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Assessment of social interactions and behavioral changes in nonhuman primates is useful for
understanding brain function changes during life events and pathogenesis of neurological diseases.
The common marmoset (Callithrix jacchus), which lives in a nuclear family like humans, is a useful
model, but longitudinal automated behavioral observation of multiple animals has not been achieved.
Here, we developed a Full Monitoring and Animal Identification (FulMAI) system for longitudinal
detection of three-dimensional (3D) trajectories of each individual in multiple marmosets under free-
moving conditions by combining video tracking, Light Detection and Ranging, and deep learning.
Using this system, identification of each animal was more than 97% accurate. Location preferences
and inter-individual distance could be calculated, and deep learning could detect grooming behavior.
The FulMAI system allows us to analyze the natural behavior of individuals in a family over their lifetime
and understand how behavior changes due to life events together with other data.

Behavioral analyses are important in broad research areas such as animal
and human biological, psychological, and ethological studies. In neu-
roscience research, behavioral analysis is one of the most important ana-
lytical methods for understanding changes in brain function during
development and aging and assessing disease development in animal
models. In particular, nonhuman primates are often used to study brain
function, and behavioral characteristics provide an indispensable source of
data for hypothesis testing1. The commonmarmoset (Callithrix jacchus) is a
small nonhuman primate with behavioral and social characteristics
resembling those of humans. They are diurnal, formmonogamous families,
engage in altruistic behaviors such as food sharing, and cooperate with all
family members to raise their youngest offspring2–4. As marmoset body size
and social units are small, maintaining similar to social units in the wild for
research laboratory is easier than that for other primates. Therefore, mar-
mosets are an ideal model for studying social behaviors in social units2.

To evaluate long-term behavioral changes due to physiological changes,
such as development, aging, and progression of disease using marmosets, it is
important to capture changes in behavior over a lifespan, and an analysis of
multiple marmosets under free-moving conditions is necessary to capture

changes in social behavior. Therefore, a novel system is required to detect and
quantify the individual behaviors of multiple marmosets under free-moving
conditions in real time, both automatically and accurately. Automated
behavior analysis in a home cage enables observations of more natural animal
behavior5–7. This analysis has the advantages of being able to ignore envir-
onmental condition, monitor social behavior inmultiple animals, and analyze
changes in social behavior over a relatively long period of time8.

The various systems used for analyzing animal behaviors under free-
moving activities include systems suitable for three dimensions (3D)
tracking and behavior classification (DANNCE9, FreiPose10, and
MarmoDetecotor11), for generating pose estimation (DeepLabCut,
SLEAP12, MARS13, DANNCE, FreiPose, and OpenMonkeyStudio1), for
analyzing behavior in home cages (DeepLabCut14,15, B-SoiD8, SLEAP, and
MARS), for analyzing multiple animals (DeepLabCut, MiceProfier16,
SLEAP, and OpenMonkeyStudio), for finding automatic classification of
behavior by unsupervised clustering (MoSeq17, B-SoiD, and FreiPose10), and
for use across animal species (DeepLabCut, DeepBhvTracking18, B-SoiD,
andDANNCE).These systemshavebeengenerally developed formice;only
DeepLabCut, DeepBhvTracking, DANNCE, and MarmoDetector11 have
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been adapted to marmosets, which move relatively quickly in 3D. A pre-
vious study used the pose estimation system to analyze the behavior of two
marmosets for 9 h using individual identification markers14. These analysis
systems have observed only a small proportion of an animal’s life and
longitudinal observation over each marmoset’s lifetime (15 years) or more
than months of observing a family have not been achieved. This is possibly
because automatically detecting marmoset trajectories, behaviors, and
interactions between individuals under free-moving conditions in multiple
animals is especially challenging. For example, marmosets are often close to
each other when grooming, mating, or fighting19. This proximity makes it
difficult to detect individual bodies, which complicates individual tracking
and behavior detection.

In this study, we developed a behavioral analysis system named Ful-
MAI (Full Monitoring and Animal Identification), that can record and
analyze behavior of an animal living among multiple animals over their
lifetime. The concept of this system is to detect changes in behavior over an
individual’s lifespan and understand the relation of changes in brain func-
tion. FulMAI is a 3D tracking system that uses cameras, light detection and
ranging (Lidar) devices, and deep learning to simultaneously track a mar-
moset family of three individuals in one cage. Furthermore, to take
advantage of stress-free behavior analysis in the home cage, we also devel-
oped a system for individual identification via facial recognition using deep
learning. The FulMAI system can analyze the location and the period each
animal stayed in the cage and the distance between individuals. Further-
more, the time spent in social behavior is an index for analyzing animal
interactions. Therefore, as an example of social behavior detection, we
developed automatic grooming behavior detection system using deep
learning. The technology developed in this study would be applicable in
detecting important behavioral changes caused by development, aging, and
various diseases in small, nonhuman model primates.

Results
Marmoset facial recognition by deep learning
Fivemarmosets of the samegeneration (1–2 years old)wereused to examine
whether deep learning for face identification could be adapted to marmo-
sets. These marmosets were kept in different cages in a conventional
breeding colony and facial images were collected individually. To evaluate
the trained models, other 500 facial images (100 for each animal) were
obtained from the videos not used for training. The evaluation metrics for
deep learning were as follows: specificity of 99.8–100%, accuracy of
99.4–99.8%, recall of 98.0–100%, precision of 99–100%, and an F-measure
of 98.5–99.5%(Table 1).Theoverall identificationaccuracy (total numberof
correct images/total number of images) of the five marmosets was 99.2%.

