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Eigenmode-based approach reveals a decline in
brain structure–function liberality across the
human lifespan
Yaqian Yang1,2, Shaoting Tang 2,3,4,5,6,7,8✉, Xin Wang 2,3,4,5,6,7✉, Yi Zhen1,2, Yi Zheng 1,2,

Hongwei Zheng9, Longzhao Liu2,3,4,5,6,7 & Zhiming Zheng2,3,4,5,6,7,8

While brain function is supported and constrained by the underlying structure, the

connectome-based link estimated by current approaches is either relatively moderate or

accompanied by high model complexity, with the essential principles underlying structure-

function coupling remaining elusive. Here, by proposing a mapping method based on network

eigendecomposition, we present a concise and strong correspondence between structure and

function. We show that the explanation of functional connectivity can be significantly improved

by incorporating interactions between different structural eigenmodes. We also demonstrate

the pronounced advantage of the present mapping in capturing individual-specific information

with simple implementation. Applying our methodology to the human lifespan, we find that

functional diversity decreases with age, with functional interactions increasingly dominated by

the leading functional mode. We also find that structure-function liberality weakens with age,

which is driven by the decreases in functional components that are less constrained by anat-

omy, while the magnitude of structure-aligned components is preserved. Overall, our work

enhances the understanding of structure-function coupling from a collective, connectome-

oriented perspective and promotes a more refined identification of functional portions relevant

to human aging, holding great potential for mechanistic insights into individual differences

associated with cognition, development, and neurological disorders.
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The human structural connectome promotes communication
among distributed cortical regions, giving rise to richly
patterned neural synchrony that is thought to support a wide

range of cognitive functions and behaviors1,2. Characterizing the
relationship between brain structure and function is a fundamental
question in neuroscience, which is instrumental for understanding
how cognitive processes emerge from the underlying anatomical
pathways and for advancing the treatments for neurological and
psychiatric diseases3. With the development of network science and
imaging techniques, brain structure–function relationships are
increasingly investigated using macroscale structural connectivity
(SC) and functional connectivity (FC) networks4,5, which char-
acterize the physical pathways and temporal synchrony between
brain regions, respectively. A number of studies6–8 have shown that
there exists a significant correlation between these two measures,
where SC appears to act as a skeleton that constrains FC.

Multiple models have been proposed to explore how the FC
network is coupled with the SC network, ranging from the simplest
one-to-one mapping9 using statistical correlations to more
sophisticated biophysical models10,11 that derive functional con-
nectivity from large-scale simulations of neural activity dynamics.
Communication models12,13 fall between these two extremes,
where functional connectivity is conceptualized as a weighted
superposition of communication events over the structural net-
work, with the forms of communication ranging from the shortest
path routing (centralized) to signal diffusion (decentralized)14. This
approach achieves higher accuracy than the direct correlation
method and lower complexity than the biophysical models, and as
a result, become increasingly common in SC-FC mapping studies.
Besides, another appealing tool for SC-FC mapping is the eigen-
mode approach15,16. This approach exploits a simple linear model
that represents the FC network as a weighted combination of
structural eigenmodes but achieves a high prediction accuracy
comparable to sophisticated nonlinear models. These eigenmodes
summarize structural connectivity into frequency-specific spatial
patterns, opening an avenue to explore structure–function rela-
tionship by decomposing functional signals into the eigenspectrum
of the structural connectome17–19.

In addition to modeling advances, structure–function rela-
tionships have also been applied to investigate the effects of
cognitive tasks20,21, lesions22,23, neurological disease24,25, devel-
opment, and aging26–28. As one of the main goals of SC-FC
mapping models is to capture the essential principle of how
structure and function are related, a natural expectation is that
the estimated structure–function relationships would exhibit
behavioral relevance and could reflect the effects of manipulations
and perturbations29. Indeed, some recent studies have revealed
associations between SC-FC correlations and various cognitive
traits. One such study shows that increased alignment between
structure and function is related to better cognitive flexibility20.
Other studies suggest that weaker SC-FC coupling is related to
increasing awareness levels25 and better recovery after severe
brain injury23,30. Moreover, the strength of structure–function
coupling is demonstrated to be heritable and to vary with sub-
jects’ sex and age26–28,31.

Although SC-FC mapping has been fruitfully investigated and
widely applied, the current literature is subject to the relatively
moderate correspondence between brain structure and function.
SC rarely explains more than 50% of the variance in empirical
FC29, which implies that, to a great extent, the mechanisms
underlying the formation of functional connectivity remain elu-
sive. Recently, a unified framework15 for eigenmode approaches
reports that none of the tested models with structural inputs
could outperform a reference mapping that simply returns
the group-average FC matrix. This contrasts with the intuition
that mappings using variations in structural connectivity could

provide additional information not captured by the mean,
implying that inter-individual variability may not be adequately
captured. Another study28 comparing a large number of com-
munication models shows that whole-brain FC is poorly pre-
dicted from the structure in individuals, irrespective of predictors.
As strong alignment between predicted and empirical functional
networks appears desirable to ensure the fidelity of the captured
information, this modest explanatory power is unfavorable for the
refined investigation of structure–function relationships and
for further applications to individual differences associated with
behavior and cognition.

Why this imperfect link between SC and FC? There exist two
intriguing hypotheses. The first one is that the relationship
between SC and FC may itself be decoupling to some extent.
Several studies on regional structure–function relationships have
shown that structure and function are tightly coupled in primary
sensorimotor cortex but decoupled in polysensory association
cortex32,33. This gradual divergence closely follows representa-
tional and cytoarchitectonic hierarchies, in parallel to a functional
gradient34 that associated cortical organization with a spectrum of
increasingly abstract cognitive functions, raising a possibility that
the observed structure–function divergence may be a funda-
mental property of the brain organization. The alternative
hypothesis is that SC and FC may be tightly coupled but current
models leave out information requisite for precise prediction.
Multiple studies have revealed the important roles of micro-
structural properties in functional interactions35–37, and the
explanation of function is improved by incorporating information
on gene co-expression38, raising the possibility that SC-FC cor-
respondence could be enhanced by more nuanced models that
encompass biological details. Indeed, recent studies39,40, using
the machine learning approach and high-frequency eigenmodes,
have enhanced structure–function coupling. Nevertheless, high
accuracies of these approaches often come with high execution
time and model complexity, and the essential principles of the FC
organization are still unclear.

Therefore, whether, and if so, how to establish a simple and tight
link between SC and FC remains an important unsolved issue in
the investigation of structure–function relationships. Here, we
attempt to shed light on this question with a mapping approach
that interprets the essential pattern of functional interactions in the
context of the structural eigenspectrum. Different from the pre-
vious SC-FC mappings that keep the interregional connectivity
central, our approach concentrates on the inherent patterns of
brain functional interactions, which not only effectively reduces the
complexity of the mapping procedure but also may yield improved
robustness against weak spurious connections induced by noise41.
In this way, we aim to provide a concise and accurate quantification
of brain structure–function relationships and show how SC-FC
coupling changes over the human lifespan by applying the captured
individual-specific information. Our analyses are organized as
follows. We begin by presenting the proposed SC-FC mapping,
analyzing both whole-brain and regional SC-FC coupling, and
comparing the performance with the eigenmode approach and
communication model. We then examine additional information
not captured by the mean in terms of whether the subject-specific
SC-FC mapping outperforms the mean FC mapping. Finally, we
analyze how SC-FC relationships evolve across the human lifespan.

