local MUA in both areas is high,
also tend to occur near the zero theta phase.

Wenext validate thekeypropertiesofDDCuncovered inourmodeling
study, including theta-gamma coupling and the connection between
gamma-burst synchrony and subspace-based interareal communication,
through analyzing the Allen Neuropixels visual coding dataset18. This
dataset provides us with high-resolution electrophysiological recordings
from themouse visual cortex.While we acknowledge that the experimental
data cannot capture the full two-dimensional dynamics predicted by our
model due to the nature of the recordingdevices, there remains a strong case
for comparison between our analysis of a group of neurons at the center of
each area of our model and the recording probes placed at the retinotopic
centers of the mouse visual cortical areas in the real data. Specifically, our
analysis focuses on interareal interactions between two cortical areas,
namely, the primary visual cortex (V1, orVISp) and a secondary visual area,
the lateral visual cortex (LM, or VISl), which has been reported to sit
adjacent toV1 in themouse visual hierarchy18.We examine the responses of
these areas to external stimuli, such as flashes, to substantiate our modeling
predictions (see SupplementaryMethods 2 for a description of the data, and
further details on the methods used in this section).

As demonstrated in Fig. 4a andb, the neural activity in bothV1 andLM
responding to full-field flashes exhibits burst-like characteristics, fluctuating
between On and Off states. These fluctuations occur approximately four
timesper second, aligningwith thepresence of theta oscillations predicted by
our model. In the Allen Neuropixels dataset, we find that theta oscillations
are transient, typically lasting for a duration between 500 ms to 1000 ms

Fig. 3 | Interareal communication of input signals. a Trajectories of wave patterns
in area 1 (blue, bottom) and area 2 (red, top) over a 500 ms duration following the
introduction of an external input at the center of area 1. The strength of the input (c)
is represented by varying shades of gray color. The wave patterns intermittently visit
the region of the input. The green circle indicates the region of sampled neurons for
analyses in b–f. bMUA at the center of area 1 (bottom) and area 2 (top) under the
single-input condition. Note that the MUA continues to exhibit On-Off transitions,
with theOn states indicated by yellow segments. cAverage PLVbetween theMUAat
the centers of areas 1 and 2 (i.e., the stimulus location) during S-Off (gray circle) and
S-On states (black circle) across the frequency range of 30 to 120Hz. dAverage TE of

the MUA from area 1 to area 2 during S-Off (gray circle) and S-On states (black
circle) at different time delays. e Average performance of predicting the spiking
activity in the center of area 2 using the spiking activity in the center of area 1 through
reduced-rank regression (circle) and the full model (triangle) during S-Off (gray)
and S-On (black) states. f At the middle time point of each S-On state event at the
network center (i.e., the location of the input), the theta phase of the MUA in the
center of area 1 is recorded and its distribution is shown (n = 42, 170). Data in
c–e show the averages across random network realizations (n = 60 realizations).
Error bars indicate ± 1 SEM. Source data can be found in Supplementary Data 1.
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(Fig. 4a andb, red line). The presence of theta activity is further substantiated
by a clear theta peak in the power spectrum of experimental local-field
potentials (LFP; see Supplementary Fig. 8). Furthermore, Fig. 4a–d illustrates
how spiking bursts during the On state are associated with gamma bursts in
the 50–250 Hz frequency range, both of which are coupled to the theta
oscillations, as predicted in our modeling study. To quantify this theta-
gamma coupling, we calculate, as in our modeling study, the average phase-
amplitude modulation index for LFP across nine animals. As shown in
Fig. 4e, themost pronounced phase-amplitude coupling occurs between the
4Hz theta oscillations and a broad range of gamma frequencies. Similarly,
spike bursts are locked to the phases of the theta oscillations (Fig. 4f).

We next examine the gamma-burst-based interareal interactions. For
this purpose, as in our modeling study detailed above, we calculate the
phase-locking index (PLI, measured as pairwise-phase consistency, see
SupplementaryMethods 2) for gamma bursts occurringwithinV1 and LM.
Our analysis reveals that the mean phase-locking index between pairs of
channels in deep layers of V1 and all channels in LM, over gamma-band
frequencies between 40 Hz and 60 Hz, amounts to 0.21 ± 8 × 10−4

(mean ± SEM; see Supplementary Fig. 9). This level of phase-locking is
significantly greater than what is observed during spontaneous activity,
where the mean PLI is 0.11 ± 5 × 10−4 (p < 10−100, one-sided paired t-test,

Benjamini-Hochberg corrected).Weprovide furtherdetails on the variation
in phase locking across frequencies and cortical depths in Supplemen-
tary Fig. 9.

We then investigate howburst synchrony gives rise to the emergence of
a low-dimensional communication subspace between visual areas. We
apply a similar RRR analysis as in our modeling to the Neuropixels spike
data during both theta burst and non-burst periods. To ensure that our
analysis focuses on neurons responsive to the visual stimuli, we identify the
20 neurons with the highest firing rates in each region (V1 and LM). Sub-
sequently, we apply a 100 ms-wide Hanning window to convolve spike
trains, generating a time course of firing rates. We then use RRR with a
regularization parameter of λ = 0.1 (matching our earlier methods; our
results are not sensitive to changes in λ from 0.01–0.5) to predict the neural
activity in LM from the activity in V1, and vice versa. As shown in Fig. 4g,
our results indicate that spiking activity within LM during burst periods
exhibits significantly greater predictability of activity in V1 within a low-
dimensional space compared to the non-burst period (p < 10−3 with a
communication dimension of 3, at which the median prediction perfor-
mance is 91% of its maximum for the burst periods).

We now elucidate that our DDCmechanism is particularly flexible in
routing neural responses tomultiple competing inputs through the different

Fig. 4 | Neuropixels data exhibit the key dynamical properties of interareal
interactions as predicted in ourmodel. a Snapshots of the AllenNeuropixels visual
coding dataset showing spiking activity (vertical bars), and LFP oscillations filtered
in the gamma band (50–250 Hz, blue line) and theta band (3–5 Hz, orange line) for
one trial of the flashes stimulus in the mouse primary visual area (V1). b Same as (a)
but for the latero-medial visual area (LM). c Time-frequency spectrograms of the
LFP traces inV1, after detrending the aperiodic component. d Same as (c) but for the

LM. e Theta phase–gamma amplitude comodulogram during flash-evoked bursts in
V1. fDistribution of Hilbert phases at each spike time during evoked theta bursts in
V1 (n = 830, 723). g Median performance across mice when predicting V1 spikes
from LM spiking activity using reduced-rank regression during evoked theta bursts
(dark circles) and non-burst activity (light triangles). Error bars depict the upper and
lower quartiles across 9 mice. Source data can be found in Supplementary Data 1.
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areas of our large-scale circuit model. For simplicity, here we use two inputs
as an example, one at the center and another at the corner of area 1
simultaneously (Fig. 5a; see Methods), but multiple inputs can be similarly
routed through the circuit. We find that the localized wave patterns in both
areas switch between the two locations with external inputs sequentially,
with occasional jumps to other locations (Supplementary Fig. 10); the
propagating dynamics can still be characterized as superdiffusive Lévy
motion (Supplementary Fig. 2c). As illustrated above, such wave pattern
dynamics lead toOn-Off transitions in the spiking activity (Fig. 5b). Similar
to the scenario with a single external input, we find that the S-On state
exhibits stronger gamma PLV and larger information transfer than the
S-Off state (Fig. 5c andd), and that the communication still occurs througha
low-dimensional subspace (dimension ≈ 3) primarily during the S-On state,
as revealed by the RRR analysis (Fig. 5e).

In our DDC mechanism, gamma bursts representing the stimuli at
different locations are locked to distinct phases of the theta oscillations.
Figure 5f shows that, as in the single-input case, the bursts in the center
region primarily happen around the zero phase of the center MUA theta
phase (mean phase: 13.06°), while the bursts in the corner region tend to
occur at the anti-phase with a broader distribution (mean phase: 187.22°).
This result indicates that cross-frequency theta-gamma coupling in our
DDC mechanism enhances the segregation of routing different stimuli,
effectively preventing interference in interareal communication.

Neural effects of cued attention emerging from DDCmodulated
by the interplay between ACh and cortical feedback loops
We next illustrate that the DDC based on wave pattern interactions can be
effectivelymodulated and enhancedduring cognitive functions, particularly
in the context of cued top-down attention. Importantly, we demonstrate
that the dynamical process responsible for such modulations provides a
mechanistic account of a great variety of neural effects of attention. These
effects include increases in theta-gamma coupling following cue onset25, the

phenomenon of biased competition19,20, as well as reductions in neural
variability22 and correlation23,24. In essence, this presents a novelDDC-based
account of cued top-down attention.

We consider a cued attention task, inwhicha cue is given for one of two
simultaneously presented objects that are monitored to detect a change in
either object23,46. For this task, in our circuit model, we designate the lower
area 1 as V4 (a sensory area) and the higher area 2 as FEF (an association
area); indeed, there is experimental evidence showing direct connections
between these two cortical areas47. In our attention model, two stimuli are
presented to the V4 area as in the 2-input condition described above. To
incorporate the effect of the cue, we take note of experimental findings
indicating that cues can trigger the release of neuromodulator acetylcholine
(ACh) to the frontal area25,48. The release of ACh can quickly target localized
neural populations49, thus facilitating cue-driven attentional mechanisms.
For this reason, Schmitz&Duncan50 proposed that AChmay serve as a key
biochemical substrate underlying the rapid population coding dynamics of
attention. Furthermore, we notice that among the various effects attributed
to ACh, its release has been observed to reduce spike-frequency adaptation
(SFA) mediated by potassium channels51,52. Synthesizing these empirical
observations, our model assumes that the cue induces a spatially localized
reduction of SFA in the excitatory neurons of FEF in the local region
topographically alignedwith the cue (Fig. 6a); thus, the initiation of localized
SFA reduction indicates the onset of the cue in our model.

