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Transcriptional profiling of canine osteosarcoma
identifies prognostic gene expression signatures
with translational value for humans
Joshua D. Mannheimer 1, Gregory Tawa2, David Gerhold2, John Braisted2, Carly M. Sayers 3,

Troy A. McEachron3, Paul Meltzer 4, Christina Mazcko1, Jessica A. Beck 1 & Amy K. LeBlanc 1✉

Canine osteosarcoma is increasingly recognized as an informative model for human osteo-

sarcoma. Here we show in one of the largest clinically annotated canine osteosarcoma

transcriptional datasets that two previously reported, as well as de novo gene signatures

devised through single sample Gene Set Enrichment Analysis (ssGSEA), have prognostic

utility in both human and canine patients. Shared molecular pathway alterations are seen in

immune cell signaling and activation including TH1 and TH2 signaling, interferon signaling,

and inflammatory responses. Virtual cell sorting to estimate immune cell populations within

canine and human tumors showed similar trends, predominantly for macrophages and CD8+
T cells. Immunohistochemical staining verified the increased presence of immune cells in

tumors exhibiting immune gene enrichment. Collectively these findings further validate

naturally occurring osteosarcoma of the pet dog as a translationally relevant patient model for

humans and improve our understanding of the immunologic and genomic landscape of the

disease in both species.
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Osteosarcoma (OS) is a rare primary skeletal malignancy of
childhood and adolescence, affecting less than 1000
patients per year in the US1–4. Osteosarcoma also

develops spontaneously in pet dogs, accounting for more than
85% of all canine skeletal malignancies and totaling at least 10,000
new cases in the US alone every year5–7. In both species, the
biological behavior of OS is aggressive, exhibiting a high pro-
pensity for metastasis8,9. As outcomes for both species have
stagnated for decades, unmet clinical needs have spurred interest
in exploring pet dogs with OS as informative models for human
OS10–14. Comparative oncology studies in tumor-bearing pet
dogs are conducted to answer key research questions regarding
drug target discovery, and shared tumor biology, and to explore
novel avenues for therapeutic optimization15. In particular, the
comparative approach has been effective in the context of drug
development, spanning small molecules, biologics, immu-
notherapies, imaging agents, and combination strategies13,15–19.
However, as precision medicine and immuno-oncology come to
the forefront of cancer drug research, a detailed molecular fra-
mework for canine osteosarcoma is needed to further determine
its translational relevance to humans and to facilitate the dis-
covery and validation of new druggable targets20. Canine OS
recapitulates many of the hallmark biologic and molecular fea-
tures of human OS, such as highly rearranged genomes with
extensive copy-number aberrations and localized
hypermutation21–23. Like human OS, canine OS genomes gen-
erally do not possess high-frequency activating/inactivating
mutations in canonical oncogenes and tumor suppressor genes,
but rather somatic copy number alterations at genomic loci
encoding these genes. The most frequently altered genes in canine
OS include TP53, CDKN2A, and RB121,24,25.

Alongside the knowledge that describes the genomic com-
plexity of OS comes the challenge of identifying and utilizing
appropriate preclinical models for prioritization of the most
promising treatments for both humans and canines. While
patient-derived xenografts and parallel clinical trials using murine
avatars have been used to identify and functionally validate var-
ious molecular therapeutic targets, the lack of an intact immune
system reveals the inadequacy of utilizing these preclinical models
to test combination immunotherapies26. The study of naturally
occurring OS in dogs can fill gaps in preclinical disease modeling
while also providing insight into the biology of a common canine
malignancy, given that OS tumors in both humans and dogs
develop and progress spontaneously alongside a co-evolving
tumor microenvironment and an intact, educated immune
system27,28. This becomes particularly germane given that results
of recent human clinical trials evaluating antibody-based check-
point inhibitors, CAR-T cells, and immunostimulants have been
disappointing and/or difficult to interpret or generalize29,30.
Combining targeted molecular therapies and/or chemotherapies
with relevant immunomodulatory agents presents a new frontier
in treating a disease that currently lacks a clear set of druggable
driving events.

As in humans, biologic samples collected from canine patients
enrolled in clinical trials have the potential to inform the field by
virtue of their standardized diagnostic and therapeutic regimens
and deep clinical annotation. One clear advantage of canine
cancer patients in this context is the ability to enroll treatment-
naïve tumor-bearing dogs into therapeutic clinical trials that
evaluate investigational agents, providing access to patient
materials that represent the ground truth of the disease and a
molecular landscape that is free of treatment-induced perturba-
tions. The work presented here leverages a large cohort of canine
OS samples procured from a prospective, randomized clinical
trial in which over 300 dogs underwent standardized therapy and
clinical monitoring. This dataset is the first of its kind that could

determine if transcriptional profiling of canine OS can identify
distinct molecularly defined patient subsets and/or prognostic
gene signatures among dogs receiving standardized therapy, and
evaluate if and how these signatures are translatable to human OS
using publicly available data.

Herein we provide strong evidence to establish that tran-
scriptomic and clinical patterns identified in canine OS patients
could be applied comparably to human OS. Further analysis
revealed shared cellular processes in both species, suggesting a
transcriptional program that exhibits a rich interplay between
tumor cells and immune cells in the tumor microenvironment.
This provides a springboard for future investigations of com-
parative single-nuclei transcriptomics, epigenomic profiling, and
geospatial transcriptional studies. Further, evidence of shared
cellular processes and associated biology between canine and
human OS primary tumors underpins the value of the dog as a
patient model for human OS and provides opportunities to
explore these pathways as druggable targets in both species.
Further, this dataset allowed the assessment of immune-related
gene signatures, verification of immune cell subtypes within
primary OS tissues, and determination of whether immune cell
quantification within tumors can serve as a surrogate for gene
signature cluster assignment. Moving forward, these data will
assist in the identification of subsets of dogs that may serve as
ideal candidates for specific therapeutic testing. For example,
analysis of immune-related gene signatures may identify subsets
of dogs more apt to respond to specific immunotherapies; or may
indicate that certain immune-targeted therapies could be
rationally combined to improve outcomes. With this under-
standing, we gain a greater appreciation of the comparative
biology of canine and human OS and insight into the factors that
impact patient outcomes.