Results
SC-FC mapping through structural and functional modes. As
illustrated in Fig. 1, the eigendecomposition of the SC network
provides a set of eigenvectors sorted in decreasing order of their
eigenvalues, representing distinct inherent modes of the structural
connectome. The alignment of these eigenmodes with respect to
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the anatomical connections is informed by their eigenvalues,
characterizing to what extent the structural modes are organized
aligned to or deviate from the underlying structural network20.
Typically, the eigenvalue will be positive if the corresponding
structural mode is strictly constrained by the underlying struc-
tural connectivity and negative if the structural mode is mis-
aligned with anatomy (Fig. 1a; see Methods). We employ these
mutually orthogonal structural eigenvectors as a parsimonious
basis for the empirical FC network, which is also decomposed
into its constituent eigenmodes. The functional eigenvalues reflect
the contributions of corresponding functional modes to the FC
formation, with larger values indicating greater contributions42.
As shown in Fig. 1b, one can notice that this distribution is far
from uniform and that the FC network is dominated by a few
functional modes with large eigenvalues. Accordingly, we
approximate the observed FC by its most contributing functional
mode (i.e., the one with the largest functional eigenvalue) that is
expressed as a linear weighted combination of structural eigen-
modes to construct a concise mapping between SC and FC net-
works. The predictors are structural eigenmodes. The observation
is the FC network that is approximated by the most contributing
functional mode. Parameters can be easily evaluated in a closed-
form manner (see Methods). Of note, while we focus on the
leading functional mode here, further work could naturally
incorporate more functional modes into the proposed SC-FC
mapping and tune the balance of prediction accuracy and com-
putational complexity according to the tasks. See Supplementary
Note 1 for more details.

Given that the structural eigenspectrum is used to form a
basis for FC prediction, we attempt to understand the structural

eigenmodes that highly contribute to functional interaction
patterns. To this end, we measure the contributions of individual
structural eigenmodes to the first three functional eigenmodes,
which are quantified by the square of weights obtained from the
decomposition of functional modes into the structural modes43.
As shown in Fig. 2a and Supplementary Fig. 1b, one can notice
that brain functional modes are preferentially expressed by
anatomy-aligned SC eigenmodes, i.e., those with large positive
eigenvalues. We then display the physical distribution of the first
four SC eigenmodes (Fig. 2b and Supplementary Fig. 1a and c).
We find that the first four SC eigenmodes exhibit relatively low
spatial frequencies. Specifically, we observe several main geome-
trical axes along which values associated with nodes vary (e.g.,
center-peripheral, anterior-posterior, anterior-middle-posterior,
and left-right). We next calculate the alignment of SC eigenmodes
with respect to structural edges within different distance bins
(Methods) and find that the anatomy-alignment of the first four
SC eigenmodes is predominately expressed by the organization of
short-distance connections (Fig. 2c, d). Furthermore, to deter-
mine whether the spatial patterns of these structural modes are
circumscribed by different functional systems, we assess their
similarity to seven resting-state functional networks proposed by
Yeo et al.44. Since an eigenmode is essentially identical under sign
reversal, we utilize the absolute Pearson R. As a control, we
perform a spin test45,46, in which we randomly rotate the nodes’
spatial locations while preserving brain spatial covariance
structure (10,000 repetitions). We find that the 2nd structural
eigenmode exhibited statistically significant similarity to somato-
motor and default mode networks (Fig. 2e, FDR-corrected
p < 10−4). We also associate structural eigenmodes with the first
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Fig. 1 Method pipeline. Through the eigendecomposition of the structural network, we obtain a series of eigenmodes sorted in decreasing order of
eigenvalues. The magnitudes of eigenvalues indicate the degree to which structural modes align with the underlying anatomy, with the large positive values
corresponding to strict alignment and negative values corresponding to the deviation from SC. a illustrates a notion of the alignment of structural
eigenmodes with respect to the underlying anatomical network. Vj1

indicates an anatomy-aligned structural eigenmode in which the values associated with
nodes, represented by the directionality of the red arrows, align with that expected by the organization of anatomical connectivity. That is, highly connected
regions possess similar values. In this toy example, connected brain nodes n1 and n2 contain values of the same signs. Vj2

indicates an anatomy-deviated
structural eigenmode in which the values associated with nodes diverge from the underlying network, that is, highly connected regions possess values of
different signs. In this example, connected nodes n1 and n2 possess values of different signs. These mutually orthogonal structural modes can be considered
as a parsimonious basis for the empirical FC network which is also decomposed into its constituent eigenmodes accompanied by eigenvalues reflecting
their contributions (black arrows). The distribution of functional eigenvalues of an observed FC network is displayed in (b). One can notice that the
distribution of functional eigenvalues is far from uniform and that the FC network is dominated by a few functional modes with large eigenvalues.
Accordingly, we approximate the observed FC by its most contributing functional mode (U1) which is fitted by a linear combination of structural
eigenmodes to provide a concise mapping between the SC and FC networks (orange arrows).
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two functional gradient (G1_FC: unimodal-transmodal; G2_FC:
visual-motor)34, the first three structural gradients (G1_SC:
inferior-superior; G2_SC: anterior-posterior; G3_SC: medial-
lateral)47, and the microstructural gradients (G1_hist: sensory/

motor-transmodal/limbic; G1_mri: primary sensory-limbic)37.
As illustrated in Supplementary Fig. 2, we find that the spatial
patterns of structural eigenmodes closely resemble the distribu-
tions of structural gradients (e.g., high matching between v1 and
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2
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(n = 69 subjects). b The spatial distribution of the first four structural eigenmodes derived from the group-average structural connectome in LAU dataset.
Brain nodes are colored from blue to red in ascending order of values. c, d Alignment of structural eigenmodes with respect to the structural connections of
different distances. We divide structural connections into 10 distance bins in ascending order of their lengths (equal number of connections in each bin)
and quantify the alignment of the first four structural modes with respect to the structural connections in each distance bin. c illustrates the spatial
distributions of group-level (first four) structural eigenmodes with the top 5% short-distance connections, and (d) illustrates the alignment of group-level
(first four) structural eigenmodes relative to connections of different distances bins. e The similarity between 7 canonical functional networks (RSNs) and
group-level (first four) structural eigenmodes. RSNs include visual (vis), somatomotor (sm), dorsal attention (da), ventral attention (va), limbic (lim),
frontoparietal (fpn), and default mode (dmn) networks. *** indicates FDR-corrected p < 10−4.
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G1_SC, v2 and G2_SC, v3 and G3_SC) and are somewhat
associated with functional gradients and microstructural gradi-
ents (e.g., moderate similarity between v1 and G2_FC, v1 and
G1_mri, v2 and G1_FC, etc.).