To proceed, we first demonstrate that the effect of cue-triggered ACh
on the dynamics of the FEF area is consistent with experimental findings.
Howe et al.25 has shown that even in the absence of stimulus, cue-triggered
ACh can enhance theta-gamma coupling in the prefrontal cortex. To
illustrate that ourmodel can capture such enhanced theta-gamma coupling,
we calculate the phase-amplitude couplingmodulation index (PAC-MI) for
FEF local field potential at the cued location, both before and after the cue
onset without any external input in V4. As shown in Fig. 6b, the theta-
gamma phase-amplitude coupling is stronger in the cued condition than in

Fig. 5 | Properties of flexible and rapid routing of multiple inputs across
cortical areas. a Trajectories of wave patterns in area 1 (blue, bottom) and area 2
(red, top) during a 500 ms interval, with two external inputs added to area 1 (one at
the center and another at the corner). Plotting conventions follow those in Fig. 3a.
The region of sampled neurons for analyses in b–f are indicated by the center green
circle; for analyses in b and f, we also analyze the neurons within the corner green
circle. bMUA at the center (solid line) and corner (dashed line) of area 1 (bottom)
and area 2 (top). Bursting activity duringOn states alternates between the corner and

center regions. c–e Average phase locking value (c), transfer entropy (d), and pre-
diction performance (e) for the two-input condition. Plotting conventions follow
those in Fig. 3c–e. Data are presented as the averages across random network rea-
lizations (n = 30 realizations for c and e; n = 60 realizations for d). Error bars
denote ± 1 SEM. fDistributions of the area 1 center MUA’s theta phases recorded at
the middle time point of each S-On state event occurring at the center (pink,
n = 21, 959) and corner (green, n = 22, 723) of the network. Source data can be found
in Supplementary Data 1.
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the spontaneous activity [average peak PAC-MI over all amplitude fre-
quency (35–100Hz)-phase frequency (1–10Hz) combinations is 3.9 × 10−3

for cued and 2.7 × 10−3 for spontaneous, p < 6 × 10−5, two-sided paired t-
test]. This result thus provides further neurophysiological validity to our
model of ACh-mediated modulation of interareal communication.

We now demonstrate that the interplay of the neuromodulator ACh
and cortical feedback enables an effective modulation of coordinated
interactions of the wave pattern and resultant DDC, enhancing interareal
communication during cued attention. To this end, we compare the
conditions with and without local SFA reduction in the center area of
FEF, with the former referred to as the cued condition and the latter as
uncued condition, respectively. In both conditions, two external inputs
are presented: one at the center and the other at the corner of V4
(Fig. 7a). In the cued condition, we find that the localized wave pattern in
FEF would stay in the central location with ACh modulation for a longer
duration due to ACh modulation, which decreases SFA (Supplementary
Fig. 11, Supplementary Movie 2). Consequently, the On state duration is
prolonged, and the firing rate at the cued position in FEF is higher than
the uncued condition (Fig. 7b-d). Specifically, the uncued condition
exhibits a mean On duration (ton) of 44.14 ± 0.60 ms, whereas the cued
condition demonstrates an extended On duration of 145.45 ± 6.54 ms
(mean ± SEM; p < 10−5, two-sided paired t-test). Similarly, the uncued
condition has a mean On rate (ron) of 48.49 ± 1.90 Hz, while the cued
condition displays a higher On rate of 100.93 ± 2.38 Hz (mean ± SEM;
p < 10−5, two-sided paired t-test).

Because of the feedback interactions, the localized activity pattern in
FEFwith the prolongedduration at the cued locationwould tend to drag the
localized pattern in V4 to stay around the topographically aligned central
area for a longer period than the uncued condition. As a result, this
process leads to an increase of the On state duration in V4 (Fig. 7b and c;

uncued: ton = 73.99 ± 1.85 ms, cued: ton = 82.48 ± 2.31 ms, mean ± SEM,
p < 10−5, two-sided paired t-test), as found in V4 of monkeys during the
cued attention task21. The top-down modulation also increases the firing
rate of the On and Off state in V4 (Fig. 7d; On rate, uncued: ron =
38.13 ± 0.90Hz, cued: ron = 41.65 ± 0.97Hz,p < 10−5; Off rate, uncued: roff =
8.02 ± 0.28 Hz, cued: roff = 10.44 ± 0.37 Hz, p < 10−5, two-sided paired t-
test), consistent with previous experimental findings21. In experimental
studies, the effect of top-down attention on theOff duration is unclear, with
different experiments obtaining distinct results21,39; in ourmodel, we find no
significant influence on the Off duration in V4 (uncued: toff = 133.41 ± 2.23
ms, cued: toff = 131.53 ± 2.82ms,mean ± SEM, p = 0.20, two-sided paired t-
test), but a significant reduction in the Off duration in FEF by attention
(uncued: toff = 187.84 ± 2.98ms, cued: toff = 149.46 ± 3.21ms,mean ± SEM,
p < 10−5, two-sided paired t-test) (Fig. 7c). In our model, the distribution of
the duration of the On and Off state follows the exponential distribution
(Supplementary Fig. 12a, c), comparable toOn andOff durationsmeasured
in V4 of monkeys during cued attention tasks21.

The prolonged durations of the wave packets consequently enhance
interareal communications between the sensory and association areas. As
shown above, we perform gamma synchrony analysis and find that the
average PLV of gamma bursts (S-On) between 40-60Hz is significantly
increased during the attention task to 0.29 ± 4 × 10−3 (Fig. 7e; p < 10−5; two-
sided paired t-test); this is consistent with experimental studies showing
enhanced gamma synchrony between V4 and FEF during cued attention
tasks8. In addition, our information theoretical analysis indicates that
information flow quantified by TE increases to TE = 8.4 × 10−3 nats (S-On)
(Fig. 7f; p < 10−3, two-sided paired t-test).

We also find the prediction performance of RRR for each number of
dimensions is improved by attention during S-On states (p < 0.02, two-
sided paired t-test; Fig. 7g). In addition, during S-On states in the cued
condition, the prediction performance of RRR becomes indistinguishable
from that of full linear regression model when the dimensions of RRR
exceed 3 (subspace dimension = 4), slightly larger than the dimension
observed in the absence of attention (dimension = 3), asmentioned above.
Nevertheless, we note that RRR with 3 dimensions in the cued condition
performs closely to the full linear regressionmodel, achieving 98.4% of its
performance. Thus, the dimension of the subspace remains relatively
constant (≈3) in both cued and uncued conditions in our circuit model.
This suggests that attention enhances communication between distant
neuronal populations without affecting the underlying subspace, con-
sistent with experimental findings showing that attention improves the
efficacy of information flow between different brain areas without altering
the subspace dimension6.

Our model also provides a mechanistic account of how the classical
observation of biased competition of attention is implemented in large-
scale neural circuits. According to biased competition19, the firing rate of
a given object will be reduced when a second object is presented. The
allocation of attention to the first object will restore its firing rate. To
verify biased competition in our model, we compare the neuronal
response to one input with that of two concurrently presented inputs. As
shown in Supplementary Fig. 13a, compared to introducing only one
input at the network center, we find that adding an additional input at
nearby position reduces the response in V4 to the original center input
from 27.36 ± 0.77 Hz to 23.15 ± 0.70 Hz (mean ± SEM; p < 10−24, two-
sided paired t-test; green vs purple). This reduction occurs due to the
lateral inhibition between the response to each input. Specifically, adding
an additional input decreases the pattern’s probability to visit the ori-
ginal center input (Supplementary Fig. 13b), resulting in an average
reduction in the firing rate at the center input. However, this reduction
can be selectively compensated by allocating the cue to the center input,
with the response increasing from 23.15 ± 0.70 Hz to 28.12 ± 0.86 Hz
(p < 10−25; purple vs orange). As demonstrated above, triggered by cue,
the pattern in FEF spends longer time dwelling the cued location, which
increases the burst duration in FEF (Fig. 7c and Supplementary Fig. 13c).
Due to the cortical feedback interactions, the top-down inputs to the V4

Fig. 6 | Modulation of wave pattern dynamics and theta-gamma coupling by cue
presentation. a Trajectories of the wave pattern (red line) and the distribution of
SFA strength in the FEF (represented by varying shades of purple color) under
uncued (left) and cued conditions (right). In the absence of external inputs, the
pattern uniformly traverses the FEF when the SFA is homogeneous (uncued).
However, under the cued condition, the wave pattern visits the cued location (orange
circle) for a longer duration. b Cross-frequency phase-amplitude comodulograms
(averaged across 30 random network realizations) for the LFP at the FEF center
during the uncued (left) and cued (right) conditions as shown in (a). Source data can
be found in Supplementary Data 1.
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cued region are enhanced, increasing the probability that the V4 pattern
visits the cued input (Supplementary Fig. 13b), and on average, leading
to an increase in firing rate for the cued input.

During the cued attention task, it is important to note that the
localized wave patterns in both V4 and FEF areas continue to exhibit
superdiffusive Lévy displacement in space (Supplementary Fig. 2d). This
indicates that that the fundamental stability of cortical circuits remains
largely intact and stays within the dynamical working regime. However,
what changes during the cued attention task is the local modulation of
wave pattern dynamics through an interplay between acetylcholine
(ACh) and cortical feedback. This modulation primarily enhances the

dwelling time of these wave patterns at the cued location. Due to the
intrinsic long jumps inherent in Lévy motion, the wave patterns still
possess the potential to occasionally shift to other locations and syn-
chronize there. This mechanism effectively prevents an excessive con-
centration of interareal communication solely on the cued object, thus
preserving flexibility in interareal interactions.