Results
Canine-derived gene signatures are prognostic in both canine
and human OS. To evaluate the clinical significance of two
previously identified gene signatures (GS-1 and GS-2)21 we
applied these signatures to the National Cancer Institute’s DOG2

dataset and performed K-means clustering (Fig. 1). Independent
of clinical outcome, data was partitioned into two distinct clusters
defined by expression of GS-1 genes (Fig. 2a). Further analysis
revealed that the increased enrichment of GS-1 was associated
with significantly improved DFI (Fig. 2b) and OSv (Fig. 2c) when
compared to the cluster defined by decreased GS-1 enrichment.
As such, these GS-1 clusters were subsequently referred to as the
favorable prognosis (FP) and poor prognosis (PP) groups,
respectively. Similarly, K-means clustering of GS-2 formed clus-
ters (Fig. 2d) that significantly correlated with DFI (Fig. 2e) and
OSv (Fig. 2f).

To evaluate the relevance of the canine GS-1 and GS-2
signatures to human OS we applied the same analysis to the
human TARGET dataset. As in dogs, K-means clustering of the
GS-1 signature resulted in a favorable prognosis and poor
prognosis group as it pertains to progression free survival (PFS)
and overall survival (Fig. 3a–c). However, the groups resulting
from clustering of the GS-2 signature held significance for overall
survival only (Fig. 3d–f). Next, we investigated how the stage of
disease influenced the overall cluster composition within the
TARGET dataset, which contains data derived from primary
tumors of human patients with (n= 20) and without (n= 59)
evidence of macroscopic metastases at diagnosis. With the
application of both GS-1 and GS-2 signatures to non-metastatic
patients, no significant differences in PFS or overall survival were
seen (Supplementary Fig. 1). However, for patients presenting
with metastasis, the GS-1 signature places 5 patients in the FP
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group and 15 clustered in the PP group (Supplementary Fig. 2a).
As expected, both progression free and overall survival were
significantly different (Supplementary Fig. 2b, c). With GS-2
applied to metastatic samples, 4 patients clustered in the FP group
and 16 in the PP group (Supplementary Fig. 2d). The progression
free survival was not significant (p= 0.081), but the overall
survival was (p= 0.044) (Supplementary Fig. 2e, f). This finding
upholds the long-recognized impact of the presence of metastatic
disease at diagnosis as the single most predictive factor for both
canine and human patients with OS31, and underscores the need
to more clearly define mechanisms that link transcriptional
programs and other genomic processes within primary tumors to
the biology of metastatic progression8,14,32.

Transcriptional clusters are enriched for specific cellular pro-
cesses. To provide contextual relevance of the gene signatures,
we performed GSEA using the msigDB hallmarks version 7.5
signatures33. Using the clusters formed using GS-1, 10 path-
ways in the DOG2 (Fig. 4a) and 12 pathways in the TARGET
data (Fig. 4b) were significantly enriched in the favorable

prognosis (FP) group. Furthermore, all 10 significantly enriched
pathways in DOG2 FP group were also significant in the
TARGET FP group, including pathways related to immune
function and inflammation such as interferon alpha/gamma,
complement system, IL2- STAT5 signaling, Kras34, and tumor
necrosis factor signaling. If only the non-metastatic TARGET
samples were considered, 11 of the 12 total pathways had an
FDR of less than 0.05 (Fig. 4c) enriched in the FP group.
Likewise, only 7 pathways had a significant FDR in the TAR-
GET metastatic-only cohort (Fig. 4d). The GSEA analysis based
on the clusters given by GS-2 had all the same significant
pathways as GS-1 but included the reactive oxygen species
pathway for all three datasets and apoptosis for DOG2

(Supplementary Fig. 3). No pathways were significantly enri-
ched in the poor prognosis (PP) group for either signature
(Supplementary Figs. 4, 5).

Differential expression analysis points to overlapping pathways
in canine and human OS. Differential expression analysis fol-
lowed by pathway analysis again pointed to overlapping

RNAseq

Kaplan-Meier
Analysis

Kaplan-Meier
Analysis

GSEA DEG/IPA CIBERSORTx IHC

GS-1/GS-2 K-Means
Clustering

RNAseq ssGSEA DEG ISAK-Means
Clustering

K-Means
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a

b

Fig. 1 Computational approach to mRNAseq datasets. a General workflow for application of GS-1, GS-2 gene signatures, and downstream analyses. mRNA
is filtered down to a gene expression signature followed by K-Means clustering independent of any associated outcome data. Clusters are subjected to
several modes of secondary analysis to discern differences in clinical outcome, differentially expressed genes and pathways, and deconvolution of immune
cell types with immunohistochemical validation in tissue. b General workflow for Iterative Search Algorithm (ISA) signatures devised from canine DOG2