Enhanced explanation of the FC network. To assess the per-
formance of the present method, we construct whole-brain SC-
FC mapping for each subject from the LAU dataset and compare
its performance with Tewarie et al.16 which possesses almost
identical structural predictors and model complexity (see Meth-
ods). The Pearson correlation coefficient R between the upper-
triangular part (excluding diagonal elements) of the predicted and
empirical FC matrices is calculated to evaluate the mapping
performance and the strength of structure–function coupling. As
shown in Fig. 3a, we find that the proposed method yields sig-
nificantly higher correlation than Tewarie et al. (proposed:
R= 0.59 ± 0.09, Tewarie: R= 0.21 ± 0.03, paired t test p < 10−10).
We also evaluate local SC-FC coupling by calculating the corre-
lation between predicted and empirical FC profiles of brain
regions (i.e., the corresponding rows of predicted and empirical
FC matrices). As shown in Fig. 3b–e, we find that regional
structure–function coupling varies considerably across the cortex
for both approaches. Specifically, for the proposed SC-FC map-
ping, regions with high correlation are concentrated in the visual
cortex, supertemporal cortex, and somatomotor (precentral and
postcentral) cortices, whereas regions in the precuneus, cingulate,
and prefrontal cortices exhibit relatively low prediction accuracy
(Fig. 3b). To characterize these findings at the level of functional
systems, we aggregate regional R by seven resting-state networks
and compare the network-specific mean R to those generated by
spatially constrained permutation (spin test; 10,000 permuta-
tions). We find that FC profiles of regions in the somatomotor
network are better explained than the null distribution while FC
profiles of regions in the frontoparietal and default mode net-
works are worse explained than explained by chance (FDR-cor-
rected p < 0.01; Fig. 3c). Such system-specific effects also appear
in regional SC-FC coupling estimated by Tewarie et al.16, with FC
profiles of regions in the visual network significantly better
explained than those of other regions (FDR-corrected p < 0.01;
Fig. 3d, e). We further find the proposed method generally out-
performs Tewarie et al. at the region-level, with the FC profiles of

76 ± 8% of regions being better explained (Fig. 3f, g). As our
mapping contains both the linear combination of structural
eigenmodes (which is also contained in Tewarie et al.) and the
non-linear interactions of different structural eigenmodes, this
observation highlights the strength of introducing non-diagonal
interactions in eigenmode-based SC-FC mappings (see Methods
for more details).

Next, we compare the proposed mapping with a communication
model14 that incorporates a large number of predictors character-
izing the geometric, topological, and dynamic relationships
between regions (Fig. 4a; see Methods). As shown in Fig. 4b, we
find that the correlation of the proposed method is significantly
higher than that of the communication model (communication:
R= 0.30 ± 0.04, paired t test p < 10−10). We also observe regional
heterogeneity in structure–function coupling estimated by the
communication model, with regions in the visual network
exhibiting higher R values than regions in other functional systems
(10,000 spatially constrained permutations, FDR-corrected
p < 0.01; Fig. 4c, d). Furthermore, we show that the present
method yields higher structure–function correspondence than the
communication model across a wide range of cortex, with FC
profiles of 67 ± 10% of brain regions being better explained by the
proposed mapping (Fig. 4e, f). Collectively, these results indicate
the validity of the proposed method, which is also verified in an
independently collected dataset (NKI; Supplementary Figs. 3, 4).

The advantage of capturing individual-specific information.
In this section, we seek to assess whether the proposed mapping is
able to characterize inter-individual variation in functional con-
nectivity. To this end, we introduce a reference mapping that simply
returns the group-average FC matrix (Fig. 5a). This reference
mapping neither utilizes structural information nor preserves inter-
individual variation, thereby providing a benchmark against which
the relative performance of individual-specific structure–function
mapping could be measured.

We employ two independent datasets to perform the analyses.
The first one is the LAU dataset, which consists of a homogeneous
population of roughly the same age range (28.8 ± 9.1 years). The
second one is the NKI dataset, which comprises a relatively
heterogeneous population across the human lifespan (35 ± 20 years).
For each dataset, we construct the group-average functional
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Fig. 3 Whole-brain and regional performance of the proposed mapping. a The mapping performance of the proposed method vs. Tewarie et al.16 for
individual subjects (n = 69 subjects) in LAU dataset. Metrics of performance are Pearson R between the estimated and empirical FC matrices, excluding the
diagonal entries. In each violin plot, the box indicates the interquartile range and the empty circle indicates the median value. b The spatial pattern of regional
SC-FC coupling estimated by the proposed method. c The distribution of R estimated by the proposed method over regions (n = 219 regions) aggregated by
seven resting-state networks (RSNs); asterisks indicate FDR-corrected p < 0.01. d The spatial pattern of SC-FC coupling estimated by Tewarie et al. e The
distribution of R estimated by Tewarie et al. over regions (n = 219 regions) aggregated by seven RSNs; asterisks indicate FDR-corrected p < 0.01. f The spatial
pattern of regional differences between correlation R of the proposed mapping and Tewarie et al. (ΔR= Rproposed− RTewarie). g The distribution of ΔR over
regions aggregated by seven RSNs.
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connectivity matrix by averaging all individuals’ FC matrices and
quantify the performance of the reference mapping by Pearson R
between the group-average and individuals’ empirical matrices
(excluding diagonal elements). We then consider the performance of
this reference mapping as a baseline and compare the performance
of subject-specific mappings that make use of structural information
(i.e., the proposed method, Tewarie et al., and the communication
model) against it. The performance of these mappings with
structural inputs is evaluated by Pearson R between the estimated
and empirical matrices (excluding diagonal elements), and the
comparison is conducted via a paired t-test. Fig. 5b–c and d–e
illustrate the results on an age-homogenous dataset (LAU) and a
lifespan dataset (NKI), respectively. Interestingly, we find that not all
SC-FC mappings that utilize subject-specific structural information
could outperform the mean mapping. Instead, in a homogeneous
population, the mean mapping appears to serve as a glass ceiling,
with the correlation R of both Tewarie et al. and the communication
model significantly lower than that of the reference mapping
(reference: R= 0.58 ± 0.06; paired t test p < 10−10; Fig. 5b, c).
However, the proposed SC-FC mapping still performs well,
achieving prediction accuracies comparable to the mean mapping
(paired t test p= 0.90). Furthermore, in a heterogeneous population,
the prediction accuracy of the proposed mapping is higher than that
of the reference mapping whereas Tewarie et al. and communication
methods still fail to outperform the reference mapping (paired t-test
P < 10−10; Fig. 5d, e), indicating the advantage of the proposed
method to capture additional subject-specific information not
explained by the mean.

We further extend the proposed mapping with the first K
functional modes under consideration (see Supplementary Note 1)
and find that incorporating more functional modes consistently

yields improved explanatory power (Supplementary Fig. 5). We
compare this extended mapping against the work from Becker
et al.48 based on the maximum length L of structural walks (Fig. 6;
Methods). We find that both methods provide high correlations
(e.g., proposed: R= 0.97 ± 0.01 for K= 8; Becker et al.:
R= 0.99 ± 0.00 for L= 8; LAU), with the differences that our
approach has lower model complexity and better interpretability
compared to Becker et al. (see Methods). Besides the above in-
sample evaluation, we also introduce the HCP dataset49 which
contains two sessions of functional magnetic resonance imaging
(fMRI) data to assess the out-of-sample performance; the results
are largely unchanged (Supplementary Fig. 6; Methods). We
additionally compare the proposed approach with the Riemannian
approach50 and find that both approaches achieve competitive
performance as the values of K or walk length increase (e.g., the
proposed: R= 0.76 ± 0.06 for K= 10; Riemannian: R= 0.76 ± 0.06
for walk length = 10; Supplementary Fig. 7).

Weakened structure–function liberality across the human life-
span. In this section, we apply the proposed mapping approach to
provide insights into how structure–function relationships evolve
with age using the NKI dataset that comprises 196 healthy parti-
cipants aged from 4 years to 85 years.