Taken together, these results demonstrate that flexible cognitive
functions, such as cued top-down attention, emerge from themodulation of
DDC based on wave pattern interactions, and that the interplay between
neuromodulators such as acetylcholine and cortical feedback plays an
essential role in facilitating this modulation.

Fig. 7 | Key neural features of visual attention emerging from DDCmodulation.
a Trajectories of the wave pattern in V4 (bottom, blue) and FEF (top, red) under the
uncued (left) and cued (right) conditions when two external inputs are placed at the
center and corner of V4 (black). The strength of SFA in area 2 is represented by the
shades of purple color. The dashed circle indicates the cue location. The green circle
indicates the region of sampled neurons for analyses in b–i. bMUA at the center of
V4 (bottom) and FEF (top) under the uncued (left) and cued (right) conditions.
c Average durations of On states (left column) and Off states (right column) under
the uncued (purple) and cued (orange) condition in V4 (bottom row) and FEF (top
row). n = 30 network realizations. Error bars represent ± 1SD. ***p < 0.001, two-
sided paired t-test. d Same as (c) but for the average firing rate. e Average PLV
between MUA at the center of V4 and FEF (the location of the center stimulus)
during the S-On state for the uncued (purple) and cued (orange) conditions, across
the frequency range of 30–120 Hz. fAverage TE of theMUA fromV4 to FEF during

the S-On state for the uncued (purple) and cued (orange) conditions, calculated at
different time delays. g Average performance in predicting spiking activity at FEF
center using spiking activity at V4 center through the reduced-rank regression
(circle) and the full model (triangle) during the S-On state for the uncued (purple)
and cued (orange) conditions. hAveragemean-matched Fano factor of a local group
of excitatoryV4neurons near the center input after its onset. The horizontal blue line
indicates the periodwhen the cue significantly reduces the Fano factor (p < 0.05, one-
sided paired t-test). i Same as (h) but for the noise correlation of the same group of
neurons. The horizontal blue (red) line indicates the period when the cue sig-
nificantly reduces (increases) the noise correlation (p < 0.05, one-sided paired t-test).
Data in e–i represents the average results across random realizations of networks
(n = 30 for e and g; n = 60 for f, h, and i). Error bars represent ± 1 SEM. Source data
can be found in Supplementary Data 1.
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Reductions in neural variability and correlation
Wenext illustrate that the coordinated spatiotemporal dynamics underlying
the modulated DDC provide an explanation for the reductions in neural
variability and correlation commonly observed during attention tasks23,24.
We find that the neurons near the cued location in theV4 area of our circuit
model exhibit an attention-induced reduction in neural variability, which is
quantified by the mean-matched Fano factor (see Methods). On average
across the 600ms response period following the cue onset, the Fano factor is
reduced by 5%, declining from 1.45 to 1.34 (p < 10−13, two-sided paired t-
test). Upon further investigation into the time-resolved Fano factor values,
we note that this reduction primarily happens during the later phase of the
response (Fig. 7h), which is in line with experimental observations23. We
then calculate the correlated variability in spike counts of V4 neurons,
commonly referred to as noise correlation, between pairs of neurons across
trials; we find an attention-related reduction in noise correlation, with a
decrease from 0.41 to 0.39, averaged across the response period (p < 10−3,
two-sided paired t-test). Similar to the Fano factor, the temporal profile of
noise correlation demonstrates that the significant attention-related
reduction of the noise correlation is also evident during the later
phase (Fig. 7i).

The localizedwave patterns in ourmodel represent a substantial source
of correlated neural variability. The modulation of these wave pattern
dynamics, as demonstrated in the context of attention tasks, can thus
account for the observed reductions in correlated variability. To elucidate
these aspects, we employ a mathematical model capable of capturing the
complex spatiotemporal dynamics of these localized wave patterns. The
model is described by a stochastic differential equation driven by Lévy
motion with a momentum term31

dxt ¼ γb xt
� �

dt þ βvtdt þ γ1=αdLαt ; ð1Þ

dvt ¼ βb xt
� �

dt; ð2Þ
where xt is the coordinate of the pattern trajectory, vt is the momentum
term, β is the damping coefficient, b xt

� �
is the drift term related to the

energy (probability) landscape (see below and Methods), γ = 100 is the
strength of the noise,Lαt is the Lévymotionwith step sizes over a time period
dt = 1 ms following a symmetric alpha stable distribution SαS α; dt

1
α

� �
,

possessing a power-law tail with a tail index 1 < α≤ 2. Themomentum term
vt is responsible for generating temporal oscillations in the trajectory of the
pattern, with the frequency of the oscillations controlled by the damping
coefficient β.

In themathematicalmodel,we assign the tail index toα = 1.2, similar to
the tail index characterizing the superdiffusive Lévy motion of localized
wave patterns emerging in the neural circuit model (Supplementary Fig. 2).
Additionally, we set β = 1 to capture their oscillatory aspect (i.e., theta

oscillations); other values close to these would generate qualitatively similar
results. When devoid of external inputs, the pattern or random walker
governed by this mathematical formulation traverses a flat energy land-
scape. Incorporating two input objects into the model is mathematically
equivalent to introducing two wells to the landscape: one at the center and
another at the corner (see “Methods” section; Fig. 8a and Supplementary
Fig. 14a).

As demonstrated above, the top-down inputs triggered by the neuro-
modulatorACh increase the probability that thewave pattern visits the cued
position. In themathematicalmodel, this effect ismodeled as deepening the
potential well at the cued location (Supplementary Fig. 14d). We find that
deepening the potential well at the center-cued location in themathematical
model leads to an increase in the duration of the pattern at the corre-
sponding position (Fig. 8b). Nevertheless, the pattern’s global behavior
continues to exhibit superdiffusive characteristics. These results from the
mathematical model are consistent with the spiking neural circuit model,
thus providing further confirmation that during attention tasks, the wave
pattern’s state undergoes local modulation while retaining its inherent
spatiotemporal attributes.

To quantitatively assess the spiking activity within this mathematical
construct, we assume that the instantaneous firing rate profile in the net-
work conforms to a two-dimensional Gaussian bump centered on the tra-
jectory of the pattern, plus a baseline firing rate (see “Methods” section;
Supplementary Fig. 14b and c). To model the attention-induced firing rate
increase at the cued position, we allow the baseline firing rate at the cued
potentialwell to increasewith the potentialwell depth.We then examine the
modulationof the spiking activity in thismathematicalmodel by computing
the Fano factor and noise correlation for a group of neurons in the cued
region under different top-down input strengths, corresponding todifferent
well depths in themodel. As shown in Fig. 8c, the increasing depths result in
a decreasing Fano factor from 1.28 ± 6 × 10−3 (mean ± SD, uncued; well
depth = 50) to 1.15 ± 3 × 10−3 (well depth = 100) (p < 10−20, two-sided
unpaired t-test); this means that stronger top-down effects lead to a greater
reduction in neural variability. We find that the noise correlation shows a
similar trend of reduction (Fig. 8d), with its value decreasing from
0.22 ± 2 × 10−3 to 0.13 ± 1 × 10−3 (p < 10−18, two-sided unpaired t-test).
Taken together, these results thus indicate that the localmodulation ofwave
pattern dynamics, while preserving their inherent spatiotemporal proper-
ties, can account for the observed reductions of neural variability and
correlation.

Discussion
In this study, we have introduced a flexible interareal communication
mechanism (i.e., DDC) to understand the functional interactions among
different cortical areas and their fundamental roles in cognitive processes
such as attention. DDC harnesses realistic, complex spatiotemporal

Fig. 8 | Amathematical model explaining the attentionmodulation of correlated
neural variability. aTrajectory of a randomwalker of themathematical model over
a duration of 500 ms. Two potential wells with equal depth (50) are located at the
center and corner. The value of potential is represented by the shades of the gray
color. b Average On duration at the center well as a function of the depth of the

center potential well, representing different strengths of top-down inputs. Error bars
denote ± 1 SEM (n = 20 trials). c Average Fano factor of 80 neurons within the
center potential well as a function of the center potential well depth. Data shows the
grand average across 20 trials; error bars denote ± 1 SEM. d Same as c but for the
noise correlation. Source data can be found in Supplementary Data 1.
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dynamics and their coordinated interactions to communicate information
efficiently and flexibly between distinct cortical areas. These coordinated
interactions not only give rise to gamma burst-mediated communication
but also provide a mechanistic account of the flexible formation and
reconfiguration of communication subspaces. As a result, the DDC
mechanism unifies gamma-based and subspace-based views, significantly
advancing our understanding of interareal communication. As we have
illustrated, our DDCmechanism provides profound functional advantages,
such as rapid and flexible switching between spatially distributed commu-
nication subspaces. This facilitates spatial and temporal multiplexing,
enablingflexible and efficient routing of neural responses tomultiple objects
through cortical areas. In addition, we have elucidated that the dynamical
processes underlying modulated DDC account for a great variety of neural
effects observed during cued attention tasks, thus revealing the functional
significance of DDC in cognition. Our DDCmodel generates novel testable
predictions about interareal communication, which have been confirmed
through the analysis of the Allen Institute Neuropixels dataset.