Subsequently, face identification accuracy was examined in a family of
three, that was raised in the set-up home cage. The trained model was
evaluatedusingdata thatwerenot used for training. For the evaluation, 5600
facial images (1400 for each class), three classes including each marmoset,
and an unknown class were used. The unknown class was used to exclude
inappropriate images, such as unclear images, images of the back of the head
and faces in profile, and images not showing faces. The evaluation metrics
for deep learning for individual identification were as follows: specificity of
98.7–99.7%, accuracy of 98.6–99.2%, recall of 96.1–98.8%, precision of

98.4–99.1%, and an F-measure of 97.3–98.3% (Table 2). The overall per-
centage of correct identifications was 98.0%.

Multiple animals’ 3D tracking
To optimize the Lidar for laser measurement and video recording, a part of
the cage made of metal mesh was replaced with acrylic panels, following
which suitablemeasurement results were obtained (Fig. 1a). The laser beam
distance needed to be sufficiently narrow and cover the entire cage; thus, the
Lidars were placed 1000mm from the front of the cage (Fig. 1b). The
overview of this system workflow is shown in Fig. 1c. The videos and Lidar
data were processed on the same PC, and acquisition times were perfectly
synchronized for at least 1 month. Yolo, an object recognition algorithm,
detected the marmoset’s face, body, actions, and environmental enrich-
ments (ball and hammock) in each video frame. Body coordinates were
combined with coordinates using Yolo and Lidar to calculate a short 3D
trajectory. Furthermore, the cropped face images were identified as indivi-
duals using a convolutional neural network, and individual IDswere applied
to the short-term 3D trajectories to achieve long-term (average 2.8min.) 3D
tracking of each individual. Behaviors were detected simultaneously with
the same Yolo model, and each animal’s behavior was linked to the nearest
marmoset ID. All 3D tracking and grooming behavior detection tests were
conducted using data from one family consisting of three marmosets
(I5072M/father (marmoset A), I5894F/mother (marmoset B), and I940M/
juvenile (marmoset C)) in a cage.

The 3D coordinate information of marmosets was obtained using
video tracking and Lidar (Fig. 2a–f, and SupplementaryMovie 1).While the
spatial resolution of Lidar was not enough to detect each marmoset and its
behavior, it was sufficient to detect the body and tail. Therefore, the cen-
troids of the point clouds were used as animal locations for 3D trajectory.

A raw image taken by the upper left video camera captured the entire
cage and the three marmosets (Fig. 2a), and the data was acquired by Lidar
simultaneously (Fig. 2b). The centroid of cluster by Lidar was indicated in
white points (Fig. 2b), and each point was given a sequential tracking ID
number during background processing. A new number was assigned each
time when the trajectory was broken. The 2D pixel locations of the mar-
mosets were then detected using an object detection algorithm (Yolov320) in
the video image (Fig. 2c). The same process was applied to the four cameras
to determine the locations of the marmosets for each camera. The 3D
location of each marmoset was calculated using pre-calibrated camera
positions and thepixel coordinates of themarmosets (Fig. 2d).The extracted
face images of marmosets by Yolo were identified using the trainedVGG19
model, and individual IDs were assigned to each marmoset by facial
recognition (Fig. 2e, f). These series of processed video data are shown in
Supplementary Movie 1. In some cases, the marmosets could not be
recognized by video tracking when theymoved too fast or behind an object.
In such cases, the trajectory was interpolated by Lidar (Supplementary
Movie 2, 3). Figure 3 shows 5min of tracking trajectories without face
identifications (Fig. 3a, b) and with face recognition (Fig. 3c). When Lidar
alone or Lidar and video tracking were performed, the tracking serial
numbers changed frequently, and it was impossible to continuously track
the individual (Fig. 3a, b). However, by combining face recognition with
Lidar and video tracking, the trajectory of each animal was continuously
detected, and marmoset IDs were assigned (Fig. 3c).

Table 1 | Classification accuracy of face identification in five
marmosets aged 1 to 2 years