As the proposed SC-FC mapping is constructed via highly
contributing functional modes, we first assess whether and how
their contributions to the FC network vary with age. To this
end, we calculate the eigenvalues of the first three functional
modes for each subject and correlate the values with their ages.
Here, we are focusing on the first three functional modes since
they almost explain the variance in empirical FC networks
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mean. a illustrates a reference mapping that returns the group-average FC network. Specifically, the group-average functional connectivity matrix is
constructed by averaging all individuals' FC matrices and the performance of the reference mapping is quantified by Pearson R between the group-
average and individuals' empirical matrices (excluding diagonal elements). We then utilize this reference mapping performance to form a baseline,
and compare the performance of individual mappings possessing structural inputs (i.e., the proposed method, Tewarie et al., and the communication
model) against it. The performance of these individual mappings is evaluated by Pearson R between the estimated and empirical matrices
(excluding diagonal elements), and the comparison is conducted via a paired t test. b, c illustrate the comparison results for an age-homogenous
dataset (LAU, n = 69 subjects). b shows the mapping performance for individual subjects using different methods (the proposed method, the
reference mapping, Tewarie et al., and the communication model). The boxplot shows the medians (circles), interquartile ranges (boxes), and min to
max range (whiskers). Lines between different boxplots link the mapping performance of identical subjects across different methods. c shows the
results of paired t test comparison, with the y-axis indicating the resultant t statistics. d, e illustrate the comparison results for a lifespan dataset (NKI,
n = 196 subjects).
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(Supplementary Fig. 5). As shown in Fig. 7a, we find a weak but
statistically significant increase in the eigenvalue of the largest
functional mode (r= 0.16, FDR-corrected p= 0.04), suggesting
that the pattern of interregional functional interactions is
increasingly governed by this leading mode with age. However,
no statistically significant increase is observed in the eigenvalues
of the second and third functional modes across the lifespan
(Fig. 7b; 2nd mode, r=−0.07, FDR-corrected p= 0.36; 3rd
mode, r=−0.16, FDR-corrected p= 0.04). We further calculate
the functional diversity (FD) for each participant, which
measures the dispersion of the contribution of different
functional modes (see Methods). Larger functional diversity
indicates that the pattern of functional interactions is governed
to a greater extent by distinct functional modes, whereby the

distribution of functional modes’ eigenvalues is closer to a
uniform distribution. As shown in Fig. 7c, we observed a
statistically significant association between FD and age
(r=−0.15, p= 0.03), indicating age-related decreases in func-
tional diversity across the human lifespan. Taken together, these
findings suggest that the diversity of functional modes gradually
decreases with age, with the pattern of brain functional
interactions increasingly dominated by the most contributing
functional mode.

We next examine how structure–function coupling relationships
vary with age within the proposed mapping framework. We utilize
the structural eigenspectrum to decompose the functional mode
that captures the essence of the FC network into two separate
components: one is the structure-aligned functional component,
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Fig. 6 Comparison between the proposed mapping and Becker et al. a The evolution of mapping performance for individual subjects (n = 69 subjects) in
LAU dataset using our method with different numbers of functional eigenmodes under consideration (from K = 1 to K = 100). Metrics of performance are
Pearson R between the estimated and empirical FC matrices, excluding the diagonal entries. In the inset, we plot the boxplots of the proposed mapping
performance when we vary the number of considered functional modes from K = 1 to K = 10. For each boxplot, the box indicates the interquartile range
(IQR), the horizontal line indicates the median value, and the whiskers cover the upper and lower bound of 1.5 × IQR (25th and 75th percentiles). Outliers
are beyond the whiskers, indicated by dots. b The evolution of the correlation R for individual subjects (n = 196 subjects) in NKI dataset using our method
with different numbers of functional eigenmodes under consideration (from K = 1 to K = 100). c The evolution of the correlation R for individual subjects in
LAU dataset using Becker et al. with the maximum length of the walks varying from L = 1 to L = 100. d The evolution of the correlation R for individual
subjects in NKI dataset using Becker et al. with varying L (from L = 1 to L = 100).
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which potentially represents direct dependence on physical
connections, and the other is the structure-deviated component,
which potentially reflects intermediate polysynaptic interactions in
the structural network. (Fig. 7d; Methods). The norms of these two
components quantify the extent to which functional interactions are
organized in an aligned or deviated manner atop the underlying
structural connectome. To investigate whether structure and
function evolve synergistically or divergently, we introduce a liberal
index which is estimated as the energy ratio of structure-aligned and
structure-deviated functional components, and then correlate it
with the subjects’ ages. As shown in Fig. 7e, we observe a decline in
the liberal index (r=−0.18, p= 0.01), suggesting that the liberality
between brain structure and function gradually decreases with age.
We further find that age-related alterations in structure–function
coupling relationships can be dissociable. We find that the
magnitude of functional deviation decreases throughout the lifespan
(r=− 0.18, p= 0.01) whereas variability in functional alignment
does not exhibit a statistically significant correlation with age
(r= 0.08, p= 0.39). This indicates that even though both types of
coupling patterns contribute to functional interactions, structure-
deviated portions are the ones that reflect inter-individual variation
during human brain development and aging.

Discussion
In this work, based on network eigenmodes, we propose a
mapping method that allows SC and FC networks to be tightly
linked in a simple manner. We first show that the essence of
observed FC networks can be characterized by a just few inherent
modes, i.e., those with large eigenvalues. This observation
demonstrates the utility of eigenmodes for dimensionality
reduction, which is key to establishing the proposed mapping
method. Typically, the functional mode with the largest eigen-
value is of particular interest in terms of its essential role in
governing the formation of functional connectivity. By projecting
this functional mode into the parsimonious basis formed by
mutually orthogonal structural eigenmodes, we establish a concise
and strong mapping between brain structural and functional
networks, whose prediction performance is verified on three
independent datasets (LAU, NKI, and HCP).

Biologically, by decomposing the intricate functional interac-
tions into a set of functional modes, our approach conceptualizes
functional interactions as the aggregation of distinct functional
configurations emerging from structural organization. This is
consistent with the emerging idea that emphasizes indirect, col-
lective interactions via multiple structural connections29. That is,
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Fig. 7 Age-related variations in SC-FC relationships. a The contribution of the first functional mode to the FC network increases with age. b Age-related
variations in contributions of the 2nd or 3rd functional modes. c Decreases in functional diversity across the lifespan. d The functional interaction pattern
for each subject is decomposed into structure-aligned and structure-deviated components in terms of the SC eigenmodes. The ratio between the norms of
these two components is used to measure structure–function liberality. e Reduced structure–function liberality across the lifespan, which is predominantly
driven by the weakened functional deviation.
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by re-expressing the functional connectivity in terms of func-
tional modes organized atop the underlying anatomical network,
our methodology enables us to view neuronal coactivation as an
emergent property shaped by the entire structural connectome. This
connectome-oriented perspective departs from the traditional per-
spective that treats pairwise FC as discrete entries, complementing
our understanding of brain functional connectivity. For example,
we find that although different functional modes constitute an
abundant repertoire of brain states, interregional functional con-
nectivity can be well approximated using just a few of them. In other
words, interregional functional interactions are dominated by a few
principle modes, accompanied by subtle contributions of the
remaining multiple modes, and correspondingly possess moderate
diversity in terms of functional modes. This heterogeneous dis-
tribution of functional mode contributions places the brain in an
intermediate state between a specific state governed exclusively by
one specific mode and a disordered state induced uniformly by all
functional modes, potentially approaching a critical regime where
complex dynamics, flexible transitions, and advanced functionality
may emerge51–54. This also coincides with studies suggesting that
the brain shows characteristics of criticality to balance segregated
and integrated processing and to maximize dynamical
responses43,55,56. Moreover, we find the diversity of functional
modes exhibits slight but statistically significant decreases with age,
with the functional interactions increasingly dominated by one
leading functional mode. In light of previous findings that enriched
activation patterns are an expected property of functional organi-
zation to underlie more efficient processing and information
encoding43,57,58, we hypothesize that this slight decrease in func-
tional mode diversity might reflect a reorganization of neuronal
coactivation patterns, in parallel with a decline in cognition and
memory during normal aging. Consistent with this hypothesis,
studies on psychedelics identify a variation in the repertoire of active
brain patterns under different states of consciousness59,60.