Our DDC mechanism provides a novel perspective on the roles of
realistic complex dynamics of neural population activity, unfolding in both
time and space, in cortico-cortical interactions; this extends the existing
models primarily based on temporal correlation/synchrony of either
sustained3 or bursting oscillations14. In particular, as we have illustrated,
localized wave patterns (i.e. wave packets) and their interactions serve as
neural substrates for implementing DDC. These wave patterns exhibit rich
spatiotemporal dynamics that can capture and explain a great variety of
neural dynamics.Theyhover aroundone location for awhile and thenmove
or switch to another location in an intermittentmanner.This propagationof
wave patterns can be characterized as a type of nonstationary motion (i.e.,
Lévy motion). Propagating wave patterns have been ubiquitously observed
at both circuit andwhole-brain levels15,16. Notably, it has beendemonstrated
that Lévymotion underlies the propagation of neural activity patterns in the
MT area of marmoset monkeys36. Additionally, neural activity patterns in
the hippocampus exhibit hallmark features of super-diffusive Lévy
motion37,38; in fact, a super-diffusive mathematical model has been
employed to model such motions in ref. 53.

As we have illustrated, when localized spiking wave patterns shift to a
specific location, the localfield potential (LFP) in that area exhibits transient
gammabursts, which are nestedwithin theta oscillations. These oscillations,
instead of being regular clock cycles of some kind, exhibit substantial
variability and non-stationary properties, coexisting with aperiodic 1/f
fluctuations35. Such variable features of neural oscillations have consistently
been observed in neural population activity across various recording
modalities, whether during spontaneous activity or task-related
conditions11,13,54,55. Rather than being considered noise or detrimental to
cognitive processing, as conventionally assumed, these variable features
represent essential functional characteristics of DDC. In our large-scale
circuit model of DDC, once wave packets with complex spatiotemporal
dynamics in interconnected cortical areas become topographically aligned,
theyengage in interactions through feedforward-feedback loops.Aswehave
demonstrated, these interactions give rise to the synchrony (phase locking)
of gamma bursts, which are crucial for transferring information as quan-
tified by information theory analysis. This indicates that synchronized
bursts play an essential role in coordinating interareal interactions and
communication. It is interesting to note that during these interactions of
wave packets, the firing rates of local groups (a subset) of neurons in both
areas undergo significant amplification, displaying behavior reminiscent of
“ignition”. The relevance of ignition in DDC supports the hypothesis that
ignition plays an essential role in brain functions, particularly conscious
stimulus processing56. In addition, as we have illustrated, the interactions of
wave packets provide a dynamic circuit mechanism for explaining the
emergence of communication subspaces4. Thus, DDC unifies the two
prominent perspectives (gamma-based and subspace-based) for under-
standing interareal communication.

Crucially, the rich spatiotemporal dynamics displayed by these wave
patterns, including occasional long jumps inherent to their superdiffusive

propagation motion, endow them with the ability to rapidly shift to other
locations. This propagation property, as shown in our previous study, offers
a potent solution to the long-standing challenge of sampling and repre-
sentingmultimodal probabilistic distributions31. In the context of interareal
interactions, this property allows the localized wave patterns in different
cortical areas to momentarily align at various distributed locales, naturally
giving rise to transitions between distinct synchronized neural groups and
communication subspaces; it is important to note that such transitions
occur rapidly, often within tens of milliseconds, a time scale relevant to
behavior. The DDC model, based on wave pattern interactions, thus pro-
vides a mechanism for flexible and rapid transitions between communica-
tion subspaces; this capacity constitutes a hallmark feature of DDC and
forms a key testable prediction. It is worth noting that in ref. 17, casual
manipulation of two cortical areas along the cortical hierarchy (V1 and LM)
in the mouse cortex was conducted— it was observed that the patterns of
influence on the target population can change rapidly. Different subsets of
neurons were affected at distinct moments in time, typically within ≈ 50
milliseconds. This finding strongly suggests the presence of dynamically
switching communication subspaces, as found in our study.

Another key property of DDC is the coordination of gamma burst-
based interareal interactions by theta oscillations. In particular, we have
demonstrated that gamma bursts, representing different objects, become
entrained with distinct phases of theta oscillations. In DDC, this theta-
gamma coupling prevents potential interference when routing neural
responses to different objects across cortical areas. Previous studies have
proposed the role of fast gamma oscillations nested within slower oscilla-
tions such as theta or alpha in coordinating interareal interactions57,58.
However, these studies have often focused on normative models without
specifying their underlying neural circuit mechanisms58 or assumed the
imposition of one oscillatory element externally. For instance, in ref. 57, the
theta component is introduced as an external input. In contrast, the cross-
frequency coupling is an intrinsic and emergent property of our circuit
model, without the imposition of any external modulating inputs. Specifi-
cally, we have elucidated that neural firing adaptation underlies the genesis
of theta oscillations35, a neurophysiological mechanism that we have ana-
lytically derived and subsequently validated in our spiking neural circuit
model. This result, in turn, suggests that biophysicalmechanisms capable of
modulating neural adaptation, such as acetylcholine51,52, might exert mod-
ulation over theta oscillations. In light of this theoretical prediction, it is
interesting to note that recent studies have revealed the role of acetylcholine
in modulating theta oscillations that support memory formation59.

DDC also generates novel experimentally testable predictions on the
interrelated burst synchrony-based subspace communication and their rich
spatiotemporal dynamics. Through analyzing the Allen Neuropixels visual
coding dataset18, we have found that neural responses to flashes in V1 and
LM exhibit spiking bursts that are associated with gamma bursts. These
gamma bursts are coupled with theta oscillations and are accompanied by
an arrhythmic 1/f component, as predicted by our modeling study. These
gamma bursts are synchronized, as quantified by the high phase locking
index, for transmitting stimulus information across the cortical hierarchy.
Wehave further found that these epochs of synchronized bursts correspond
to the emergence of communication subspaces, thus confirming our pre-
diction of their mechanistic relationship. Importantly, recent research has
shown that gamma activity plays a pivotal role in facilitating the commu-
nication of distinct visual features during perception within the awake
mouse visual system60. It would be interesting to investigate whether such
gamma-based communication is mechanistically linked to dynamical
communication subspaces by conducting a similar analysis as in our study.
Nevertheless, it is worth pointing out that the limited spatial coverage of
Neuropixels recordings precludes the direct examination of propagating
wave patterns. To comprehensively illustrate how coordinated interactions
of wave patterns underlie interareal communication as proposed in our
study, an ideal approach would involve combining imaging studies that
cover spatially extended areas with massive multi-unit recordings. Such an
approach would enable the visualization and recording of neural activity at
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both thepopulationand individual neuron levels, allowing for analysis using
the methods as employed in our modeling study.

What is the functional significance of the DDC mechanism, which
harnesses coordinated interactions among wave packets with rich and
complex spatiotemporal dynamics? In the framework of DDC, spiking
bursts and their accompanying gamma bursts serve as vital components in
facilitating interareal communication. In contrast to sustained activity
patterns, the sporadic bursting firing mode exhibit notable energy
efficiency61,62. As a result, it provides an efficient means for broadcasting
information across different cortical regions. It is interesting to note that the
concept of packaging information into discrete bursts for efficient dis-
tributed communication has parallels in telecommunications63. Impor-
tantly, as we have demonstrated, DDC provides a flexible and rapid
mechanism for the formation and reconfiguration of distinct commu-
nication subspaces. This fundamental property enables various sensory
inputs to be routed through the cortical hierarchy in a spatial and temporal
multiplexing manner. This feature could prove particularly powerful in
conveying information across cortical areas, especially in situations char-
acterized by dynamically changing sensory inputs or varying task demands.
To further illustrate the computational power of DDC, it would be inter-
esting to extend our model to incorporate these changing conditions, as
explored in experimental studies64.

The functional significance of DDC is further underscored by our
finding that the modulation processes within DDC provide a versatile
mechanism for the emergence of flexible cognitive functions, such as cued
top-down attention. As we have demonstrated, the modulated dynamics of
wave patterns and their interactions result in enhanced communication
during attentional processes, characterized by increased synchrony-based
and subspace-based information transfer. Notably, increased gamma syn-
chrony has been previously observed in the V4 and FEF regions of the
primate brain during attention8, alongside attention-driven enhancements
in subspace-based communicationwithin themonkey brain6. In addition to
capturing these enhanced communication phenomena in experimental
studies, we have, to the best of our knowledge, provided the first unified
account of a wide range of neural features associated with visual attention
through modulated wave pattern interactions. These include increases in
spike bursts at the attended location21, reductions in neural variability22,
decreases in spike-count correlations23,24, enhanced theta-gamma
coupling25,65, as well as the classical observation of biased competition20.
Due to this unified account, which would otherwise not be achievable using
existing models66–68, DDC holds significant conceptual implications for
understanding the neural circuit mechanisms underlying attention; rather
than being confined to a specific brain region, attention may be better
conceptualized as an emergent property arising from modulated DDC
across different brain areas.

What drives themodulation ofDDC?Our studyhas revealed that the
interplay between neuromodulators, such as acetylcholine (ACh), and
feedback projections, constitute an effective driver for modulating
cortico-cortical interactions and communication. This mechanism is
grounded in empirical evidence demonstrating that cue-triggered ACh
release can rapidly target specific neural populations in the frontal
area25,48, as also noted in ref. 50, and that feedback connections are ubi-
quitous in the brain69,70. As in our model, the release of ACh has been
observed to reduce spike-frequency adaptation (SFA)51,52. This reduction
in adaptation mediated by ACh effectively modulates dynamic wave
patterns, particularly by extending their durations at the cued location.
This, in turn, leads to enhanced communication, providing an explana-
tion for the neural features associated with cued attention, as we have
demonstrated. This modulation mechanism of DDC thus unveils the
essential role played by ACh in mediating attention, consistent with
proposals in ref. 50. It also opens intriguing possibilities that regulating
the adequate levels of ACh might be relevant for optimizing attentional
performance71,72, with deviations in these levels potentially contributing to
attention disorders73. Given the prevalence of propagating wave
patterns16, the ubiquity of feedback loops69, and the essential roles of ACh

in various cognitive processes74,75, ourfindings suggest that themodulated
DDC underlying attention, as elucidated in our study, might have broad
applications in understanding other cognitive functions.