Animal ID

I774 I6695 I6708 I6677 I893

Specificity 100.0% 99.8% 99.8% 99.8% 99.8%

Accuracy 99.8% 99.6% 99.4% 99.8% 99.8%

Recall 99.0% 99.0% 98.0% 100.0% 100.0%

Precision 100.0% 99.0% 99.0% 99.0% 99.0%

F-Measure 99.5% 99.0% 98.5% 99.5% 99.5%

Table 2 | Classification accuracy of face identification in a
marmoset family

Marmoset A Marmoset B Marmoset C Unknown

Specificity 98.7% 99.5% 99.7% 99.5%

Accuracy 98.7% 98.6% 99.2% 99.5%

Recall 98.8% 96.1% 97.6% 99.6%

Precision 96.1% 98.4% 99.1% 98.5%

F-Measure 97.4% 97.3% 98.3% 99.0%

https://doi.org/10.1038/s42003-024-05864-9 Article

Communications Biology |           (2024) 7:216 2



Trajectory analysis using the 3D tracking system
Using the results of 3D trajectories from this 3D tracking system, we ana-
lyzed where and for how long each animal stayed in the cage during the 1-h
period of the analyses (Fig. 4). This data indicated that marmoset A stayed
on the lower floor of the cage for 88.8% (23,642/26,626 frames) of the 1 h,
whereas bothmarmosetB andmarmosetC stayed on the lowerfloor for less
than 0.5% (128/25,597 and 12/24,234 frames) of the 1 h. In contrast, they
stayed onmiddlefloor for half of the 1 h and activelymoved in various areas
in the cage except the lower floor rest of the time (Fig. 4a–c, Table 3, Sup-
plementary Fig. 1). Furthermore, the individual distances were analyzed
using the location data (Fig. 4d). During this time, the distance between
marmoset C and marmoset B was less than 0.5m 25.9% (5044/19,501
frames) of the total time. However, a distance of less than 0.5m between
marmoset A-marmoset C andmarmoset A-marmoset B was detected 1.0%
(203/20,409 frames) and 2.2% (475/21,599 frames) of the time, respectively.
Conversely, the distance between marmoset B-marmoset C was more than
1m 2.0% (391/19,501 frames) of the time, whereas marmoset A-marmoset
C andmarmoset A-marmoset B were separated by more than 1m distance
20.0% (4081/20,409 frames) and 11.0% (2364/21,599 frames) of the time,
respectively. In this family, marmoset B and marmoset C spent more time
together than marmoset A.

The same analyses were performed on a different day during the
daytime, 7:00 am–7:00 pm. After 6:00 pm, all marmosets moved to the
bed, and clustered together and their faces were not observed; therefore,
the data were excluded from the analysis. The detailed analyses indicated
that, among the family members, marmoset C stayed on the lower floor
of the cage the longest, unlike the results of the 1-hour analysis (Sup-
plementary Fig. 2). The time spent on the lower floor of the cage between
7:00 am and 6:00 pm for each individual was 8.6% for marmoset A,
13.0% for marmoset B, and 23.5% for marmoset C. Throughout the day,
marmoset C spent the most time on the middle floor (27.7%), marmoset
A on the upper floor (29.7%), and marmoset B on the upper floor

(29.9%). Furthermore, locations of each animal were analyzed hourly for
12 h (Supplementary Figs. 2, 3). Marmoset A also spent most of his time
in the upper area in the morning (9:00 am; 54%), but gradually changed
his activity area to the middle area in the afternoon (1:00 pm; 51%) and
the lower area in the evening (4:00 pm; 45%). Marmoset B rarely stayed
in the middle area but moved to the upper section in the morning (9:00
am; 48%) and to the lower section in the afternoon (3:00 pm; 55%).
Marmoset C moved most evenly throughout the day among the three in
the cage. At night, all individuals moved to the upper bunk to their beds
(Supplementary Fig. 2).

The distance between the marmoset pairs was also analyzed
throughout the day. The results showed thatmarmoset A-marmoset Bwere
closer than 0.5m for 21.1% of the daytime. However, marmoset
A-marmoset C and marmoset B-marmoset C were closer than 0.5m for
19.6% and 16.7%, respectively. Additionally, the closest and farthest pairs
per hour switched frequently throughout the day (Supplementary Fig. 5).
Although a similar analysis was performed for 76 days, the maximum
continuous analysis period for this family was 35 days because of a down-
time period due to systemmaintenance (Supplementary Fig. 6a). In another
marmoset family, this systemran for 4months continuously andwas able to
obtain longitudinal data (Supplementary Fig. 6b).

Detection of grooming behavior
In this system, behaviors could also be detected using video data from the
two upper cameras in front of the cage (Supplementary Fig. 7a, b).
Grooming behavior, one of the representative social behaviors of marmo-
sets, excluding self-grooming behavior was detected. Training data on
grooming behavior were obtained through observations of video data by
skilled animal technicians. To increase the accuracy of grooming behavior
detection, situations in which marmosets were close to each other but not
grooming were rigorously classified by skilled animal technicians as non-
grooming images and eliminated from the supervised images. The model

Fig. 1 | Installation of hardware and software for
the FulMAI system. a A home cage with acrylic
panels on the front and back and metal mesh on the
sides. b Schematic diagram of light and ranging
(Lidar) systems and cameras installed in front of the
cage. Lidars and cameras were installed 1000 mm in
front of the cage. c The four videos were assigned
boxes and labels by Yolo. The face label parts were
used for face identification, and the body portion
was used for 3D tracking with Lidar centroid. The
same detector was also used to detect grooming
behavior. Finally, face identification and 3D tracking
were linked to obtain the 3D trajectory of each
marmoset and the 3D coordinates of the behavior.
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was trained by annotated data of the grooming positions in each video
frame. Excluding annotation time, 880 hwere spent on training. Creation of
a csv file after processing of four movie files took 8min. Face identification
took 20ms per process, and matching face identification to trajectory took
1min per 10-min video.

The coordinates of the grooming location and individuals were
detected by separately using the 3D tracking system, and determining
which individual performed the grooming. Grooming behaviors were
observed more often in the early morning (7:30–8:00 am), midday
(12:30–1:30 pm), and evening (3:30–4:00 pm, 5:00 pm), and all marmosets
performed grooming behaviors equally (Fig. 5a). All marmosets groomed
at fixed locations (Fig. 5b), namely the two upper areas of the cage. These
two locations were different from the sleeping area (Supplementary Fig. 3).