cohort mRNAseq data. K-means clustering is performed on ssGSEA results that are used as input to a secondary DEG analysis. ISA bi-clustering is then
performed on the DEGs, creating new gene signatures. These new ISA signatures are then applied to the human TARGET dataset to determine if the
signatures define clusters with meaningful differences in survival.
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Fig. 2 Canine osteosarcoma gene signatures are prognostic within the DOG2 dataset. a Expression profile across GS-1 clusters on DOG2 data. The two
distinct clusters identified by GS-1 have significantly different Kaplan–Meier curves for disease free interval (DFI, b) and overall survival (OSv, c), both given
in days from diagnosis. Expression profiles across GS-2 clusters on DOG2 data (d). The clusters identified by GS-2 demonstrate significantly different DFI
(e) and OSv (f).
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biological processes and pathways relevant to distinguishing
favorable and poor prognosis groups formed by GS-1. For DOG2

there were 317 DEGs, 220 (69.4%) which were not represented in
GS-1 or GS-2. For TARGET, including all 79 samples, there were
281 DEGs, 233 (83%) not in included in GS-1 or GS-2. Likewise,
for the 59 non-metastatic samples there were 321 DEGs, 270
(84.1%) not included in GS-1 or GS-2. In the 20 metastatic
samples, there were a total of 9 DEGs. Five overlapped with the 79
patient TARGET dataset (IL2RB1, MSA4A, PCED1B, S100A9,
TMEM176B0), two with DOG2 (DOCK2, TMEM176B), and two
were unique to that cohort, EMB, and C11orf87. There were 84
DEGs common to all three datasets (DOG2, TARGET (all
patients), TARGET (non-metastatic patients)), 47 (56%) of which

were not in GS-1 or GS-2. Lists of all DEGs and pathways can be
found in Supplementary Materials datafile 2.

IPA analysis of the 84 DEGs shared between the canine and
human datasets revealed several common immune related pathways
of interest, notably TH1 and TH2 signaling, crosstalk between
dendritic cells and natural killer cells, NFκβ signaling, immunogenic
cell death signaling pathway, and IL-8 signaling (Supplementary
Fig. 6a). In addition to the 84 shared DEGs, many of the DEGs that
were unique to either the DOG2 or TARGET datasets were enriched
for the same IPA pathways (Supplementary Fig. 6b) including PD-1 -
PD-L1 cancer immunotherapy pathway, the IL-10 signaling pathway,
and IL-12 signaling and production in macrophages. Significant
pathways in DOG2 but not in TARGET include the osteoarthritis

Fig. 3 Canine osteosarcoma-derived gene signatures are prognostic in human osteosarcoma. Expression profile of the canine-derived gene signature
GS-1 applied to clusters on TARGET data (human osteosarcomas) (a). The groups identified by GS-1 have significantly different Kaplan–Meier curves for
progression free survival (PFS, b) and overall survival (OSv, c). d The expression profile of the canine-derived gene signature GS-2. In contrast to GS-1, GS-
2 clusters do not have a distinct difference in PFS (e) but do demonstrate significant differences in OSv (f). Median PFS and OSv is given in days from
diagnosis.
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pathway and the PI3K/AKT pathway, which has previously been
implicated in osteosarcoma35. Significant pathways in TARGET but
not in DOG2 include IL-17 signaling, T-cell exhaustion, T-cell
receptor signaling, CD28 signaling in T helper cells, allograft rejection
signaling, and alternative activation of macrophages pathway.

Distinct differences in macrophages, B cells, and T cells define
cluster populations. CIBERSORTx was used to infer the cellular
composition of the immune infiltrates within tumor tissues, using
the bulk mRNA sequencing data (Fig. 5, Table 1). The most
notable similarity between the DOG2 and the TARGET dataset

Fig. 4 Transcriptionally-defined clusters are enriched for specific cellular processes. Normalized enrichment scores for gene set enrichment analysis
(GSEA) of the top 20 pathways over-represented in the favorable prognosis group when compared to the poor prognosis group when clustered by GS-1 in
(a) DOG2, (b) TARGET, (c) TARGET Non-metastatic patients, and (d) TARGET metastatic patients. Dot size is representative of the number of genes in
the pathway and color is indicative of FDR-q value calculated by software, red line is indicative of significance cutoff. Similar plots for GS-2 and pathways
over- represented in the poor prognosis group can be found in Supplemental Figs. 3–5.
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occurs for M0 and M2 macrophages. In both datasets, M0
macrophage CIBERSORT scores are significantly higher in the PP
group than in the FP group (Fig. 5a, b). This contrasts with the
M2 macrophage scores where a significantly higher score is seen
in the FP group when compared to the PP group (Fig. 5c, d).
Additionally, CD8+ T cells, naïve CD4+ T cells, follicular helper
T-cells, and M1 macrophages have significantly higher scores in
the FP group and lower scores in the FP group within both DOG2

and TARGET datasets. Furthermore, within the DOG2 FP cohort,
we see a high correlation between M1 macrophages, CD8+

T cells, activated memory CD4+ T cells, and gamma delta T-cells
(Fig. 5e) which is not present in the PP group (Supplementary
Fig. 7a), emblematic of an anti-tumor adaptive immune response
primed by activated memory T-cells and orchestrated through
M1 macrophages and highly cytotoxic CD8+ and gamma delta
T-cells. Similarly, within the TARGET cohort, the correlation
between NK cells, follicular helper T-cells, CD8+ T cells, and
activated dendritic cells (Fig. 5f) suggests a strong cytotoxic
lymphocyte response in the FP group, which is not present in the
PP group (Supplementary Fig. 7b).