Methods
A spiking neural circuit model involving two cortical areas with
feedforward and feedback interactions
The canonical neural circuit model consists of two interconnected cor-
tical areas: area 1 (β = 1) and area 2 (β = 2), representing regions in the
lower and higher cortical hierarchy, respectively. Each area consists of an
excitatory neuron group (α = e) with Ne excitatory neurons and an
inhibitory neuron group (α = i) with Ni inhibitory neurons; Ne = 4096
andNi = 1024. Here, we use the notation αβ to denote a neuron group in
area β with neuron type α, the notation mαβ

j to denote a variable m (for
instance, this can be membrane potential or current) of the jth neuron in
group αβ, and the notation mα0β0αβ

j0 j for a variable m regarding the con-
nection between the j0th presynaptic neuron from group α0β0 and the jth

postsynaptic neuron in group αβ. The membrane potential Vαβ
j of the jth

neuron in group αβ follows:

C
dVαβ

j tð Þ
dt

¼ � gL Vαβ
j tð Þ � VL

� �
þ Iαβj;k tð Þ þ Iαβj;rec tð Þ þ Iαβj;ext tð Þ; ð3Þ

where α∈ {e, i}, β∈{1, 2}, j∈ {1, 2,…,Nα}, the membrane capacitance
C = 0.25 nF, the reversal potential for the leak currentVL =−70mV, and the
leak conductance gL = 16.7 nS and 25 nS for excitatory and inhibitory
neurons, respectively. When the membrane potential reaches the threshold
vT =−50 mV, a spike is generated, and the membrane potential is reset to
vr =−70mV for a refractory period τref = 4ms. The potassium current for
the spike-frequency adaptation of excitatory neurons is

Ieβj;k tð Þ ¼ �geβj;k tð Þ Veβ
j tð Þ � Vk

� �
; ð4Þ

where the reversal potential Vk =−85mV. The dynamics of the potassium
conductance are described by

dgeβj;k tð Þ
dt

¼ �
geβj;k tð Þ
τk

þ Δgeβk
X
i

δ t � teβj;i
� �

ð5Þ

with τk = 60 ms the decay time constant and teβj;i the time of the ithspike

generated by neuron j from group eβ. Each spike emitted by an excitatory

neuron increases the conductance geβj;k by Δg
eβ
k , with Δg

e1
k = 1.9 nS in area 1

andΔge2k = 6.5 nS in area 2.We only include spike-frequency adaptation for

excitatory neurons, i.e., Iiβj;k tð Þ = 0mA for all inhibitory neurons, as spike-

frequency adaptation has primarily been observed in pyramidal neurons76.
The postsynaptic current of intra- and inter-areal recurrent connections is
given by:

Iαβj;rec tð Þ ¼ �
X
β0

X
α0

X
j0

gα
0β0αβ

j0 j;rec tð Þ Vaβ
j tð Þ � Vα0

rev

� �
ð6Þ

where gα
0β0αβ

j0 j;rec tð Þ is the postsynaptic conductance for the connection between
presynaptic neuron nα

0β0

j0 and postsynaptic neuron nαβj . The reversal

potential for excitatory and inhibitory postsynaptic current areVe
rev = 0mV

and V i
rev = -80 mV, respectively. The kinetics of postsynaptic conductance

are described by two coupled differential equations:

dgα
0β0αβ

j0 j;rec tð Þ
dt

¼ �
gα

0β0αβ
j0 j;rec tð Þ
τα

0
d

þ
xα

0β0αβ
j0 j;rec tð Þ
τα

0
d

; ð7Þ
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and

dxα
0β0αβ

j0 j;rec tð Þ
dt

¼ �
xα

0β0αβ
j0 j;rec tð Þ
τα0r

þ wα0β0αβ
j0 j;rec

X
i

δ t � tα
0β0

j0 ;i � dα
0β0αβ

j0 j

� �
; ð8Þ

where tα
0β0

j0;i is the timeof the ith spike emitted by the presynaptic neuronnα
0β0

j0 ,

and dα
0β0αβ

j0 j is the synaptic time delay between pre- and post-synaptic

neuron, which is uniformly sampled between 0.5 ms and 2.5 ms for intra-
areal connections (β0 ¼ β) and between 8 ms and 10 ms for inter-areal

connections (β0≠β ). wα0β0αβ
j0 j;rec is the synapse coupling weight, which is the

amount of increase in xα
0β0αβ

j0 j;rec tð Þ for each spike generated by the presynaptic
neuron. The dynamics of xα

0β0αβ
j0 j;rec tð Þ give rise to a rising-and-decaying time

course of postsynaptic conductance gβ
0β0αβ

j0 j;rec tð Þ, with the rising time constant

τir = τer = 1 ms and the decay constant τed = 5 ms and τid = 4.5 ms for both

areas. Eachneuron receives external input current Iαβj;ext tð Þ driven by Poisson
spike train from which each spike induces excitatory postsynaptic current
with the same kinetics as the intra- and inter-areal excitatory postsynaptic
current (See ‘External inputs’ below for more details).

Each area covers a 2D space [−32, 32] × [−32, 32] with periodic
boundary conditions. Both types of neurons are uniformly distributed in
eacharea,with thedistancebetweenadjacent inhibitoryneuronsbeing twice
that between adjacent excitatory neurons. We refer to the distance between
excitatory neurons as 1 grid point (≈7μm). The coordinate of each neuron

yαβj ¼ yαβj;1; y
αβ
j;2

� �
, where yeβj;1, y

eβ
j;2 ∈ {−31.5,−30.5,…, 30.5, 31.5} and yiβj;1,

yiβj;2 ∈ {− 30,− 28,…, 28, 30} for both areas. The two areas represent two

cortical regions situated on the same cortical surface. To aid visualization
and illustrate interareal connections, these areas are depicted as arranged
vertically (Fig. 1a). The connection probability P between two neurons
decays exponentially with the distance between them:

P ¼ Pα0β0αβ
0 exp �dα

0β0αβ
j0 j =τα

0β0αβ
P

� �
; ð9Þ

where Pα0β0αβ
0 is the peak probability, dα

0β0αβ
j0 j ¼ kyα0β0j0 � yαβj k is the distance

between presynaptic neuron nα
0β0

j0 and postsynaptic neuron nαβj , with the
distancemeasured periodically, and τα

0β0αβ
P is the decay constant. The values

of Pα0β0αβ
0 and τα

0β0αβ
P are as follows:

(1) Intra-areal connection: Pe1e1
0 ¼ Pe2e2

0 ¼ 0:8057, Pe1i1
0 ¼ Pe2i2

0 ¼
0:6964, Pi1e1

0 ¼ Pi2e2
0 ¼ 0:4088, Pi1i1

0 ¼ Pi2i2
0 ¼ 0:5663; τe1e1P ¼

τe2e2P ¼ 7:5, τe1i1P ¼ τe2i2P ¼ 9:5, τi1e1P ¼ τi2e2P ¼ 19, τi1i1P ¼ τi2i2P ¼ 19.
(2) Inter-areal connection: Pe1e2

0 ¼ Pe1i2
0 ¼ Pe2e1

0 ¼ Pe2i1
0 ¼ 0:4; τe1e2P ¼

τe1i2P ¼ τe2e1P ¼ τe2i1P ¼ 8.

As shown above, we use the same connection strategy for the intra-areal
connections in both areas, as well as for the inter-areal bottom-up and top-
down connections. Neurons that are closer together in spatial coordinates,
whether within the same area or across different areas, tend to have more
similar receptive fields and feature sensitivities. This suggests that the con-
nections described above lead to interactions between two areas with
overlapping receptive fields, indicating retinotopically aligned
interactions77. In our model, all presynaptic neurons are excitatory for the
inter-areal connections but target both inhibitory and excitatory neurons. In
addition, for the inter-areal projections, we randomly choose 50% of neu-
rons in each excitatory neuron group as the presynaptic (source) neurons,
while all excitatory and inhibitory neurons in another area can be the
postsynaptic (target) neurons. Based on the aforementioned parameters of
synaptic connections, we can calculate the average number of intra-areal
connections received by each neuron in one group from another group (i.e.,
indegree,Kin):K

eβ0eβ
in = 270,Keβ0 iβ

in = 350,K iβ0eβ
in = 130 andK iβ0 iβ

in = 180,where

β0 ¼ β 2 f1; 2g. The intra-areal synaptic coupling weights wα0β0αβ
j0 j;rec for each

postsynaptic neuron nαβj are randomly generated from a Gaussian dis-
tribution with a mean of

W
α0β0αβ
j0 j;rec ¼ Jα

0β0αβ
rec =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Kα0β0αβ

in;j

q
; ð10Þ

and a standard deviation that is 5% of the mean, where Kα0β0αβ
in;j is the

indegree of neuron nαβj for the projections from the groupwith neuron type
α0 in the same area β0 ¼ β, and