Accuracy verification of the 3D tracking system
To determine the accuracy of the 3D tracking system, marmosets were fitted
with colored belly band to identify each animal, and individual tracking was
conducted for 60min. Supplementary Movie 4 shows a portion of this
experiment and confirms that the system could track the marmosets accu-
rately even when they crossed. Although the marmoset cage had a swinging
hammock and balls as enrichment (Supplementary Movie 5), these move-
ments did not affect the tracking accuracy of the marmosets when using a
combination of video tracking and Lidar. During this experiment, the mar-
moset IDs switched to different IDs nine times formore than 5 s, but seven of
the nine ID switching events were resolved within 15 s. The maximum time
length for accurate individual tracking was 19min. Incorrect marmoset IDs
of longer than 5 s were exhibited over 4.6% of the total 60min.

Fig. 2 | 3D tracking of marmosets using Lidar and video tracking. a Raw video
frame. b Detected 3D coordinates of marmosets by Lidar. White point: centroid of
marmosets; white box: virtual space of the cage. cDetected location of marmosets in
video frame by Yolo. Rectangle: detectedmarmosets. dCalculated 3D coordinates of

marmosets by video tracking, colored point: coordinate of marmoset. e, f Individual
information added to (c) and (d) using face identification, green: marmoset A, red:
marmoset B, yellow: marmoset C.
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The accuracy of the 3D trajectory data analysis in detecting the posi-
tions of animals in cages was confirmed by comparing it with visual
observation data (Table 3, Supplementary Fig. 2). For example, in the visual
observations of an hour, the position of the animals was on the upper
wooden bed 9.4% of the time, on the middle floor 63.8%, on the lower
wooden bed 25.1%, on the lower floor 0%, and in the other areas 1.7% of the
time. Similarly, the system-analyzed data showed that the position of the
animals on the upperwooden bedwas 16.5%,middlefloorwas 52.6%, lower
wooden bed was 29.1%, lower floor was 0.1%, and other areas was 1.7%. A
strong significant correlation was found between the visual observation and
system data (R2 = 0.988, P < 0.01; Fig. 6a).

The accuracy of grooming behavior detection by the machine was
compared with that of visual observation for 1 h (Fig. 6b). Each 30-s video
was considered as one unit. Twenty-four grooming units were visually
detected, and 21 units were detected by themachine. Among these, 19 units
were detected by visual observation and machine (recall: 79.1%). In the
system, 19 of 21 units were confirmed as actual grooming behaviors (pre-
cision: 90.5%). The five missed units were difficult to detect because of the
placement of animals behind an object: four had marmosets grooming
behind the feeder, and one hadmarmosets grooming in the blind spot of the
bed. Conversely, two units were detected by the machine but not by direct
observation. During these events, the marmoset nuzzled its face into the
other’s tail or placed its hand on the other’s shoulder. These actions seemed
to be part of grooming behavior; however, observers did not judge them as
grooming behaviors because they were not typical grooming actions. In 1 h,
there were ten units during which the distances between marmosets were
close, and false positives were detected in only one unit, with a duration of
30 s (recall: 90%, Fig. 6b). The system also worked well in higher interaction
situations, such as grooming. A grooming situation is shown in Supple-
mentary Movie 6. The two animals were very close to each other and the
animal ID switched frequently, but both were involved in grooming. After
grooming, accurate individual identificationwas resumed as soon as the face
was visible, as shown in Supplementary Movie 4.

Discussion
In this study, we constructed the FulMAI system, an automatic 3D tracking
system for multiple marmosets under free-moving conditions, using an
approach that combines Lidar, video tracking, and deep learning face
recognition. These are all existing technologies, but this is the first study
combining them for 3D tracking ofmultiple unlabeled nonhuman primates

with relatively rapid movements in free-moving conditions. The FulMAI
system allowed us to analyze the natural behavior of individuals in a family
for a month. Lidar and Yolo, the object detection algorithm, were fast
programs that could be run constantly for a month with little delay. In
addition, Yolo’s lightmemoryusage and easy integrationwith other systems
will allow us to obtain more long-term and diverse data through well-
planned operations in the future. FulMAI is expected to record and analyze
longitudinal marmoset behavior and reveal what behavioral changes occur
within the same individual before and after life events.

In preliminary studies, we used metal mesh doors, but these reflected
the laser, and themarmosets’ location could not be detected. The cage doors
were changed toacrylic panels tomake themsuitable for the analysis (Fig. 1).
The cages can be divided into four compartments. As shown in Supple-
mentary Fig. 1, the system accurately tracked each animal even though the
cagewas divided. Therefore, the cage size can be changed to the extent that it
fits within the camera’s view. In contrast, thick poles should be avoided in
front of the cage because they increase blind space for both the camera and
the Lidar.

Although either laser or video data can be used as the primary data for
this system, we used video tracking as a base for detecting marmoset posi-
tions and then completed the missing information using Lidar, thereby
compensating for the lostmarmoset trajectory detections by video and false
recognitions by Lidar. Owing to its detection speed and resolution, Lidar is
suitable for application to fast-moving objects. However, it falsely recog-
nizedobjects thatwere similar in size to amarmoset, such as amarmoset tail,
feeder boxes, or colored balls. On the other hand, a hammock in the family
cage, which was included as an environmental enrichment and was not
firmly fixed to the cage, was not mis-detected by either Lidar or video
because of the differences in size and shape from those of themarmoset, and
it did not affect the tracking of themarmosets. Video tracking does not have
this issue because it uses color image data to identify objects (Supplementary
Movie 5). However, video tracking lost detection when marmoset motion
was quicker than the camera’s shutter speed or when the marmosets were
behind obstacles (Supplementary Movie 2, 3). By compensating for the
respective shortcomings of Lidar and video tracking and using each to
complement the trajectories of the other, a tracking system for small, high-
speed objects in three dimensions was realized. In addition, because both
Lidar and video tracking can be processed at high speed without a time lag,
data is not accumulated for subsequent analysis, which is favorable for
longitudinal analysis. Indeed, the 3D trajectories and grooming behaviors of