Fig. 5 Osteosarcoma sub-populations are defined by distinct immune cell populations. M0 Macrophage CIBERSORTx scores are significantly higher in
the poor prognosis (PP) group compared to the favorable prognosis (FP) group in (a) DOG2 and (b) TARGET. This is the opposite of what is observed for
M2 macrophages where higher CIBERSORTx scores are consistently seen in the FP group in (c) DOG2 and (d) TARGET. Spearman correlations between
CIBERSORTx scores in the FP group for DOG2 (e) suggest an adaptive immune response characterized by highly coordinated populations of T-cells.
Likewise, the same can be seen for cytotoxic lymphocyte response (activated NK and dendritic cells, T-helper cells, and CD8 T cells) in the FP TARGET
group (f).
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Immunohistochemical analysis suggests gene signature as
surrogate for immune infiltrate. To determine whether relative
immune cell abundance could be confirmed in canine OS tissues,
specific immune cell types were labeled using immunohis-
tochemistry (Supplementary Tables 1, 2). A comparison of the
immunohistochemical analysis to the GS-1 signature can be seen
in Fig. 6a. In total, the immunohistochemical review of canine OS
(Fig. 6b) confirmed the presence of several immune cell types in
the majority of OS assigned to the FP group including T cells
(CD3), B cells (CD20, MUM1), and macrophages (CD204, Iba1).
Furthermore, a comparison between representative samples of the
FP and PP cohorts revealed that the FP group was significantly
more enriched for CD3, CD20, CD204, CD3, CD45RA, Iba1, and
MUM 1 labeling (Fig. 6b). Collectively, these findings suggest that
immune-enriched tumors from the DOG2 canine OS cohort are
concurrently infiltrated by multiple immune cell subtypes.
Finally, five human OS tumor samples labeled with CD3, CD20,
and CD204 demonstrate infiltration of human OS by T cells, B
cells, and macrophages, respectively (Fig. 6c). As seen in canine
OS tissues, CD204+ cells are numerous and are observed
throughout the human OS tissue.

Additional analyses reveal novel transcriptionally-defined
subtypes. The signatures GS-1 and GS-2 taken from Gardner et
al. and assessed herein provided evidence that a predictive gene
signature could be independently found in canine osteosarcoma
data and additionally be equally predictive in comparable human
osteosarcoma data. This motivated us to ask, if first, we could
independently derive predictive signatures directly from the
DOG2 dataset that could be applied to the TARGET dataset and,
second, if these signatures could outperform GS-1/GS-2, parti-
cularly in the non-metastatic TARGET cohort. The comparative
analysis of DOG2 canine data, which is entirely derived from
canine patients free of macroscopic metastasis at diagnosis, is
most closely clinically related and has the most translational

relevance to non-metastatic human patients represented in
TARGET. Further, this is the patient population for which
therapeutic stratification and additional prognostic biomarkers
are needed to improve beyond neoadjuvant chemotherapy-
induced % necrosis in humans, which does not reliably identify
all patients at high risk for metastatic progression36–38 Single
Sample Gene Set Enrichment Analysis using the 52 hallmark gene
sets from the mSigDB on DOG2 followed by k-means clustering
identified two distinct clusters (Fig. 1b). Kaplan–Meier analysis
yielded curves for each cluster with significantly different DFI and
OSv (Supplementary Fig. 8a, b) for these canine patients. Dif-
ferential gene expression analysis between the two groups iden-
tified 259 differentially expressed genes. Interestingly, 19 of those
genes overlapped with GS-1 and 61 overlapped with GS-2, again
highlighting the relevance of these previously identified signatures
within the DOG2 dataset. Additionally, IPA analysis of the DEGs
returned 45 significant pathways (Supplementary Fig. 8c). Of
these, 22 pathways are related to inflammation or immune
function and 36 overlapped with the IPA analysis of DEGs
associated with GS-1. The large overlap in pathways is not sur-
prising since 173 genes are also in the DEG analysis between FP
and PP groups, underscoring the underlying immune-focused
theme in the DOG2 data that is associated with prognosis.

Given that 259 genes from our signatures, including those in
GS-1 and GS-2, comprise multiple immune processes, we sought
to identify granular subsets of genes and samples in the data by
employing bi-clustering using iterative search algorithm (ISA,
approach outlined in Fig. 1b). The ISA algorithm yielded 4 bi-
clusters covering a total of 103 genes (ISA 1: 30, ISA 2: 19, ISA 3:
39, ISA 4: 15) (Supplementary Table 3). While a definitive pattern
of overexpression can be easily observed for each bi-cluster over
the four ISA-derived gene signatures (Fig. 7a–d), only ISA sample
bi-cluster 4 yielded a significant difference in DFI in canines upon
Kaplan–Meier analysis (Fig. 7h). In addition, although not
meeting a strict significance criterion of p < 0.05, ISA sample bi-
cluster 3 shows noticeable difference in DFI at earlier time points

Table 1 Mean CIBERORTx scores, expressed as % of cells, between the favorable (FP) and poor (PP) response groups for the
TARGET and DOG2 datasets.