Jα
0β0αβ

rec ¼ W
α0β0αβ
rec

P
jK

α0β0αβ
in;jP

j

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Kα0β0αβ

in;j

q ; ð11Þ

whereW
α0β0αβ
rec is the overallmeanof all synaptic strengths of the connections

fromneurongroupα0β0 toαβ. This setup ensures that the average intra-areal
coupling weight of a postsynaptic neuron is inversely proportional to the

square root of its indegree78. We haveW
e1e1
rec = 7.857 nS,W

e1i1
rec = 10.847 nS,

W
i1e1
rec = 35.534 nS,W

i1i1
rec = 45 nS,W

e2e2
rec = 11 nS,W

e2i2
rec = 13.805 nS,W

i2e2
rec =

41.835 nS,W
i2i2
rec = 50 nS.Note thatwe endow area 2with stronger excitatory

synaptic strengths than area 1 to emulate the cortical gradient in the
excitatory coupling strengths observed in the cortex30. For simplicity, the
coupling weights for inter-areal connections (β≠ β0) are randomly
generated from identical Gaussian distribution for each postsynaptic
neuron without scaling the mean with the number of indegrees; the mean

inter-areal coupling weights are W
e1e2
rec ¼ W

e1i2
rec = 3.656 nS and W

e2e1
rec ¼

W
e2i1
rec = 0.578 nS, and the standard deviation is 5% of the mean.With these

biophysically realistic parameter settings, the circuit models of both cortical
areas approach the transition regime between different cortical states,
equipped with neural adaptation31. In this regime, our model, featuring
emergent complex spatiotemporal dynamics of localized wave patterns, can
capture a broad spectrum of realistic neural dynamics. These dynamics
include transient gamma bursts nested within theta oscillations and
coexisting with aperiodic 1/f fluctuations, which are commonly observed in
neural population activity across various recording modalities,
whether during spontaneous activity or task-related conditions11,13,54,55.
Similar to our model, previous studies have investigated spatially
extended, 2D neural circuit models with emergent propagating wave
patterns to explain realistic neural dynamics and their computational
roles66,79–81. Particularly, in Huang et al.66, the wave patterns arising from
zero spatial frequency mode are global, leading to a spatially uniform
modulation of noise correlations. However, our model displays localized
wave patterns with a radius of ≈ 100μm, which is largely consistent with
the radius (≈170 μm) of localized wave patterns reported in ref. 36.
During attention tasks, the modulation of such localized wave patterns,
resulting from the interplay between acetylcholine (ACh) and cortical
feedback, induces localmodulation of cortical states and dynamics, as found
in ref. 21.

All simulations of the spiking network model are performed in the
Brian2 simulator82 using the Euler method with time step 0.1ms. For each
random network realization, the initial membrane potential of each neuron
is randomly sampled between -85 mV and -50 mV, and the connectivity is
randomly generated. The duration of the simulations for each result is
specified in the following sections.

External inputs
Each neuron receives external input current Iαβj;ext tð Þ driven by a Poisson
spike train with a rate equal to

λ yαβj ; t
� �

¼ λbg þ λsti yαβj ; t
� �

; ð12Þ
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where λbg = 1600 Hz is the rate of homogeneous background inputs for all
neurons and λsti yαβj ; t

� �
is the rate of external inputswhose spatial profile is

a sum of Gaussian functions

λsti yαβj ; t
� �

¼
X
l

cαβsti;lλbg exp �
yαβj � yαβsti;l

��� ���2
2σ2sti

0
B@

1
CA; ð13Þ

where yαβsti;l is the center of the l
th external input, σsti = 6 is the width of each

input, and cαβsti;l is the contrast of the l
th input.We add external inputs only to

the excitatory neurons in area 1 (V4), i.e., cαβsti;l = 0 when β = 2 or α = i. The
synapse couplingweights for the external inputs are 5nS. For Fig. 3,we add1
input at ye1sti;1 = (0, 0), with ce1sti;1 = 0.25. For Figs. 5 and 7, we add 2 inputs at
ye1sti;1 = (0, 0) and ye1sti;2 = (−32,−32), with ce1sti;1 ¼ ce1sti;2 = 0.25.

Tracking the wave patterns
Because there is one wave pattern in each of the two areas, we use the center
ofmass (CoM)of the spiking activity of excitatoryneurons in awhole area as
a proxy of the center of the wave pattern, denoted by
ycðtÞ ¼ ð yc;1ðtÞ; yc;2ðtÞÞ. We have

yc;zðtÞ ¼ arg
XNe

j¼1

nje
i
yj;z
32 π

 !
32
π
; ð14Þ

where z∈ {1, 2}, nj is the number of spikes emitted by the jth excitatory
neuron during a short time window [t− τ/2, t+ τ/2] (τ = 10 ms unless
otherwise stated), yj,z is the horizontal (z = 1) and vertical (z = 2) coordinate
of the jth excitatory neuron, arg( ⋅ ) denotes the argument function, and 32 is
the half-width of the side of each area.

To verify that the CoM is a reliable estimate of the location of the wave
pattern, we analyze the average firing rate of neurons relative to their dis-
tance from the CoM. This analysis is conducted across four different ranges
of global firing rates (0–2.5 Hz, 2.5–5 Hz, 5–7.5 Hz, and > 7.5 Hz) to assess
the estimate’s robustness to fluctuations in global firing rate. We find that,
irrespective of the global firing rate range, neurons’ firing rates decrease as
their distance from the CoM increases. This relationship between firing rate
and distance closely follows a Gaussian function with an added baseline
firing rate (Supplementary Fig. 15). This indicates that the CoM effectively
estimates the location of the strongest firing activity in an area and remains
relatively robust to fluctuations in the global firing rate. Furthermore, this
analysis supports the observation that, most of the time, there is only one
dominant wave pattern.

To further illustrate the robustness of our results to different wave
pattern tracking methods, we compare the CoM with an alternative wave
patterndetectionmethoddescribed in ref. 83,where the instantaneousfiring
rate across thenetwork ismodeled as a 2DGaussian functionwith a baseline
rate, and the parameters are estimated usingmaximal likelihood estimation
(see SupplementaryMethods 3). This spatial profile of wave patterns gives it
a packet-like property. The trajectory of the pattern generated by this
method closely aligns with the CoM (Supplementary Fig. 16). Given that
computing the CoM is much faster than fitting a Gaussian function to the
instantaneous firing rate, we employ the CoM in our primary analyses.

MUA, LFP proxy, power spectrum, and gamma bursts
Themulti-unit activity (MUA) at position y in each area is calculated as the
average firing rate of a local group of excitatory neurons within a radius of 5
grid points (80 neurons in total) centered at y, computed over a sliding time
window with a duration of tb. We use tb = 10ms for On/Off state detection
and tb = 1ms for the power spectrum, PLV, and transfer entropy analysis.
TheLFP at position y in areaβ is defined as theweighted sumof the synaptic

current received by excitatory neurons across the area84

LFP y; t; β
� � ¼XNe

j¼1

∣Ie1eβj;rec tð Þ∣þ ∣Ie2eβj;rec tð Þ∣þ ∣Iiβeβj;rec tð Þ∣
� �

exp �
yeβj � y
��� ���2

2σ2LFP

0
B@

1
CA;

ð15Þ
where yeβj is the coordinate of neuron neβj , jIe1eβj;rec tð Þj and jIe2eβj;rec tð Þj respec-
tively represent the absolute values of the total intra- and inter-areal
excitatory current received by neuron neβj , jIiβeβj;rec tð Þj is the absolute value of
the total intra-areal inhibitory current received by neuron neβj (note that the
inhibitory neurons do not project inter-areal connections in our model),
and σLFP = 7 defines the spatial scale of the weighted sum. Both MUA and
LFP signals are sampled every 1ms (1 kHz sampling rate), and are recorded
at the network center y = (0, 0), except for in Fig. 5, where we also record the
MUA at the network corner y = (−32,−32).

For the power spectrum in Fig. 1e, we generate 30 random realizations
of the network. In each realization, we run 50-second simulations and
segment them into ten 5-second epochs. The power spectrum of the MUA
and LFP during each of these epochs is calculated using the Fast Fourier
transform and its arrhythmic 1/f component is estimated using irregular-
resampling auto-spectral analysis40. The power spectrum and 1/f compo-
nent are averaged across epochs for each realization, and the grand-average
results across realizations are presented.

For the gammabursts inMUA(Fig. 1c, d andSupplementaryFig. 4a, b)
and LFP (Supplementary Fig. 4c, d), we generate 30 random realizations of
the network. For each realization, we apply Complex Morlet wavelet
transform to 200 s ofMUA and LFP time series to obtain the instantaneous
amplitude time series for each frequency spanning the gamma band
(30–80Hz, sampled at 2 Hz intervals). The amplitude time series is then
smoothed by a Gaussian kernel with SD = 3ms. To detect the gamma
bursts, we threshold the time series for each frequency at the 85th percentile
of the instantaneous amplitude pooled from all times and all gamma-band
frequencies in each network realization. In Supplementary Fig. 4, the
amplitude is converted to power.

Spike frequency adaptation and cued top-down attention
For modeling the effect of the cue, we decrease the spike-frequency adap-
tationΔge2k of excitatoryneuronsnear the cued region inFEF.Thenewvalue
of Δge2k at coordinate yj under the cued condition is given by

Δge2k yj

� �
¼ Δge2k;base � Δge2k;modu

f att yj; yatt;Ratt; σatt

� �
f att yatt; yatt;Ratt; σatt
� � ; ð16Þ

where

f att yj; yatt;Ratt; σatt

� �
¼

1

1þexp � yj�yattk kþRatt
σatt

� �
0
@

1
A 1� 1

1þexp � yj�yattk k�Ratt
σatt

� �
0
@

1
A;

ð17Þ

Δge2k;base = 6.5 nS is the baseline value, yatt = (0, 0) is the center of spike-
frequencymodulation profile fatt.We refer to yatt as the cued location.Ratt =
8.2 and σatt = 2.2 define the range and shape of the modulation profile,
respectively. Themaximumreduction in the adaptation isΔge2k;modu = 6nS at
yatt, leading to the minimum adaptation across FEF equal to 0.5 nS.