cba

MarmosetA

MarmosetC
MarmosetB

Fig. 3 | 3D position trajectory of a marmoset over a period of 5 min. aMarmoset
trajectories analyzed by Lidar. White points indicate centroid of marmosets. b Lidar
and video tracking. Different colors were assigned to each tracking serial number

that numbered the background. c Lidar and video trajectory tracking combined with
face recognition. Green: marmoset A; red: marmoset B; yellow: marmoset C.
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threemarmosets could be continuously analyzed in their home cage for over
1 month without data accumulation (Supplementary Fig. 6a). The animals
were healthy throughout the experiment and had no apparent dysfunction
caused by Lidar, proving the safety of our system. Although a similar 3D
tracking system using Kinect or cameras has been reported for various
animal species, includingmarmosets1,11,14,15,21,22, noneof the existingmultiple
3D tracking systems have achieved such a continuous analysis for a month.
Supplementary Movie 1, 4, and 5 show the same marmoset analysis data
from the continuous FulMAI data at 5-month intervals. Yolo was trained
only the first time during this period, and continuously obtained 3D
trancking data without any ploblems. In addition, tracking information
could be obtained for several consecutive months (Supplementary Fig. 6).
Therefore, Yolo and Lidar are thought that nomaintenance is required. On
the other hand, face identification required monthly training. FulMAI
would be able to analyze longitudinal behavioral changes over each mar-
moset’s lifetime in the family. One of the advantages of FulMAI is the
flexibility in terms of cage size and structure as long as acrylic panels are
located in front of the camera and Lidar, and it can be applied to a wide
variety of animal species. This system would also be useful for other animal
species that move as quickly as marmosets in 3D, such as tamarins, free-
swimming fish, and quick-flying birds and bats.

Our system successfully tracked multiple marker-less marmosets for
the first time, which is another advantage of our system over existing sys-
tems. The color marking causes animal stress because it requires capture or
anesthesia, and periodic hair dyeing requires time and effort, which is
unsuitable for analyzing marmosets’ behaviors in the long-term. The face
identification ofmarmosets, whichwewere able to achieve for the first time,
can also be undertaken independently and can be applied to other motion
analysis systems, such as DeepBhvTracking18.

When marmosets are kept as a family, they repeat the behavior of
huddling and then suddenly dispersing several times a day. By this char-
acteristic behavior, individual traceability is lost from the trajectory.
Therefore, we combined our system with facial recognition, using deep
learning to detect and track each animal in a family group, since the most
distinctive feature of the marmoset’s body is its face. Usually marmoset
individual identification is performed usingmicrochips, hair clippings, hair
dyes, or necklaces23. Microchips and necklaces are unsuitable for MRI
analysis, hair clippings and hair dyes require periodic maintenance, and
necklaces pose the risk of tightening around the neck as they grow or of
getting caught. In one part of this study, the marmosets were fitted with
colored belly band for visual tracking, but marmoset B seemed uncomfor-
table with the band and was constantly fidgeting with it. Thus, artificial

MarmosetA MarmosetB

MarmosetC

a b

c d

)m()m(

(m)

(m)

MarmosetA-B

MarmosetB-C
MarmosetA-C

Fig. 4 | Place preference of marmosets over a period of 1 h. Color map of the time
spent bymarmosets in the cage for 1 h (a–c). Locationswheremarmosets spentmore
than 1% of 1 h are shown in red, and others are shown as color bars. amarmoset A,
(b) marmoset B, (c) marmoset C. d Histogram of the distance between each family

member. Blue bars indicate the individual distances between marmoset A and
marmoset C, orange bars indicate the individual distances betweenmarmoset B and
marmoset C, and green bars indicate the individual distances between marmoset A
and marmoset B.
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markers have the risk of causing unexpected behavioral changes. Therefore,
one of the goals of this study was to achieve marker-less identification of
individuals.

The marmoset family used in this study had no blood relationships
with other familymembers since the juveniles (marmoset C) were obtained
by an embryo from another embryo donor pair andwas transferred into the
female’s uterus (marmoset B; foster mother)24,25. Regarding facial identifi-
cation, themost accurate results within the family were those for marmoset
C (Table 2). Although marmoset C was beyond sexual maturity, younger
animals have easily identifiable distinctive facial features. In addition, when
using five animals of the same age (1–2 years old), the animals could be
individually identified; therefore, highly accurate classification is possible by
facial recognition even when the animals are of similar age (Table 1).
Incorporating facial recognition results into the trajectory enabled long-
itudinal tracking, even for multiple animals in the same cage (Fig. 3). We
examined the accuracy of marmoset tracking using this system by color
labeling the marmosets and comparing this to visual tracking (Supple-
mentary Movie 4, Table 3). This experiment confirmed that it is possible to
track animals using facial recognition with 95% accuracy, without labeling
marmosets or relying on color information.