Mean FP
TARGET

Mean FP
DOG2

Mean PP
TARGET

Mean PP
DOG2

Adjusted P-Value
TARGET

Adjusted P-Value
DOG2

B cells naïve 0.65% 0.72% 1.47% 2.22% 0.269426 0.001869
B cells memory 0.034% 1.55% 0.16% 0.79% 0.132465 0.000913
Plasma cells 0.27% 1.50% 0.56% 3.00% 0.045099 0.000105
T cells CD8 4.36% 8.66% 0.79% 2.88% 0.011562 2.66E-08
T cells CD4 naive 0.19% 0% 0.59% 0.16% 0.045099 0.005408
T cells CD4 memory resting 9.33% 1.73% 10.6% 1.82% 0.392358 0.238212
T cells CD4 memory activated 1.26% 4.75% 1.81% 1.25% 0.130614 4.62E-06
T cells follicular helper 1.18% 0.17% 0.65% 0.37% 0.045099 0.048171
T cells regulatory 1.69% 2.78% 0.91% 3.37% 0.071562 0.079914
T cells gamma delta 1.44% 2.14% 1.12% 0.26% 0.317411 0.038481
NK cells resting 0.35% 17.10% 1.16% 17.4% 0.177486 0.318437
NK cells activated 2.36% 0% 1.75% 0% 0.13013 1
Monocytes 0.40% 0.64% 0.24% 0.89% 0.071562 0.257392
Macrophages M0 33.74% 17.65% 51.01% 26.06% 1.20E-06 6.63E-08
Macrophages M1 4.60% 0.19% 1.58% 0.0015% 6.69E-05 4.97E-06
Macrophages M2 33.68% 10.91% 20.18% 6.65% 6.69E-05 1.47E-06
Dendritic cells resting 0.65% 2.14% 0.39% 1.56% 0.045099 0.444684
Dendritic cells activated 0.11% 1.48% 0.16% 1.62% 0.317411 0.361528
Mast cells resting 3.38% 1.05% 4.59% 0.077% 0.071562 0.009154
Mast cells activated 0.21% 23.85% 0.14% 29.01% 0.317411 0.005901
Eosinophils 0% 0.012% 0.013% 0.0013% 0.276134 0.35374
Neutrophils 0.12% 1.02% 1.17% 0.56% 0.119924 0.043345

The Benjamini Hochberg adjusted p-value indicates significance between the FP and PP groups in the mean CIBERSORTx score.
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that results in a 14-week difference in median survival (Fig. 7g).
Given the rapid progression to macroscopic metastatic disease
that often occurs in the canine within the first 6 months after
diagnosis with the current standard of care, this could carry
significant clinical importance for veterinarians.

We wanted to further determine if these new signatures had any
relevance in the TARGET data and specifically in the non-metastatic
cohort, which is the closest human patient comparator to the canine
OS patients that comprise DOG2. We applied a similar strategy as
with the GS-1 and GS-2 signatures, using K-means clustering to
cluster the samples based on the gene expression data. Based on this
clustering, Kaplan–Meier analysis was performed between clusters to

ascertain if the given gene signature was associated with a significant
difference in patient outcomes. Three of the signatures produced two
distinct clusters: ISA gene signature 1, ISA gene signature 2, and ISA
gene signature 3 in both the entire TARGET dataset (Fig. 8) and the
non-metastatic TARGET patient subset (Fig. 9). Interestingly,
despite not showing any prognostic value in canine, ISA gene
signature 1 was prognostic for progression free survival in the
TARGET data, specifically only in the non-metastatic patients
(Fig. 9d). Likewise, ISA signature 3 was significantly prognostic in
both the entire TARGET dataset (Fig. 8f) and non-metastatic
patients (Fig. 9f). ISA gene signature 4 produced unstable clusters,
the clusters and the differences between Kaplan-Meier curves would

Fig. 6 Immunohistochemical staining supports use of gene signatures as surrogate for immune infiltrates in canine osteosarcoma. For
immunohistochemical (IHC) analysis, a subset of cases from the GS-1 Poor Prognosis (Green) and Favorable Prognosis (Orange) clusters were selected.
a Based on IHC labeling of antibodies listed along the x-axis, cases were categorized using a 3 point scale as immune high (3+), immune intermediate
(2+), or immune low (1+). Iba1 was not scored in one sample (identified in gray) due to poor tissue sectioning. All other tissues were included as indicated.
The adjacent heatmap shows gene expression for the IHC cases based on GS-1 hierarchical clustering of all samples and illustrates the relationship
between the GS-1 clusters and IHC category. Asterisks indicate significant differences between clusters in IHC quantification with *p < 0.05 and
**p < 0.005. b Example images of the IHC labeling from the Poor Prognosis (Green) and Favorable Prognosis clusters (Orange). c Example images of IHC
labeling for CD3, CD20, and CD204 in human OS samples. Scale bar= 50 µm.*IHC labels for Figs. B and C represent IHC chromogen (either red or brown)
used to label positive cells.
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change drastically based on the inherent stochastic nature of the K-
Means algorithm. However, Cox regression analysis on genes in ISA
signature 4 revealed that Iroquois homeobox 1 (IRX1) was
prognostic of progression free survival with higher expression
ultimately leading to poor outcomes (Supplementary Fig. 9a), which
has been previously reported in an unrelated human OS dataset as
well as predicting lung metastasis in murine models39. This behavior
is mirrored in the canine (Supplementary Fig. 9b).

An essential question to this analysis is whether these
signatures have any biological significance that points to
differences among the various populations of patients and/or
tumor cells and associated microenvironments. ISA gene
signature 3 was most associated with immune processes including
T-cell binding and response (CD2, CD3E, CD6, CXCR6,
CLEC2D40, GZMB), Interferon Gamma Response (CLEC2D41,
GBP1, GBP5), Natural Killer Cells (CLEC2D40, GZMB, GZMK),

Fig. 7 Bi-clustering defines additional gene signatures and sub-populations in canine osteosarcoma. DOG2 gene expression profiles for (a) ISA
signature 1, (b) ISA signature 2, (c) ISA signature 3, and (d) ISA signature 4. Corresponding Kaplan–Meier curves of ISA sample bi-cluster versus all other
samples for ISA signature 1 (e), ISA sample bi-cluster 2 (f), ISA signature 3 (g), ISA signature 4 (h). Y-axis is Overall Survival, with medians reported in
days from diagnosis.
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and IL2RB and IL2RG which are involved in many processes
including but not limited to IL-2 signaling, IL-15 signaling, and
IL-9 signaling. Several genes in ISA gene signature 1 relate to
neutrophil motility (LSP142, CXCL1443, SELP44), dendritic cell
regulation (ACKR245, TMEM167A46, CXCL1447), macrophage
regulation (ACKR245, CFH48), inhibition of tumor cell migration
(SEMA3G49), and lung tumor suppressor (GPRC5A50). Despite
ISA gene signature 2 not being prognostic, it clearly exhibited
expression patterns that could be seen in both humans and
canines. In addition, many genes in ISA gene signature 2 have
been associated with the DMD gene in mice including MYL1 and
MYH251, DES52, MYBPC1, MYH1, TMOD4, PYGM, and
PDK453. This might be of particular importance in the same
manuscript from which GS-1 and GS-2 were derived. In this
work, Gardner et al. identified mutations in dystrophin (DMD) in
2 of the 24 dogs analyzed by WGS21. ISA gene signature 4 does
not necessarily present with any particularly cohesive theme