Phase-amplitude coupling
To quantify the phase-amplitude coupling between different frequency
components, we calculate the modulation index (MI)42. We first band-pass
the raw LFP at the phase-frequency band (LFPp) and amplitude-frequency
band (LFPa), and then extract the instantaneous phase of LFPp and
instantaneous amplitude of LFPa using the Hilbert transform. The phase
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time series LFPp are divided intoN = 20 phase intervals, and for each phase
interval, we calculate the average amplitude of LFPa to obtain the dis-
tribution of the amplitude with respect to the phase, given by

pðΦjÞ ¼
AΦjPN
j¼1 AΦj

; ð18Þ

where AΦj
is the average amplitude for phase interval Φj. The MI is a

measure of divergence of p(Φj) from the uniform distribution, given by

MI ¼ 1�
�PN

j¼1 pðΦjÞ logðpðΦjÞÞ
logðNÞ : ð19Þ

To eliminate the possibility of MI being caused by chance, we randomly
shuffle the amplitude time series LFPa and calculate the MI between the
shuffled LFPa and original LFPp; we refer to thisMI calculated with shuffled
LFP asMIs.We calculate theMIs for 200 random shuffles and then subtract
the average MIs from the raw MI to obtain the final MI. For Fig. 1f and
Fig. 6b, we generate 30 random realizations of the network. In each network
realization, we calculate the MI based on 50 s of LFP for each condition
[spontaneous (uncued) and cued]. The average MI across realizations is
presented.

On and Off states detection
The localOn andOff states are classified based on theMUAof a local group
of 80 excitatory neurons in a circular regionwith a radius of 5 grid points. In
Fig. 1, 2, 3, 5, and 7, the group of neurons considered is at the center of
networks. For Fig. 5, we also consider the neuron group located at the
network corner (i.e., the location of the corner input). The MUA is com-
puted as themean firing rate of these neurons in the group using 10ms bins
sampled at 1 kHz. TheMUA is smoothed by using the Savitzky-Golay filter
before detecting the abrupt change points in the MUA using the ‘find-
changepts’ function inMATLAB (MATLAB R2019b, MathWorks, Natick,
MA).We refer to the smoothedMUAas η1 tð Þ and the time of the nth change
point detected by the ‘findchangepts’ as pt1 nð Þ. The pt1 nð Þ is a preliminary
segmentation of theMUA into high and low activity phases. To improve the
On-Off classification results, we derive a new signal η2 tð Þ from η1 tð Þ, where
η2 tð Þ ¼ 1

pt1 nþ1ð Þ�pt1 nð Þ
R pt1 nþ1ð Þ
pt1 nð Þ η1 τð Þdτ, for t 2 ½pt1 nð Þ; pt1 nþ 1ð ÞÞ. We

then segment the η2 tð Þ into On and Off states by comparing η2 tð Þ at each
time pointwith a threshold θη, and define a new signal η01 tð Þ, withη01 tð Þ=1
if η2 tð Þ≥ θη (On states) and η01 tð Þ = 0 if η2 tð Þ<θη (Off states). The On-Off
transition points in η01 tð Þ is referred to as pt2 nð Þ. Similar to η2 tð Þ, using
pt2 nð Þ we can define a signal η3 tð Þ ¼ 1

pt2 nþ1ð Þ�pt2 nð Þ
R pt2 nþ1ð Þ
pt2 nð Þ η1 τð Þdτ, for

t 2 ½pt2 nð Þ; pt2 nþ 1ð ÞÞ. Tofind the appropriate value of θηwe try a rangeof
θη andfind the sumof squared error SSE ¼Pt η3 tð Þ � η1 tð Þ� �2

for each θη.
The θη giving theminimumSSE is chosen to be the threshold for theOn-Off
states classification, and t is atOn state ifη2 tð Þ≥ θη, andOff state if η2 tð Þ<θη.
We determine the best θη separately for each realization of the network.

For Fig. 2b, c, e,we generate 30 randomrealizations of thenetwork, and
for Fig. 2d, we generate 60 random realizations of the network. In each
realization, the On-Off states detection is performed on 200 s ofMUAdata.
For Fig. 3c–f, we generate 60 random realizations of the network. In each
realization, we run 30 trials (10 s for each trial), and the On-Off states
detection is performed on the combined MUA across trials. For Fig. 5c, e, f
and Fig. 7c–e, g, we generate 30 random realizations of the network. In each
realization, we run 20 trials (10 s for each trial) for each condition (uncued/
cued), and theOn-Off states detection is performed on the combinedMUA
across trials of the same condition. For Fig. 5d and Fig. 7f, we generate 60
randomrealizationsof thenetwork. In each realization,we run30 trials (10 s
for each trial) for each condition (uncued/cued) and the On-Off states
detection is performed on the combined MUA across trials of the same

condition. For all stimulus-evoked trials, the initial 200ms ofMUAon each
trial are excluded from the analysis.

Coordination of simultaneous-On states by theta oscillations
To examine the relationship between simultaneous-On (S-On) states and
theta oscillations of localMUA(Figs. 3f and 5f),wefirst band-pass theMUA
at the center of area 1 into the theta band (3–6 Hz) using an 8th order
forward-backward Butterworth band-pass filter, and then obtain the theta
phase using Hilbert transform. The theta phase at the middle time point of
each S-On state occurring at the network center (Figs. 3f and 5f) and corner
(Fig. 5f) is recorded, and the distribution of the theta phase pooled across
network realizations is shown.

Phase synchronization
Tomeasure thephase synchronizationbetween theMUA in area 1 (V4) and
area 2 (FEF) in the gamma band, we first use an 8th order forward-backward
Butterworth band-pass filter to filter the MUA in narrow band
Fb ¼ f c � 5Hz; f c þ 5Hz

� 	
, with fc ± 5Hz being the -3dB cutoff frequency

and fc = 30, 40,…, 120Hz. We then apply the Hilbert transform to the two
filteredMUAs to extract the time series of the instantaneous phase ϕif c tð Þ of
theMUA in each area (i = 1 for area 1/V4 and i = 2 for area 2/FEF) for each
fc. The phase locking value (PLV) at fc is defined as themean resultant length
of relative phase

PLV ¼ ∣hei½ϕ1f c ðtÞ�ϕ2f c
ðtÞ�it ∣; ð20Þ

where 〈⋅〉t denotes the averaging across time. We measure the PLV during
S-On states (averaging across periods of S-On states) and S-Off states
(averaging across periods of S-Off states) separately. To remove spurious
phase locking due to band-pass filtering, we randomly shuffle MUA across
time (white noise) 200 times and calculate the PLV between the shuffled
MUA for each shuffling. Finally, we subtract the average PLVof the shuffled
MUA from the PLV of the original MUA.

The simulation setup has been specified in the ‘On and Off states
detection’. We perform PLV analysis for each state (S-On/S-Off) and each
condition (spontaneous, uncued/cued) in eachnetwork realization and then
average the PLV across realizations.

Communication subspace
We analyze the communication subspace between two groups of excitatory
neurons in a circular regionwith a radius of 5 grid points at the center of area
1 (V4) and area 2 (FEF) (the same group of 80 neurons used for classifying
On/Off states). We first record the number of spikes in non-overlap 20 ms
windows (single unit activity, SUA) for each of the 80 excitatory neurons in
each group. The SUA data of area 1 (V4) and area 2 (FEF) constitute two
matrices, Xs and Ys, respectively. Each matrix is a n× pmatrix, where p = 80
represents the number of neurons and n is the number of data points
recorded over time. Next, we calculate the average SUA of each neuron
duringOn states (X

On
s andY

On
s , 1 × pmatrix) andOff states (X

Off
s andY

Off
s ),

respectively. We then compute the SUA fluctuations by subtracting the
average SUA from the raw SUA according to the state in which each data
point resides. For instance, if thefirst rowofXs is at theOn state, then theX

On
s

is subtracted from it. The fluctuations of SUA are referred to as XOn, YOn

(nOn × pmatrix, nOn is the number of data points of On states), XOff, and YOff

(nOff × pmatrix,nOff is thenumberofdatapointsofOff states).Toquantify the
inter-areal interaction, we relate the ongoing fluctuations of SUA between
two neuron groups of neurons in two areas through linear regression

Y ¼ XB; ð21Þ

where (X,Y)∈ {(XOn,YOn), (XOff, YOff)}, and B is a p × p coefficient matrix.

For the full model, we use the ridge regression where B ¼ Brdg ¼
XTX þ λI
� ��1

XTY and the predicted Y is Yrdg =XBrdg. Here I is a p × p
identity matrix and λ is a scalar. We determine the appropriate value of λ
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using the 10-fold cross-validation as in ref. 4. Briefly, in each fold, we
measure the prediction performance which is defined as the normalized

squared errorNSE ¼ h Y�Yrdgð Þ2i
h Y�Yð Þ2i (themean squared error normalized by the

variance of Y). The averaging operation 〈 ⋅ 〉 for NSE is applied across all
target neurons and data points. λ is chosen as the largest λ for which the
mean prediction performance across folds is within one SEM (measured
across folds) of the best performance across different λ values.

To unravel the low-dimensional nature of the communication, we
perform a reduced-rank regression (RRR), similar to that in ref. 4, where
B = BRRR = BrdgVV

T. HereV is a p ×mmatrixwith the columnvectors as the
top m principal component of Yrdg. We calculate the performance for
m = 1–10, respectively, using 10-fold cross-validation.

The simulation setup has been specified in the ‘On and Off states
detection’. We perform the subspace analysis for each state (S-On/S-Off)
and each condition (spontaneous, uncued/cued) in each network realiza-
tion, and then average the prediction performance across realizations.