In addition, using the 3D coordinates data, this system could calculate
where each animal stayed in the cage, for how long it stayed (Fig. 4a–c,
Table 3, Supplementary Figs. 2, 3, 4), and the distance between individuals
(Fig. 4d, Supplementary Fig. 5), which suggests interactions between indi-
viduals.Although switchingof themarmoset IDswasobserved several times
during the hour-long experiment, results of visual observations and system
analysis for where each marmoset existed in terms of 3D coordinates in the
cage, and how long eachmarmoset spent in that area were highly correlated
(R2 = 0.988, Fig. 6a, Supplementary Fig. 2). This indicated that the slight ID
switching did not affect the experimental results, and our tracking system
was sufficiently accurate for automatically analyzing marmosets’ 3D coor-
dinates in the cage.

Marmosets often change their preferred position and the individuals
that they spend time with during the day. For example, the marmoset A
preferred the upper area in the morning, but in the afternoon, it preferred
the lower bed. This result was not apparent in the 1-h analysis compared
with observations. Furthermore, 1-h and 12-h analyses of position in the
cage and distance between marmoset individuals showed different results.
For example, a 1-h analysis showed that marmoset A preferred the cage’s
lowerfloor and remained there 80%of the analysis time (Table 3).However,
a 12-h analysis indicated thatmarmosetC spent the longest time (23.5%) on
the lower floor (Supplementary Fig. 3, 4). The analyses of the distance
between individuals showed that marmoset B-marmoset C were within
0.5m for 25.9% of the 1-h analysis, but the 12-h analysis indicated that the
marmosetA-marmosetB remained closer thanmarmosetB-marmosetCor
marmoset A-marmoset B. These results suggest that the results based on
human observation for a limited time and those based on machine obser-
vation throughout the day may differ. Indeed, when we directly observed
this family, marmoset A and marmoset B were usually far apart, but a 12-h
analysis suggests that the marmoset A and marmoset B spent time close
together.Therefore, it should alsobe considered that people’s presence alters

marmoset behavior. To accurately understand marmoset behavior, it is
necessary for the behavior analysis system to constantly analyze a mar-
moset’s life with the same evaluation criteria. Our 3D tracking system can
continuously analyze animal positions and distances between individuals.

In addition, some marmoset facilities, to provide more space or dif-
ferent environments for marmosets, occasionally connect adjacent mar-
mosets’ cages26. In this study, an extra cage was connected to the home cage.
When amarmoset went off-screen due tomovement to the connected cage,
the tracking of the marmoset was temporarily interrupted. However, other
marmosets continued to be tracked, and no other individual was tracked
instead of the missing marmoset (Supplementary Movie 7). Tracking was
resumed when the marmoset returned to the cage.

Grooming, a typical social behavior, was detected through deep
learning using video analysis. The detector was Yolo, the same one used for
the3D tracking.Comparingdetectionof the groomingbehaviorusing visual
observation by humans and the system showed that grooming behaviors
were detected with high precision (90.5%) and recall (79.1%; Fig. 6b). In
some cases, the system identifiedbehaviors just before or after the grooming
as grooming behaviors. The deep learning systemmayhave detected certain
behaviors that might be unique to periods before and after grooming.
However, in other cases, grooming behavior could not be detected by the
deep learning system because the groomers were located in the camera’s
blind spot. Therefore, the training datasetmust be further updated to detect
behavior behind obstacles. Combining the 3D tracking with the grooming
behavior detection by deep learning, this system could reveal when and
where each marmoset displayed grooming behavior using accurate quan-
tification, and the social relationships among the animals (Fig. 5 a, b). The
12-h grooming behavior analysis in this study indicated that grooming
behavior was found to occur at specific locations: upper beds and floor, and
at specific times: early morning, midday, and evening. This finding was
obtained exclusively using automatic behavior analysis. While there are
existing methods for automatically detecting the behavior of a single
animal27, for thefirst time, our systemwas able todirectly detect thebehavior
of multiple animals in captivity and identify the individuals and their
locations. We aim to identify a variety of behaviors for analyzing lifelong
behavior changes. To find unpredictable unknown behavior, clustering by
unsupervised learning would be necessary. For unsupervised learning, it is
necessary to analyze the videos of each individual or to create a skeletal
model of eachmarmoset and analyze themovement of each key point. Our
study is expected to further develop in the future because of its ability to
detect accurate 3D location linked to each individual. For more flexible
behavior extraction, this systemwasmade of Robot operating system (ROS)
and is extensible to incorporate other Python-based projects, such as Dee-
pLabCut, DeepEthogram28, and Tweetynet29. Because all animal activities
are recorded in the FulMAI, each animal behavior in this home cage can be
analyzed retrospectively in detail. By comparing with other data, such as
imaging, blood biochemistry, or biomarker data, it is also possible to analyze
the behavior of model animals from multiple perspectives without over-
looking changes in behavior associatedwith the life events of brain function
changes or the onset of disease.

Moreover, Lidar can track the animal locations day and night; there-
fore, their nocturnal behavior can be observed to obtain primary data. Our
preliminary data showed that the combination with a Lidar and starlight
camera can capture details of nighttime behavior in a dark room (Supple-
mentaryMovie 8). Sleep disorders have recently been reported as predictors
of Alzheimer’s disease and Parkinson’s disease30,31. Recently, we have
established two kinds of Alzheimer’s diseasemodels25 and expect to observe
sleep disorders with this Lidar and starlight camera system.