In line with previous studies27,32,33, we find that the perfor-
mance of the proposed SC-FC mapping approach is regionally
heterogeneous across the brain, with a high correlation between
empirical and predicted FC in unimodal regions and a low cor-
relation in transmodal regions. One prominent account posits
that rapid expansion of the cerebral mantle may have released
cortical organization from strong constraints of primary sensory-
motor hierarchies and canonical activity cascades61. Association
areas fill the gaps between these sensory-motor hierarchies,
marked by distributed cortical organization and noncanonical
circuit properties62. That is, besides the canonical hierarchical
form of projections that facilitate progressive feedforward/feed-
back information flow, the association cortex also possesses
parallel and reentrant pathways by which diverse information
from multiple functional modalities can be integrated61,63,64.
Such abundant circuit structure-supporting increasingly diverse
spontaneous dynamics and interaction patterns may potentially
render the proposed mapping based on the principal functional
mode less effective in capturing functional connectivity of
transmodal regions. Considering multiple patterns simulta-
neously may engender better interpretation and deeper under-
standing, which is an exciting future direction worthy of further
investigation.

To explore how structural modes are recruited to form functional
connectivity, we exploit the eigendecomposition of the anatomical
connectome, which generates a set of orthogonal structural eigen-
modes sorted in decreasing order of their eigenvalues. These
structural eigenmodes constitute the repertoire of distributed pat-
terns supported by anatomical connectivity, each one associated
with a specific spatial frequency, from smooth variation to refined-
grained changes. In particular, low-frequency/structure-
aligned eigenmodes (i.e., those with positive eigenvalues) exhibit

systematical variation along several main geometrical axes (e.g.,
center-peripheral, anterior-posterior, anterior-middle-posterior,
and left-right). Despite the potential switching of order, these spatial
patterns are consistently observed in individual subjects and in
independent datasets, implying that the hierarchical architecture
may be a primary principle of anatomical connections organization.
Previous studies have reported systematical hierarchical variation
across the cortex in cytoarchitecture65, myeloarchitecture36, and
laminar differentiation37. This regional heterogeneity in local
attributes may shape how cortical areas are interconnected with
each other, resulting in the observed hierarchical patterns of low-
frequency eigenmodes. In line with this hypothesis, we find a sta-
tistically significant association of these eigenmodes with structural
and microstructural gradients, indicating the relevance of inter-
regional connection patterns with hierarchical local properties.
Moreover, we find these structural eigenmodes, which are closely
aligned with the underlying anatomical connectome, also exhibit
significant contributions to functional connectivity formation and
display somewhat association with canonical functional systems
and functional gradients. These results demonstrate the intertwined
relationship between local and global, structural and functional
properties, emphasizing the utility of network eigenmodes to bridge
the organization of structural and functional connectivity. Fur-
thermore, the high contribution of low-frequency eigenmodes
demonstrates the preferential expression of brain activity towards
spatially smooth, global patterns on the connectome32, implying
that the pronounced hierarchical organization of structural modes,
stemming from the architecture of anatomical connectivity, may be
a key property to support diverse functional interaction patterns. In
contrast, high-frequency/structure-deviated eigenmodes (i.e., those
with negative eigenvalues) exhibit refined-grained and complex
spatial variation, characterizing distributed patterns that are sup-
ported by but deviate from the underlying anatomical substrate. The
emergence of these structure-deviated modes accords with studies7

suggesting that the static structural network could support diverse
spatial patterns through collective, network-level interactions,
including those decoupled from the physical links.

By decomposing functional modes into structural eigenmodes,
our approach differs from the predominant SC-FC coupling
analyses28,31,33, which quantify SC-FC correspondence by the
prediction performance based on structurally derived measures,
and differs from the conventional eigenmode approaches15,16,19,
which assume the eigenmodes of the FC network correspond to
those of the SC network (correspond directly or after a rotation
operation). Instead, we adhere to an alternative approach to
directly disentangle structure-deviated and structure-aligned
portions from the functional interaction pattern. These two
portions characterize distinct manners in which functional modes
are organized atop the anatomical graph, consistent with the
intuition that functional interactions must to some extent align
with the underlying anatomy due to direct signaling, but also to
some extent deviate from this anatomy due to polysynaptic
communication. In this way, we could distinguish the respective
roles of ‘intermediate polysynaptic interactions’ (deviation) versus
simple ‘signaling along the physical connections’ (alignment) by
quantifying their intensity. This approach also facilitates the
identification of potentially behavior-sensitive or stimulus-
sensitive components of functional connectivity, promoting a
more refined investigation of individual alterations associated
with phenotypes and traits. In the application to the human
lifespan, we find that structure–function liberality decreases with
age. We also identify the age-sensitive components of functional
connectivity–we find that structure-deviated functional compo-
nents weaken with age whereas the magnitude of structure-
aligned components is preserved with age. This observation is
particularly interesting in the context of the prior finding that key
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information for individual identification is found in the func-
tional component deviated from structure66, implying that
structure–function liberality may be an individually variable
feature reflecting the inner workings of the brain. Furthermore,
several previous studies have demonstrated correlations between
the structure–function coupling relationship and inter-individual
variability in cognitive traits20,67–69. Stronger structure–function
coupling is found to be associated with better abilities of complex
cognition, such as reasoning and cognitive switching, which may
benefit from reliable and efficient information transmission20,70.
In contrast, other cognitive traits, such as the level of awareness
and attention maintenance, are considered to benefit from less
alignment between structure and function, a configuration that
might be instrumental for information integration across the
brain25,66. Combined with these complementary roles of different
degrees of structure–function alignment, our findings of age-
related decreases in structure-deviated functional components
may promote mechanistic insights concerning cognitive changes
across the human lifespan, with important implications in
inferring physiological processes involved in the aging of brain.
Alterations due to cognitive tasks, lesions, and neurological dis-
eases might be another promising application of the proposed
approach that would provide valuable insights.

There are several limitations and possible developments in this
study. First, while we mainly focus on the most contributing
functional eigenmode in the structure–function mapping of brain
connectomes, other functional modes also leave their signature on
the formation of the FC network. Given the complex and diverse
neurobiological mechanisms involved in signaling and synchrony
among brain regions, mapping frameworks that incorporate more
functional modes have the potential to produce a richer inter-
pretation of how neuronal coactivation patterns emerge from the
underlying structural substrate and facilitate a more refined iden-
tification of functional components relevant to individual differ-
ences in cognitive performance. In addition, our structure–function
mapping does not integrate temporal dynamics71 or biological
details72. Thus, another direction for future research is to enrich
structure–function mappings with biophysical dynamics, in con-
cert with more nuanced network reconstructions of local attributes,
which would promote a more comprehensive understanding of
how the brain’s physical wiring supports function.