Transfer entropy
To quantify the information transferred from area 1 (V4) to area 2 (FEF)
during different states, we measure the transfer entropy (TE) between the
MUA in the two areas during S-On and S-Off states, respectively. MUA is
defined as the average firing rate over 1ms timewindows of a local group of
80 excitatory neurons within 5 grid points from the network center. The
sampling interval for MUA is 1 ms (1kHz sampling rate). TE measures the
reduction in the uncertainty (entropy) of the future value of the MUA in
area 2 (target) by knowing the past value of the MUA in area 1 (source),
which is given by

TE ¼ HðTtþ1jTk
t Þ �HðTtþ1jTk

t ; S
l
tþ1�uÞ; ð22Þ

where H( ⋅ ) denotes the entropy of a random variable, Tt+1 is the MUA in
area2at time t+ 1,Tk

t ¼ ðTt�kþ1;Tt�kþ2; . . . ;TtÞdenotes thepastkvalues
of the MUA in area 2 at t, and Sltþ1�u ¼ ðSt�lþ2�u; St�lþ3�u; . . . ; Stþ1�uÞ
denotes the past l values of area 1 MUA with a source-target time delay u.
These values are calculated within the epochs of S-On states to compute TE
during the S-On states and within the epochs of S-Off states to compute the
TE during the S-Off states. TE can be expressed in the form of probability
density functions of Tt+1, T

k
t , and Sltþ1�u as

TE ¼
Z
Ttþ1 ;T

k
t ;S

l
tþ1�u

pðTtþ1;T
k
t ; S

l
tþ1�uÞloge

pðTtþ1jTk
t ; S

l
tþ1�uÞ

pðTtþ1jTk
t Þ

 !
dTtþ1 dT

k
t dS

l
tþ1�u:

ð23Þ
Wecompute the TE for different time delaysu ranging from1 to 20ms. The
TE is estimated using the Kraskov Algorithm85. We determine the optimal
history sizes, k and l, from 1 to 8 ms using the Ragwitz criterion86. All TE
analyses are performed using the information-theoretic toolkit JIDT87. The
simulation setup has been specified in the ‘On andOff states detection’. We
conduct the TE analysis for each state (S-On/S-Off) and each condition
(spontaneous, uncued/cued) in each network realization, and then average
the TE across realizations.

Fano factor and noise correlation in the spiking model
To show that our circuit model exhibits variable firing activity, we calculate
the coefficient of variation of interspike interval and the Fano factor of spike
counts for all excitatory neurons in individual network realizations (n = 60
networks). 15 s of spontaneous activities are analyzed for eachnetwork. The
Fano factor is computed as the ratio of the spike count variance to themean
spike count, with the spike count measured over non-overlapping time
windows (window length = 50ms). To analyze the influence of feedforward
and feedback inputs on neural variability, we compare the Fano factor of
spike counts before and after disconnecting interareal connections. The
Fano factor and coefficient of variation of individual neurons are averaged
across neurons for each network and then grand averaged across networks.

To compute the time-resolved Fano factor in Fig. 7h and noise cor-
relation inFig. 7i,wegenerate 60 randomrealizationsof thenetwork; in each
realization, we conduct 50 trials for both the uncued and cued conditions,
respectively (3000 trials for each attention condition). During each trial, we
present two external inputs to the excitatory neuron group inV4 for 600ms.
These inputs are positioned at the center and corner of V4, i.e., ye1sti;1 =(0, 0)
and ye1sti;2 =(−32, −32), with an input contrast ce1sti;1 = ce1sti;2 = 0.25. The
interval between two successive trials follow a random distribution ranging
from800 to1500ms. For the cued condition, the reduction in the local spike
frequency adaptation at FEFbegins 2000msbefore thefirst trial andpersists
throughout the remaining trials.

The time-resolved Fano factor is computed using the mean-matching
method32. Briefly, in each network realization, we select a group of 80
excitatory neurons whose distance from the center of V4 (i.e., the center
input location) is <5 grid points. For each attention condition (uncued/
cued), we calculate the mean and variance of spike counts across trials for
each neuron in that group using a counting window of 50ms (sampled at
10ms intervals across the time course of the trial). For each time point, we
randomly sample a subset of neurons in away that themean spike counts of
the subset neurons at each time point and attention condition are
approximately equal. Subsequently, the Fano factor at each time point is
computed as the slope of the mean-variance relationship for the mean-
matched subset of neurons using linear regression. This mean-matched
random neuron subset sampling is repeated 100 times for each time point,
and the resulting Fano factors are averaged to obtain the final mean-
matched Fano factor. This analysis is conducted for each network realiza-
tion, and the average Fano factor across realizations is presented. To com-
pute the noise correlation, we select the same neuron group as in the Fano
factor analysis. Noise correlation is determined as the Pearson correlation
coefficient between the spike counts of twoneurons across trials.We employ
a spike counting window of 50 ms, sampled at 10 ms intervals throughout
the trial. For each timepoint,we calculate thenoise correlation for every pair
of neurons within that group. These correlations are then averaged across
neuron pairs to obtain the time-resolved noise correlation for each attention
condition within each network realization. The grand average noise corre-
lation across network realizations is presented.

Themathematicalmodel accounting for theattentionmodulation
of the neural variability and correlation
We consider a 2D plane with dimensions [−32, 32] × [−32, 32], matching
the size of each area of the spiking model, and we assume there are 4096
neurons uniformly distributed on this plane. The potential at position x is

ρðxÞ ¼
X
i

ρiðxÞ ð24Þ

where

ρiðxÞ ¼ ðDs;i þ Da;iÞ
k x � xp;i k2

σp
2

� 1

 !
; if k x � xp;i k <σp; ð25Þ

or

ρiðxÞ ¼ 0; if k x � xp;i k ≥ σp; ð26Þ

where xp,1 = (0, 0) and xp,2 = (-32, -32) are the coordinates of the potential
wells, σp=15 is thewidth of thepotentialwells,Ds,1 =Ds,2 = 50 is the depthof
the potential well contributed by the external inputs,Da,2 = 0 andDa,1 varies
from 0 to 50. The drift term b(xt) in the stochastic differential equations
Eq. (1) and (2) is defined as88:

bðxtÞ ¼ �∇ρðxtÞ
Γðα� 1Þ
Γðα=2Þ2 ; ð27Þ
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where xt is the coordinate of the random walker,∇ ρ(xt) denotes the gra-
dient of the potential landscape, Γ( ⋅ ) is the Gamma function, and the tail
index α = 1.2. The instantaneous firing rate r(x) of a neuron at x is

rðxÞ ¼ Are
�kx�xt k2

2σr 2 þ A0;
ð28Þ

whereAr=20Hz is the amplitude of theGaussian bump, σr=12 is thewidth
of the Gaussian bump, and A0 is the baseline firing rate. To simulate the
attention-related increase in the firing rate, we adjust A0 based on Da,1:

A0 ¼ Ab � 0:2Da;1

k x � xp;1 k2
σp

2
� 1

 !
; if k x � xp;1 k <σp; ð29Þ

or

A0 ¼ Ab; if k x � xp;1 k ≥ σp; ð30Þ

where Ab = 3 Hz is the baseline rate when the attention is absent.
The On states at the center of this mathematical model (Fig. 8b) is

defined as the period when the random walker xt is less than 10 grid
points from the center. To compute the Fano factor (Fig. 8c) and noise
correlation (Fig. 8d) in the mathematical model, we run 20 trials (200 s
for each trial) for each potential well depth Da,1 (from Da,1 = 0 to
Da,1 = 50). The initial position of the random walker is randomized for
each trial. To compute the Fano factor, we select 80 neuronswithin 5 grid
points from the center of the model and calculate the mean and variance
of spike counts over non-overlapping time windows across time (win-
dow length = 55 ms) for each neuron on each trial. The Fano factor for
each neuron is obtained by dividing the spike count variance by the
mean count. The Fano factor of each neuron is averaged for each trial
and then grand averaged across trials to produce the results in Fig. 8c. To
compute the noise correlation, we choose the same group of neurons as
that in the Fano factor analysis. Noise correlation is calculated as the
Pearson correlation coefficient of spike counts for neuron pairs over
non-overlapping time windows across time (window length = 55 ms).
We compute the noise correlation for all neuron pairs in that group for
each trial and then average them to get the mean noise correlation for
each trial, which is then grand averaged across trials (Fig. 8d).

Statistics and reproducibility
For our study of spiking circuit model, we randomly generate network
realizations by randomizing the initial membrane potential and the
synaptic connectivity. Analyses of On/Off states duration, On/Off states
firing rate, phase synchronization, communication subspace, transfer
entropy, and neural variability and correlation are performed on each
random network realization. The results from individual realizations are
then averaged, and differences between conditions (i.e., On/Off, uncued/
cued) are assessed using two-sided and one-sided paired t-test. The
standard error of the mean (SEM) and standard deviation (SD) are cal-
culated across network realizations. The number of realizations (sample
size) is stated in corresponding figure captions or main text, and the
simulation setup is specified in the Methods section above. For the
mathematical model, we run random trials by randomizing the initial
position of the random walker. Differences between groups are assessed
using two-sided unpaired t-test. The number of random trials (sample
size) is stated in corresponding figure captions. P-values < 0.05 are con-
sidered to be statistically significant. For our study of experimental neural
data, we present both individual data from a representative mouse and
cross-individual data froma selected set of ninemice (chosen according to
criteria specified in SupplementaryMethods 2).We report median values
and interquartile ranges for prediction performance across subjects, as
described in the figure captions.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Dataused in this studywill bemadeavailable upon request by contacting the
lead contact, Pulin Gong (pulin.gong@sydney.edu.au). The source data for
the figures is provided in Supplementary Data 1.

Code availability
Code for simulations andanalysis of the spikingneural circuitmodel and the
mathematical model is available at89 https://doi.org/10.5281/zenodo.
10959801(https://github.com/BrainDynamicsUSYD/Distributed_and_
dynamical_communication). Code for our analyses of experimental
recordings are openly available, on request.
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