RecentlyCalapai et al. reported a touchscreen-basedcognitive auditory
analysis system that allows marmosets to perform tasks in a free-moving
environment in a paired home cage32. By incorporating such a freely
operable cognitive function task device into our system, it is possible to
provide a behavior analysis system that comprehensively and continuously
analyzes the marmoset’s natural behavior, activity, and cognitive functions
without inducing stress.

Table 3 | Comparison of visual observations and the system
analysis of time spent in specific locations in the cage for
an hour

Marmoset A Marmoset B Marmoset C

Human System Human System Human System

Upper bed 0.4% 0.6% 10.7% 16.5% 9.4% 16.5%

Middle floor 0.3% 0.6% 38.8% 52.6% 63.8% 52.6%

Lower bed 8.8% 8.9% 41.8% 29.1% 25.1% 29.1%

Lower floor 90.3% 88.8% 0.5% 0.5% 0.0% 0.1%

Other 0.2% 1.11% 8.2% 8.2% 1.7% 1.7%
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In conclusion, the combination of Lidar, video tracking, and facial
recognition enabled successful simultaneous tracking of eachmarmoset in a
familywithout artificial labeling.Using data from the 3D tracking systemwe
developed, we could measure 3D coordinates, movement trajectories, the
quantity of activity, position in the cage,when, and forhow long each animal
stayed, distances between individuals, and time spent in grooming behavior.
These measurements will allow automated analysis of activity and behavior
under free-moving conditions throughout themarmoset’s lifetime, enabling
quantitative analysis of “when,where, andwhat” each animalwas doing and
capturing behavior changes in development, growth, aging, and disease
onset or progress.

Materials and methods
Hardware setup
The home cage was made of acrylic panels on the front and back, and all
food dishes, water jugs, and bedding inside the cage were fixed to a wire
mesh on the side to prevent them from moving. This cage was designed to
conduct behavioral analysis in amarmoset’s home cage (Fig. 1a). Four poles

were set up in front of the cage at 1000mm, and four Lidars (VLP-16,
Velodyne Lidar, San Jose, CA, USA) and four cameras (C920, Logitech,
Lausanne, Switzerland) were fixed to the poles (Fig. 1b). The Lidar utilizes a
903 nm infrared laser light, which is eye-safe (Class I laser) and a reported
range detection of up to 100meters. The Lidar was controlled by motion
measurement software, the path traced, and velocity of the marmosets
recorded (Hitachi, Ltd, Tokyo, Japan.). The lower Lidar was set at 0.9m
height and theupper Lidar at 1.9 mheight. The distance between the left and
right Lidar devices was 0.3m.

The laser beam of the Lidar was irradiated radially and adjusted to
cover the entire interior area of the cage. The recording parameters of the
cameras were 1080p and 60Hz, and all cameras were adjusted to show the
entire cage (Supplementary Fig. 7). The positions of the cage, Lidar, and
cameras were calibrated when the cage was moved, and the interiors were
changed. Lidar calibration was used to acquire background information,
including the cage interior without marmosets. Calibration of the camera
wasperformedbydetecting alco-markers at the four corners of the cage.The
specifications of the PC used to operate and record the camera and Lidar

a

b
(m)

MarmosetA
MarmosetB
MarmosetC

MarmosetA
MarmosetB
MarmosetC

Fig. 5 | Detection of grooming behavior for a day. a Number of grooming behaviors detected per day. Bars show the number of frames detected each 5 min. b The 3D
coordinates where the grooming behavior of each individual was detected are shown. Green indicatesmarmoset A, blue indicatesmarmoset B and red indicatesmarmoset C.
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were corei7, RTX1060, 32GB. PC specifications used for analysis were
corei7, RTX3090, 64 GB.

Ethical approval
This study was conducted at the animal facility of the Central Institute for
Experimental Animals (CIEA), Kawasaki, Japan. The animal experimental
protocolwas reviewed by the InstitutionalAnimalCare andUseCommittee
and approved (approval no. 17051) according to theRegulations forAnimal
Experiments in CIEA, based on the Guidelines for the Proper Conduct of
Animal Experiments by the Science Council of Japan (2006).

Animal facilities
The marmosets were kept in a family cage with dimensions of
820 × 610 × 1578mm.Although therewas only onemarmoset family in the
room, they were able to vocally communicate with the marmosets in other
rooms. All cages were equipped with a bunk, and the animal rooms were
adjusted to 26–28 °C temperature, and 40–60% humidity with a 12:12 h
light/dark cycle. The animals tested negative for Salmonella spp., Shigella
spp., and Yersinia pseudotuberculosis on annual fecal examination. The
study animals were inspected 9 months before the study.

Animals
Each marmoset family was housed in a home cage. The observed family
consisted of amale (marmoset A, 10 years old), female (marmosetB, 6 years
old), and a juvenile (marmoset C, 1 year old). No artificial or non-artificial
physical features were used for individual identification, such as hair dye,
necklaces, piercings, or other visible signs, except during 3D tracking of
marmosets during the color marker experiments. In conventional animal
care, a microchip is implanted subcutaneously for individual identification.
The individual marmoset C was born by embryo transfer to the mother’s

uterus25, and there was no blood relationship within the third degree of the
family.

Five healthy marmosets ~1–2 years old, one male and four females,
were used in the preliminary study to develop deep learning facial recog-
nition (I774 1 year old, I6695 1 year old, I6708 1 year old, I6677 1 year old,
and I893 2 years old). There were no artificial or visible physical char-
acteristics, such as hair dye, necklaces, or piercings, and eachmarmoset was
not related to any other marmoset within the third degree of kinship.