despite being the largest signature. It contains two collagen genes
(COL11A2, COL2A1) several solute carrier genes (SLC8A3,
SLC13A5, SLC36A2) which have been shown to be prognostic in
osteosarcoma54, and genes involved in Wnt signaling
(APCDD1L, BARX1) which might be significant given the
oncogenic role Wnt signaling plays in osteosarcoma55,56.

Discussion
The 5-year survival rate for humans with localized OS stands
stagnant at approximately 70%, underscoring the need for infor-
mative animal models to assist with novel therapeutic discovery
and development efforts1–3,57,58 Similarly, despite the use of mul-
timodal therapy, the prognosis for canine OS is uniformly poor,
with median survival time of 5 to 13 months for patients pre-
senting with localized disease59,60. Some of these dogs will be
enrolled in clinical trials aimed at improving outcomes in canine

Fig. 8 Novel canine ISA-derived gene signatures are prognostic in human osteosarcoma. TARGET gene expression profiles for (a) ISA gene signature 1,
(b) ISA gene Signature 2, and (c) ISA signature 3. Corresponding Kaplan–Curves for K-Means clusters formed from (d). ISA gene signature 1, (e) ISA gene
signature 2, and (f) ISA gene signature 3. *ISA gene signature 4 was omitted as it did not form consistent clusters. Y axis is Progression Free Survival.
Medians are reported in days from diagnosis.
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and human OS patients. One of the main challenges for OS, as
with most cancers, is determining whether treatment and outcome
may be informed by identifying sub-populations of patients with
different underlying tumor biology and potential unique sensitiv-
ities to specific therapies. Previous studies have highlighted prog-
nostic factors such as histological subtype61, histological grade62,
tumor location63, and serum alkaline phosphatase levels62,64.

Here we show that transcriptional signatures derived com-
pletely in canine osteosarcoma, both previously reported as well
as those defined de novo through a ssGSEA and ISA approach,
divide both canine and human data into two distinct populations.
When all TARGET data is considered, both progression free
survival and overall survival is significantly associated with the
cluster assignment determined by these gene signatures.

However, the presence of metastatic disease eclipses any pre-
dictive capacity for either gene signature applied herein. This is
not surprising given the dismal prognosis for advanced stage
disease and the refractory nature of macroscopic metastasis to
therapy. The larger sample size and uniform nature of the DOG2

cohort may also improve predictive signature discovery compared
to TARGET – which encompasses human patients that likely
underwent a much wider variety of therapies and non-
standardized disease monitoring protocols. However, from the
standpoint of survival analyses, the issue of humane euthanasia in
dogs makes assessment and comparative evaluation of overall
survival between dogs and humans problematic as owners’ must
decide whether to pursue additional therapy vs. euthanasia when
faced with progression of their pet dog’s disease. One way to

Fig. 9 Novel canine ISA-derived gene signature are prognostic for progression free survival in human osteosarcoma in patients without metastatic
disease at the time of diagnosis. TARGET (non-metastatic patients) gene expression profiles for (a) ISA gene signature 1, (b) ISA gene Signature 2, and
(c) ISA signature 3. Corresponding Kaplan–Curves for K-Means clusters formed from (d) ISA gene signature 1, (e) ISA gene signature 2, and (f) ISA gene
signature 3. *ISA gene signature 4 was omitted as it did not form consistent clusters. Y axis is Progression Free Survival. Medians are reported in days from
diagnosis.
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improve the translation of canine clinical trials is to assess disease
free interval (DFI) as the primary clinical endpoint, which is an
invaluable facet of the DOG2 dataset. Critically, as stated pre-
viously, metastatic progression is of vital relevance to both species
since the development of metastases remains the major prog-
nostic factor in human and canine patients.

If we use DOG2 as a distributional model, then based on the
number of human metastatic samples in the TARGET dataset
(n= 20), the expected number in the FP group would be 6.3 and
the expected number in PP group is 13.7. Comparing this to the
real values given by GS-1 of 5 and 15 this would yield a similar
distribution of patients in the FP and PP groups as tested by a chi
square goodness of fit test (χ2= 0.391, p= 0.531). Collectively
this analysis provides evidence that there is a population of
human OS in which these gene signatures might be prognostic as
they are in canines. Further, the transcriptional profiles are
conserved across both DOG2 and TARGET data strongly sug-
gesting an underlying common biology. The comparative
approach provides significant advantages for the discovery of
predictive factors that may be applicable to OS, bolstered by the
commonality of the disease in the pet dog population, the high
rate of metastasis, and the ability to conduct large-scale canine OS
clinical trials with concomitant collection of biologic specimens65.
If a larger cohort of prospectively collected human data with
harmonized treatment and follow up measures was available,
such as from a clinical trial as in the DOG2 cohort, the approach
here may have more predictive power for humans. However, the
inherent heterogeneity of the disease and differences between
canine and human tumor biology must also still be considered in
this context.