Methods
Data. In this study, we performed the main analyses in two
independent datasets. The first one was collected by Department
of Radiology, University Hospital Center and University of Lau-
sanne (LAU)73. This dataset included 70 healthy participants (27
females, 28.8 ± 9.1 years old). Informed consent approved by the
Ethics Committee of Clinical Research of the Faculty of Biology
and Medicine, University of Lausanne was obtained from all
participants. Diffusion spectrum images (DSI) were acquired on a
3-Tesla magnetic resonance imaging (MRI) scanner (Trio, Sie-
mens Medical, Germany) using a 32-channel head-coil. The
protocol was comprised of (1) a magnetization-prepared rapid
acquisition gradient echo (MPRAGE) sequence sensitive to white/
gray matter contrast (1-mm in-plane resolution, 1.2-mm slice
thickness), (2) a DSI sequence (128 diffusion-weighted volumes
and a single b0 volume, maximum b-value 8,000 s/mm2,
2.2 × 2.2 × 3.0 mm voxel size), and (3) a gradient echo EPI
sequence sensitive to blood oxygen level-dependent (BOLD)
contrast (3.3-mm in-plane resolution and slice thickness with a
0.3-mm gap, TR 1,920 ms, resulting in 280 images per partici-
pant). Gray matter was divided into 68 brain regions following
Desikan-Killiany atlas74 and further subdivided into 219
approximately equally sized nodes according to the Lausanne

anatomical atlas using the method proposed by Cammoun
et al.75. Individual structural networks were constructed using
deterministic streamline tractography, initiating 32 streamline
propagations per diffusion direction for each white matter
voxel76. Functional networks were reconstructed using fMRI data
from the same individuals. fMRI volumes were corrected for
physiological variables, including regression of white matter,
cerebrospinal fluid, and motion. fMRI time series were lowpass
filtered. The first four volumes were discarded and motion
scrubbing was performed77. Individual functional connectivity
matrices were constructed by estimating the Pearson correlation
between the fMRI time series of each pair of brain regions. A
group-average functional connectivity matrix was estimated by
averaging all individuals’ functional matrices. Note that one
subject was excluded due to missing fMRI data, and therefore
69 subjects were retained for the individual structure–function
mappings. More details regarding network construction can be
obtained online at the LAU website (https://zenodo.org/record/
2872624#.XOJqE99fhmM).

The second one was the Nathan Kline Institute (NKI)/
Rockland Sample public dataset78, available at http://umcd.
humanconnectomeproject.org. This dataset provides prepro-
cessed structural and functional connectome data for 196
participants (82 females, age range = 4–85). Informed consent
approved by the Institutional Review Board was obtained from all
participants (informed consent was also obtained from child
participants and their legal guardians). The scan was performed
in a Siemens Trio 3T scanner. The protocol consisted of (1) 10-
min resting state fMRI scan (R-fMRI), (2) 6-direction diffusion
tensor imaging (DTI) scan, (3) 64-direction diffusion tensor
imaging scan (2mm isotropic), (4) MPRAGE anatomical scan, (5)
MPRAGE anatomical scan SHORTER sequence, (6) T2 weighted
sequence. A comprehensive description of data acquisition is
available at the NKI website (http://fcon_1000.projects.nitrc.org/
indi/pro/nki.html). For fMRI data, the preprocessing procedure
includes slice timing correction, rigid-body motion correction,
spatially smooth with 5mm FWHM Gaussian, scale to mean
10000, band-pass filtering from 0.08 to 0.009Hz, brain tissue
segmentation, nuisance regression (mean CSF, mean WM, whole
brain signal, the six motion parameters, and all temporal
derivatives), motion scrubbing (relative motion displacement
> 0.5 mm or relative BOLD signal intensity change > 0.5%)77, and
registration. The Craddock 200 atlas79 is applied to fMRI data
to derive 188-ROI parcellation. All subjects were retained as no
one had more than 100 TRs flagged by motion scrubbing. For
DTI data, the preprocessing procedure includes corrections of
motion and eddy current distortions, diffusion tensor estimation,
tractography using the fiber assignment by continuous tracking
(FACT) algorithm80, and registered fractional anisotropy (FA)
map to the MNI152 average brain. The Craddock 200 atlas79

was registered to each individual’s DTI space to construct
structural connectivity. A more detailed description is provided
by Brown et al.81.

Additionally, we introduced the third dataset from the Human
Connectome Project (HCP) (HCP 100 Unrelated Subjects
dataset)49 to assess the out-sample performance of distinct
mapping methods. Informed consent approved by the Washing-
ton University Institutional Review Board was obtained from all
participants. All acquisitions were first preprocessed according to
HCP-minimal preprocessing guidelines82. Then a bandpass
filtering between 0.01Hz and 0.08Hz was applied to functional
data. Individual structural networks were derived from the
preprocessed diffusion MRI data using the MRtrix3 software
[http://www.mrtrix.org/]. The detained operations included the
estimation of multi-tissue response function83, the estimation of
fiber orientation distributions using the multi-shell multi-tissue
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constrained spherical deconvolution84, the generation of a whole-
brain tractogram with 5 million streamlines using a probabilistic
approach (iFOD2)85 and the anatomically constrained tracto-
graphy (ACT)86 algorithm with dynamic seeding, the estimation
of tract weights (SIFT2)87 to reduce reconstruction biases. Finally,
the tractogram was mapped onto the Schaefer400 atlas88 to create
a structural connectome. The structural connectivity between
pairs of regions was further scaled by the inverse of two region
volumes89. The resting state fMRI data from each subject contains
two sessions, each of which contains two scans with opposite phase
encoding directions (left-to-right and right-to-left encodings). Here,
we make use of the first session to learn model parameters and the
second one to evaluate mapping performance. fMRI data were
parcellated according to the same atlas used for structural networks.
We concatenated the two acquisitions to produce a single functional
connectivity matrix per session. Functional connectivity is con-
structed by estimating the Pearson correlation between the fMRI
time series of each pair of brain regions. For more details regarding
the acquisition protocol and minimal preprocessing see refs. 49 and
82. We removed individuals with high motion (mean framewise
displacement > 0.25mm or max framewise displacement > 2mm)77,
and finally retained 78 subjects for the subsequent analysis. All
ethical regulations relevant to human research participants were
followed.

Structural and functional modes. Applying an eigendecompo-
sition, the FC network can be decomposed as

FC ¼ UΛfUT ; ð1Þ

where the eigenvalues are represented by Λf ¼ fλfi g1≤ i≤N and
eigenvectors are represented by U ¼ fUig1≤ i ≤N . N indicates the
number of network nodes. Several negative eigenvalues that may
be induced by the noise were set to 0, which does not result in
significant losses of information on FC networks43. According to
the spectral graph theory42, these mutually orthogonal eigenvec-
tors U can be interpreted as the N inherent constituent modes of
the FC network. As all eigenmodes are scaled to the unit norm, the
magnitude of eigenvalues mirrors the contribution of the corre-
sponding functional mode to the FC network. Typically, the
eigenmode with the largest eigenvalue represents the functional
pattern that has the greatest impact on the formation of functional
connectivity. Conversely, eigenmodes with zero eigenvalues are
considered to have no contribution to FC, i.e. the FC network does
not possess that functional mode. The alternative expression is

FC ¼ ∑
N

i
Uiλ

f
iU

T
i ; ð2Þ

representing the FC network as the linear superposition of N-
independent functional modes.