Facial recognition
The cage (W820 ×D610 ×H1578 mm) was divided into four compart-
ments to isolate each marmoset for obtaining training images by video
camera. Each animal was housed in a separate cage, and videos were
recorded from the cage front for 3–6 h. The front door of the cage was then
replaced with clear acrylic panels. From these video frames, the face images
were cropped only in the face area for the training images, and these data
were augmented by rotation. Using 1400 facial images in each class for
training, frontal images of the face were classified into four or five classes
using the VGG19 model network. In the preliminary test, the five classes
comprised five marmosets. For the family group, the four classes included
those members and an unknown class to exclude images inappropriate for
classification, and 1000 images were used for training.

Model training was performed by fine-tuning a pre-trained VGG19
model (learning rate 0.001, fixed number of layers 12, BATCH_SIZE 32)33

(SupplementaryData 2).VGG19 is a networkmodel proposedby theVisual
GeometryGroup at theUniversity ofOxford in 2014 that obtained accurate
classificationperformanceon the ImageNet dataset. Thepre-trainedmodels
used in this studywere trained using the ImageNet dataset. For longitudinal
analyses, trainingdata collection and trainingwereperformedonce amonth
to update the model.
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Fig. 6 | Comparison of human visual observations and the system. a The time the
marmosets stayed in a particular locationwas compared between visual observations
and those by the system. The marmosets stayed in four locations: upper bunk,
middle floor, lower bunk, and lower floor. Dotted lines indicate regression lines.

b Each cell represented 30 s. Blue cells: Visual observation detected grooming at least
once in 30 s. Yellow cells: Visual observation detected the close distance between two
marmosets. Red cells: The system detected grooming by the intensity exceeding a
threshold value.
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3D tracking
Lidar and video tracking performed 3D tracking. A Lidar measures
the distance to an object by irradiating a laser and analyzing the reflected
laser. Marmoset detection using Lidar involves the following steps: back-
ground information removal, clustering, and selection of marmoset
clusters34. Background removal was performed during calibration. The
observed points were moving points belonging to objects whose spatial
positions changed and static points from the background environment.
Marmosets were then selected from among all the moving clusters.
The Euclidean cluster extraction algorithm was used for clustering, with
a minimum cluster size of S1 and maximum cluster size of S2
(S1: 100mm, S2: 500mm)35. The centroid of the cluster is regarded as
the position of the marmoset for tracking. Three-dimensional video
tracking was performed using four time- synchronized video cameras. The
positions of the whole body and head of the marmoset were detected in
each video frame using Yolo, an object detection algorithm, and the 3D
position was calculated from each camera information20. The Yolo model
was trained using 1164 images in which the whole body and head area were
annotated (learning rate: 0.0003, momentum: 0.9, batch: 64). For tracking,
the primary information used was the 3D video tracking coordinates, and
the information was supplemented with Lidar coordinates when video
coordinates were missing. When the primary video information was lost,
the system searched for available Lidar coordinates close to the coordinates
just before the location was lost and switched to Lidar tracking.When Lidar
coordinates were available, continued tracking was undertaken using only
Lidar. When the camera re-detected the coordinates, the tracking
was switched back to the camera again. The switchingwas set to occurwhen
the coordinate relationship between the camera and Lidar coordinates
was fixed.

The program for linkage between video tracking and Lidar for indi-
vidual information was produced by Hitachi, Ltd.　When the marmoset
coordinates were detected outside the cage, they were considered asmissing
values.

Detecting grooming behavior
The software Yolo was used to detect grooming behavior. A total of 252
annotated image files in which groomingmarmosets were surrounded by a
minimum rectangle were prepared as training images, and the model was
trained using the dataset. Grooming images were strictly categorized by
skilled animal technicians to exclude situations in whichmarmosets did not
groom. The trained model analyzed the top two camera view images and
detected grooming behavior in each video frame. To improve the accuracy
by removing noise, a Gaussian-weighted moving average of 50 s window
and 5 s slidewas applied to the frequency of grooming occurrence each time
to create the probability distribution of grooming occurrence. The same
process was performed for the left and right cameras and the calculated
probability distributions were averaged.When the average value exceeded a
certain threshold, grooming was considered to have occurred (Supple-
mentary Data 2). To test the accuracy of this detection system, skilled
breeding staff visually detectedmarmoset grooming in 1 h of video that was
not used for training data. This visual result was used as the true label, and
the accuracy and repeatability of grooming detectionwere calculated in 30 s
increments of time. Because grooming was analyzed with two cameras, it
was possible to link location and time. Grooming locations were calculated
using the same method as used for video tracking. The grooming time was
based on the video file.

Statistical analysis
Pearson’s correlation coefficient was calculated using GraphPad Prism
version 9 (GraphPad Software, La Jolla, CA, USA).

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
All source data for the graphs are present in Supplementary Data 3. Addi-
tional data are available from the corresponding author on reasonable
request.

Materials availability
Information and requests for the program for linkage between video
tracking and Lidar should be directed to and will be fulfilled by Norio Goda
(norio.goda.ws@hitachi.com). Requests for other resources and informa-
tion should be addressed to Erika Sasaki (esasaki@cieea.or.jp).

Code availability
The readily tested code and data have been presented in the Supplemental
Information (Supplementary Data 1, 2).
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