Additional transcriptional analysis such as GSEA, CIBER-
SORTx, and differential expression, supported by immunohisto-
chemical analysis in DOG2, suggests in both DOG2 and TARGET
the importance of immune processes and immune cells in disease
progression and outcome. GSEA revealed enrichment in the FP
group of several pathways involved in innate immunity and
inflammation such as interferon response and complement sys-
tem. This is supported by the work of Scott et al. and Wan et al.
who have previously shown that immune based gene signature
equated to better prognosis in humans66,67. Additionally,
according to estimates acquired using CIBERSORTx, our results
suggest that differences in macrophage, plasma cells, and T-cell
populations possibly influence disease progression and survival in
both canine and human OS. However, a notable difference
between DOG2 and TARGET was observed in B cell populations
namely an increase in B cells, supported by immunohistochem-
istry, in the FP group of DOG2 that was not observed in
TARGET.

Although computational algorithms such as CIBERSORT and
CIBERSORTx have been used in canine studies25,68,69, it is
important to note that these algorithms have largely been
developed and tested with respect to human data to deconvolute
bulk mRNAseq data into relative representations of cellular
populations. Although canine and human cells are highly com-
parable with respect to cellular markers, there are some differ-
ences, such as CD4 positivity of canine neutrophils, that could
affect such computational analysis70,71. To this point, CIBER-
SORTx estimated a high proportion of mast cells within our
canine osteosarcoma tissues. However, we were unable to confirm
the presence of mast cells using toluidine blue (Supplementary
Fig. 10), a histochemical staining technique that has been used to
quantify mast cells in decalcified bone lesions in other
studies72–75. Interestingly, mast cells have been described in
human OS samples76 and made up a significant proportion of
cells in our CIBERSORTx results obtained from human TARGET
data (4.5%, the fourth most abundant cell type). Osteosarcomas

are heterogeneous tumors thus regional differences in the tumor
tissue submitted for RNAseq and the FFPE block can occur;
nonetheless, our data suggest that further work is needed to
delineate the potential roles of mast cells in the context of
osteosarcoma and to validate how the combination of the
LM22 signature and the CIBERSORTx algorithm behaves speci-
fically within canine osteosarcomas that develop alongside a
naturally co-evolving immune microenvironment.

The character and robustness of the immune cell response are
known to play a critical role in canine cancer. For example, dogs
with OS are reported to have significantly fewer circulating Tregs
while a decreased CD8+ / Treg ratio is associated with poor
survival77. Likewise, in human OS, higher levels of CD8+ T-Cells
have been associated with better outcomes78–80 and are subject of
new immunotherapies81. Furthermore, in an immunohisto-
chemical analysis of 30 canine OS tumors, a higher number of
CD204-positive cells was associated with a significantly longer
DFI82. Additionally, Das et al. reported that 22 immune related
gene-sets were enriched in dogs with longer DFIs in a small
sample set of 26 dogs25. These and the present study underscore
the importance of the immune response in cancer progression.

The tumor microenvironment is host to several immune cells
acting in concert, among these are the tumor associated macro-
phages (TAMs) and they have gained particular interest within
the context of OS83,84. The data we present certainly points to
macrophage biology that is common to both canine and human
OS tumors. For instance, with respect to the CIBERSORT ana-
lysis, M0 and M2 macrophages make up a significant proportion
of the cell population in both DOG2 and TARGET. They also
follow the same pattern in which M2 macrophages are more
abundant in the FP group and more M0 macrophages are seen in
the PP group. Additionally, with respect to M1 macrophages,
while they are present in a much smaller fraction, the fraction in
the FP group is much greater: 13x for DOG2 and 3x for TAR-
GET. In addition to the elimination of tumor cells through
phagocytosis, M1 macrophages are thought to stimulate and
enhance the cytotoxicity of other leukocytes through increased
tumor antigen presentation and promotion of pro-inflammatory
cytokines85,86. Alternatively, M2 macrophages are associated with
immune suppression, decreased antigen presentation, growth
factor release, and promotion of angiogenesis; all thought to be
conducive to cancer progression86,87. However, in OS, there has
been mixed evidence as to how TAMs influence overall patient
outcomes. Much of the literature concerning the relationship
between TAMs and OS suggests a correlation between overall
macrophage infiltration, consisting of both M1 and M2 pheno-
types, and increased progression free interval or overall survival.
Deng et al. used the CIBERSORT algorithm to show better overall
survival with increased M1 and M2 macrophage infiltration.
Similarly using genomic profiling and IHC, Buddingh et al.
established in a cohort of 63 patients that total TAM, both M1
and M2 phenotype, were associated with better outcome88. An
additional study that used CD163 to quantify TAM in 124 human
OS tumors found that increased TAMs resulted in longer pro-
gression free survival and overall survival89 which is com-
plemented by a similar canine study that reported longer DFIs
with increased TAMs82.

Our transcriptomic analysis indicates that M2 macrophages are
abundant in canine OS, with IHC detection of numerous mac-
rophages expressing CD204, a macrophage scavenger receptor
highly expressed in M2 macrophages in humans90. M2 macro-
phages have been associated with poor outcomes in multiple
other tumor types91–93; however, DOG2 data suggest that having
a greater number of M2 macrophages might be beneficial. The
answer might be unique to the bone itself, wherein macrophages
and osteoclasts are both derived from monocytes, while IL-4 and
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IL-13 needed for the differentiation of a monocyte into M2
macrophage are inhibitors of osteoclast formation94. Therefore, it
is possible that a shift in monocyte differentiation to favor M2
macrophages reduces osteoclast formation and thereby inhibits
bone resorption which might be essential to tumor development.
Furthermore, M2 macrophages are known or produce a number
of cytokines that actively regulate osteoclasts including IL-10,
BMP-2, TGF-β1, OPN, and 1, 25 dihydroxy vitamin D3