Similarly, the SC network can be decomposed as

SC ¼ VΛsVT ; ð3Þ
with the eigenvalues Λs ¼ fλsjg1≤ j≤N quantifying the smoothness

(alignment) of the inherent modes specified by eigenvectors
V ¼ fVjg1≤ j≤N . Specifically, The alignment of eigenmodes indi-

cates to what degree the spatial patterns of structural eigenmodes
are aligned with or deviated from the underlying structural
network. To capture this intuition, we generalize the basic
functions (sinusoids) with different temporal frequencies in the
classical Fourier transform to the structural eigenmodes which can
be viewed as basic modes with different spatial frequencies in the
Graph Fourier Transform (Supplementary Fig. 8). In the time
domain, the low-frequency temporal signal varies slowly along the
time dimension (i.e., data points that are close in time have similar

values) whereas the high-frequency temporal signal changes fast
over time (i.e., data points may have very dissimilar values even if
they are at adjacent time moment). In the graph domain, low-
frequency/structure-aligned eigenmodes vary smoothly across the
graph (i.e., nodes that are tightly connected tend to have similar
values) whereas high-frequency/structure-deviated eigenmodes
exhibit fine-grained variations across the graph (i.e., nodes may
have very different values even if they are adjacent in the graph).
Thus, just as the temporal frequency of signals reflects their
dependence on time, the alignment of structural eigenmodes
reflects the degree to which they are constrained by the underlying
anatomical connectome. Mathematically, the alignment of the j-th
structural eigenmodes20 can be expressed by

∑
N

n1;n2¼1
SCðn1; n2ÞVjðn1ÞVjðn2Þ ¼ VT

j SCVj: ð4Þ

In this expression, n1, n2 represent network nodes and SC(n1, n2)= 0
for n1= n2. Note that VT

j SCVj ¼ λsj is the j-th eigenvalue, a quantity
that will be positive if the structural mode Vj is aligned to the
underlying connectivity (values of most connected nodes possess
same signs) and will be negative if the mode Vj deviates from the
connectivity (values of most connected nodes possess different signs).
By sorting structural eigenvectors in descending order of their
eigenvalues, we construct an eigenspectrum spanning from structural
modes closely aligned with SC to modes deviated from SC. In the
“Results” section, to understand how the alignment of these structural
eigenmodes is informed by connections of different distances, we
divide structural connections into 10 distance bins in ascending order
of their lengths (equal number of connections in each bin) and
measure the alignment of SC eigenmodes with respect to structural
connections contained within each bin. Specifically, for a given
eigenmode Vj and distance bin k, the alignment was quantified by
∑eðn1;n2Þ2binkSCðn1; n2ÞVjðn1ÞVjðn2Þ, where e(n1, n2)∈ bink indicates
the set of connections within the k-th bin.

SC-FC mapping. The link between brain structural and func-
tional networks can be constructed by projecting functional
modes fUig1≤ i≤N into structural modes fVjg1≤ j≤N :

Ui ¼ mi1V1 þmi2V2 þ � � � þmiNVN ¼ ∑
N

j¼1
mijVj; ð5Þ

where parameters fmijg1≤ i;j≤N can be computed as mij ¼ VT
j Ui.

Note that for any i, we have

∑
N

j¼1
ðmijÞ2 ¼ ∑

N

j¼1
mij VT

j Ui

� �T
¼ UT

i ∑
N

j¼1
mijVj

� �
¼ UT

i Ui ¼ 1:

ð6Þ
The magnitude of m2

ij can thus be used to reflect the contribution
of structural mode Vj to functional mode Ui

43.
The FC network can be represented as

FC ¼ ∑
N

i¼1
Uiλ

f
iU

T
i

¼ ∑
N

i¼1
λfi mi1V1 þ � � � þmiNVN

� �
mi1V

T
1 þ � � � þmiNV

T
N

� �

¼ ∑
N

i;j1;j2¼1
λfi mij1

mij2
Vj1

VT
j2

¼ ∑
N

j1;j2¼1
∑
N

i¼1
λfi mij1

mij2

� �
Vj1

VT
j2
;

ð7Þ
Here, we only keep the functional mode with the largest
eigenvalue given its essential role in governing the formation of
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functional connectivity. The estimation of the FC network is
then simplified as

FC � λf1U1U
T
1 ¼ ∑

N

j1;j2¼1
ðλf1m1j1

m1j2
ÞVj1

VT
j2
; ð8Þ

where parameters fm1jg1≤ j≤N were estimated as m1j ¼ VT
j U1.

Note that though we focus on the largest functional mode here,
future work could naturally incorporate more functional modes
in SC-FC mapping to obtain a more refined quantification of
the relationship between structure and function (for more
details see Supplementary Note 1: SC-FC mapping based on the
first K functional modes).

Performance evaluation. We assess the mapping performance
by evaluating Pearson R between the upper triangular entries
(excluding the diagonal entries) of the predicted and empirical FC
matrices. For individuals in LAU and NKI datasets, we perform in-
sample evaluation, that is, the mapping performance is evaluated on
the same empirical data used to learn model parameters. For
individuals in the HCP dataset, we conduct the out-of-ample eva-
luation, where model parameters are learned using the first resting-
state session and evaluated using the second resting-state session.

Benchmark comparisons. The first one is the eigenmode
approach of Tewarie et al.16, which approximates the empirical
FC network with a weighted linear combination of structural
eigenmodes:

FC � VAVT ¼ ∑
N

j¼1
ajVjV

T
j ; ð9Þ

where A is a diagonal matrix, with entries aj indicating weighting
coefficients that can be fitted from empirical data. Previous work
has demonstrated that this approach could be used to explain
frequency-specific functional networks90. Here, we exploit it as a
primary benchmark for our approach as it permits a straight
comparison between diagonal and non-diagonal projection pre-
dictions. By projecting the first functional eigenmode on the
structural eigenspectrum, our method contains both the diagonal
terms fVj1

VT
j2
g
j1¼j2

(which are also contained in the Tewarie et al.)

and the non-diagonal terms fVj1
VT

j2
g
j1≠j2

(which may provide

additional information in SC-FC mapping). The comparison
between these two approaches allows us to examine whether non-
diagonal interactions among structural eigenmodes could
enhance coupling between the structure and function con-
nectomes. Of note, both methods use the structural eigenspec-
trum fVjg1≤ j≤N as input and have almost the same number of

parameters (fajg1≤ j≤N vs fm1jg1≤ j≤N ), thereby enabling a direct

comparison of SC-FC mapping strategies without the interference
of model complexity (as the increased model complexity generally
yields increased explanatory power). In this way, we would like to
ascribe the difference between mapping performance of the
proposed method and Tewarie et al.16 to the introduction of non-
linear interactions between different structural eigenmodes.

The second benchmark method is the communication model14,
which approximates the FC network with a weighted superposition
of communication events over the structural network, with the
forms of communication ranging from the shortest path routing
(centralized) to signal diffusion (decentralized):

FC � a0 þ ∑
Q

q¼1
aqPq; ð10Þ

where {a0, a1,⋯ , aQ} are weighting coefficients that can be fitted
from empirical data. Predictors fPqg1≤ q≤Q indicate fully weighted

matrices derived from the SC data, including flow graphs
(parameterized at different timescales)91, mean first passage
times92, communicability93,94, matching index95, shortest path
length, path transitivity (parameterized at weight-to-cost
transformations)13, search information (parameterized at weight-
to-cost transformations)96, and Euclidean distance. Specifically, the
flow graph is derived from the Markovian process embedded into
the weighted structural connections, with the elements correspond-
ing to the probabilistic flow of random walkers at time t (here we
set t = 1,2.5,5,10). The mean first passage time indicates the
expected time (the number of steps) a randomwalker takes to reach
a target node for the first time and we convert the values to z-scores
for each column to exclude nodal biases. Communicability is
defined as a weighted sum of all possible walks between
brain regions, which can be calculated by exp(SC). The matching
index measures the similarity of pairwise nodes based on the
number of their common neighbors, and the element in this matrix

is quantified as
jΓn1nn2

T
Γn2nn1 j

jΓn1nn2
S

Γn2nn1 j
, where Γn1nn2 represents the neighbors

of node n1 excluding the node n2. The shortest path length
measures the minimum sum of costs to reach the target node
from a reference node. Here we use the transformation SC−γ

(γ= 0.25, 0.5, 1, 2) to convert edge weights to costs. The path
transitivity captures the density of local detours by which walkers
departing from the shortest path could reaccess it. Search
information measures the amount of information requisite to
access the shortest path. These two kinds of predictors are derived
the following13,28 with the weight-to-cost transformation SC−γ

(γ= 0.25, 0.5, 1, 2). Euclidean distance indicates the Euclidean
distance between pairwise brain nodes.

The third benchmark method is the spectral mapping of Becker
et al.48, which approximates the empirical FC network based on a
polynomial expansion and a rotation matrix:

FC � R ∑
L

l¼0
alSC

l

� �
RT ; ð11Þ

where falg0≤ l ≤ L are weighting coefficients that can be fitted from
empirical data. The matrix R, which corresponds to a rotation
operation to align structural eigenmodes to functional eigen-
modes, can be estimated by UVT for individual mappings. The
value of L, which corresponds to the maximum length of the
structural walks under consideration, is selected empirically.
Here, we conduct this method with varying values of free
parameter L and exploit it as a benchmark for the proposed
method with varying values of free parameter K (that is, the first
K functional eigenmodes under consideration). In fact, our
method is somewhat akin to Becker et al.48: both approaches
attempt to construct a link between structural and functional
eigenmodes and the weight matrix M of our method can be built
from the rotation matrix R of Becker et al.48 via a suitable
transformation M=VTRV. Thus, it is not a surprise that these
two methods yield comparably competitive performance. How-
ever, there exist two key differences, with more conciseness and
better interpretability offered by our method in contrast to Becker
et al.48. First, Becker et al. approximates FC with a polynomial
expansion of order L whereas our method uses the first K highly
contributing functional mode. In other words, Becker et al. seek
to explain interregional functional interactions in terms of a
weighted superposition of structural walks with different lengths
whereas our method aims to capture the essential patterns of
functional interactions in terms of a few dominant modes. This
change leads to a dramatic simplification of network representa-
tion, with the complexity of the mapping method reduced from
O(N2) to O(N). Second, Becker et al. performs a rotation
operation (U=RV), which can be viewed as a change of
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coordinates to align the eigenmodes of structural and functional
connectivity, whereas our method performs a decomposition
operation (U=VM), which permits the identification of different
structural eigenmodes’ contributions to functional modes. This
change enables the eigenspectrum of the structural network to
inform how functional interaction patterns align to or deviate
from the underlying white matter connections, promoting a more
refined investigation of structure–function relationships. Using
our methodology, we are able to disentangle structure-deviated
and structure-aligned portions from the dominant functional
interaction pattern, which characterize distinct manners in which
functional modes are organized atop the anatomical graph. This
is interesting because we might assume that functional interac-
tions must to some extent depend on underlying anatomy that
supports direct signaling between brain regions, but on the other
hand some functional interactions may deviate from this anatomy
via polysynaptic communication.

Finally, we introduce a reference mapping that always returns
the group-average functional connectivity matrix to assess whether
individual mappings that utilize subject-specific structural infor-
mation could capture additional information not explained by the
mean.We perform this referencemapping for individuals from two
independent datasets (LAU and NKI). For each dataset, we
construct the group-average functional connectivity matrix by
averaging all individual subjects’ FC matrices and quantify the
performance of this reference mapping by the correlation between
the group-average and individual matrices. We then consider it as a
baseline and conduct a paired t-test to examine whether individual
mappings containing structural inputs (the proposed method,
Tewarie et al.16, and the communication model14) could outper-
form this mean mapping.

Functional diversity. To measure the diversity of contributions
of different functional modes, here called functional diversity
(FD), we estimated the extent to which the distribution of func-
tional eigenvalues is similar to a uniform distribution:

FD ¼ 1� 1
NM

∑
M

i¼1
j λfi

∑iλ
f
i

� 1
M

j; ð12Þ

where M is the number of functional modes that the FC network
possesses and NM= 2(M− 1)/M is a normalization factor that
restricts the FD to the interval [0,1]. At one extreme where the FD
value equals 0, the FC network is completely governed by one
inherent mode; at the other extreme where the FD = 1, all func-
tional modes contribute equally to the formation of functional
interactions.

Structure–function liberality. Within the present analytical fra-
mework, the inherent pattern of functional interactions can be
investigated in the context of a structural eigenspectrum spanning
from modes closely aligned to anatomical connections (those with
positive structural eigenvalues) to modes deviated from the
anatomy (those with negative structural eigenvalues). Here, we
exploit the Graph Fourier Transform (GFT)42 and spectral fil-
tering to split the most contributing functional mode into two
separate components: one represented by the first LA structural
modes, exhibiting tight coupling with the structure, and the other
represented by the last LD structural modes, exhibiting flexible
deviations from the structural substrate. That is,

UA
1 ¼ m11V1 þm12V2 þ � � � þm1LA

VLA
; ð13Þ

UD
1 ¼ m1N�LDþ1VN�LDþ1 þ � � � þm1NVN ; ð14Þ

where UA
1 and UD

1 denote structure-aligned and structure-deviated
components of the functional mode, respectively. fm1jg1≤ j≤N are

parameters estimated in SC-FC mapping procedure. Considering
that there is no general method to determine the threshold LA and
LD, we chose a default value (LA = LD = 10) following the previous
literature20 and performed a sensitivity analysis to confirm the
robustness of results to threshold selection (Supplementary Fig. 9).
The intensity of the aligned and deviated portions was measured
as the norms of UA

1 and UD
1 . We further introduce the

structure–function liberality, which is estimated by the energy ratio
between the structure-aligned and structure-deviated components,
to identify to what degree the functional interaction pattern is
misaligned versus aligned with the structure. Correlating this liberal
index with age, we could explore the evolving property of
structure–function relationships across the human lifespan. There
existed two distinct possibilities: (1) the structure–function liber-
ality was preserved with age; (2) the structure–function liberality
exhibited age-related change. The first one indicates that the
structure–function relationship is preserved with age, implying that
lifespan differences in FC networks may be simply induced by
changes in structural architecture. The second one suggests that SC
and FC networks change divergently with age, with increasing or
decreasing liberality indicating that functional interaction patterns
are gradually untethered or tethered by structural constraints.

Statistics and reproducibility. Spatially constrained permutation
tests (spin tests, 10,000 permutations) are performed to examine the
statistical significance of spatial analyses, including the spatial
similarities of the first four SC eigenmodes to structural and func-
tional organization features as well as the effects of resting-state
networks on regional structure–function coupling. The p-values are
calculated as the proportion of simulated test statistics that are more
extreme than the observed test statistic and are corrected for mul-
tiple comparisons. Paired t tests are performed to test the statistically
significant differences between the prediction performance of dis-
tinct approaches. The correlation values are calculated by Pearson R.
Results are replicated using the LAU (n = 69 subjects), NKI (n =
196 subjects), and HCP (n = 78 subjects) datasets and using dif-
ferent structure-aligned and structure-deviated thresholds.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
The Lausanne dataset is publicly available at https://zenodo.org/record/2872624#.
XOJqE99fhmM. The Nathan Kline Institute (NKI)/Rockland Sample public dataset is
publicly available at http://fcon_1000.projects.nitrc.org/indi/pro/nki.html. The HCP 100
dataset is available at https://www.humanconnectome.org/study/hcp-young-adult. Source
data for Figs. 2–7 and Supplementary Figs. 1–7, 9 are provided in Supplementary Data 1.

Code availability
The structural connectomes for HCP are constructed through the MRtrix3 software
[http://www.mrtrix.org/]. The eigendecomposition of SC and FC networks is
implemented using the function eig.m in Matlab R2020a. Code for the spin test is
publicly available at https://github.com/spin-test/spin-test.
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