95. There
is some evidence that suggests inhibiting osteoclast formation
decreases local tumor growth and increases survival. For example,
Lamoureux et al. showed in a rodent model that enhanced
osteoprotegrin (OPG), which also inhibits osteoclast formation,
led to decreased local tumor growth and a 4-fold increase in
mouse survival96. Additionally, Ohba et al. established that
osteosarcoma growth directly correlates with tumor-induced
osteolysis and activation of osteoclasts in vivo97. Furthermore, the
high abundance of CD204-positive macrophages occurred con-
currently with elevated B and T cell tumor infiltration which may
indicate a higher pan-immune cell response is associated with
improved prognosis, regardless of the macrophage subtype. The
importance of an effective immune response is also supported by
the relative abundance of immune cell types in canine OS, namely
that 3 of the 4 cell types with higher relative abundance in the PP
group (GS-1 signature) are naïve or non-activated (naïve B-cells,
naïve CD4 T, M0 macrophages) which may indicate an inade-
quate anti-tumor immune response.

We have shown that many of the genes put forth in Gardner
et al. can be independently derived directly from DOG2 data
using ssGSEA and ISA-based bi-clustering, and these genes reflect
a difference in immune processes between two distinct patient
populations. However, as we generally characterize the difference
between groups as an immune hot and immune cold, this
dichotomy incompletely represents the spectrum of patient
samples. Using different clustering methods led to four new gene
signatures with foundations that suggest relevant biological dif-
ferences. Notably, unlike Gardner’s signatures, two of the sig-
natures were prognostic in the non-metastatic cohort TARGET
data. However, these signatures were not significantly prognostic
in the DOG2 data. This might be best reconciled in ISA bi-cluster
and gene signature 3 which shows a clear deviation at early
timepoints in the DOG2 data demonstrating the ability of gene
signatures to detect disease progression with early metastatic
failure in canine OS. Considering that ISA gene signature 4 is
composed of several genes related to T-cell processes, it is possible
that patients with this signature can illicit an anti-tumor immune
response, but as time progresses, processes such as T-cell
exhaustion become more dominant. Analysis of longitudinal
datasets collected from the same patient could help support this
hypothesis. The dependence on T-cells might explain why this
signature performs better in non-metastatic TARGET samples
than GS-1 or GS-2 as greater T-cell activity might discourage the
development of metastasis. While ISA gene signature 2 does not
have the prognostic capacity, it does point to a possible common
population in human OS and canine OS with DMD mutations,
which will be investigated through comparative analysis of mat-
ched whole-genome sequencing datasets. In terms of ISA gene
signature 4, we show agreement with earlier findings39 that
overexpression of IRX1 leads to poor prognosis both in humans
and canines. ISA gene signature 1 was derived from our canine
patients and identified a similar expression pattern in both the
canine and human datasets; however, while it is prognostic in
human OS, it fails to be in canine. This supports the potential for
canine tumor-derived signatures to yield clinical relevance for
human patients. The lack of prognostic significance in our canine
samples may reflect the degree of genomic and transcriptomic
complexity of the disease or the disparate treatment approach in

dogs vs. humans that may influence the ability to identify gene
signatures with prognostic capacity in both species. For example,
canine patients that comprise the DOG2 cohort have undergone
limb amputation and up to 4 cycles of carboplatin chemotherapy,
with very few dogs undergoing additional treatment after the
detection of metastatic progression. This is in stark contrast to
humans with OS, who often undergo surgical metastasectomy as
well as repeated rounds of salvage chemotherapy if disease pro-
gression occurs. Further, euthanasia is the most common cause of
death in dogs and is often a reflection of the owners’ wishes rather
than the extent of the disease. This may be further compounded
by a shorter lifespan which can preclude the identification of
significant differences in OS between populations. For these
reasons, in the comparative oncology context, emphasis should be
placed on identifying factors that have predictive value for
disease-free intervals rather than overall survival.

In this study, we have provided evidence that distinct differ-
ences in immune cell populations result in significant differences
in outcomes in canine OS patients. Applying the same analysis to
the mRNA-Seq portion of the TARGET dataset we were able to
provide strong evidence to establish that these transcriptomic and
clinical patterns identified in canine OS patients could be applied
comparably to human OS. Further analysis revealed shared cel-
lular processes in both species, suggesting a transcriptional pro-
gram that exhibits a rich interplay between tumor cells and
immune cells in the tumor microenvironment. This provides a
springboard for further investigations of comparative single-
nuclei transcriptomics and geospatial transcriptional profiling.
Further, evidence of shared cellular processes and associated
biology between canine and human OS primary tumors under-
pins the value of the dog as a patient model for human OS and
provides opportunities to explore these pathways as druggable
targets in both species. Furthermore, the canine patient as a
preclinical OS model is bolstered by the higher annual incidence
of OS in dogs compared to people. From a purely computational
standpoint, increased volume and availability of canine -omics
data could allow computational scientists to discover new ther-
apeutic targets and treatment strategies that could then be directly
applied to human OS. Canine clinical trials and the valuable data
they provide will be extremely beneficial to researchers and
clinicians, both in the veterinary and medical communities, by
improving our understanding of the disease and advancing the
development of effective treatments. Such foundational ground-
work is an essential aspect in determining how future oncology
clinical trials assessed in pet dogs can best be leveraged to benefit
human OS patients.

Methods
Demographic and clinical outcome data, inclusive of canine patient demographics,
tumor location, and serum alkaline phosphatase (ALP) status was curated from the
canine clinical trial patient cohorts enrolled in the National Cancer Institute’s
Comparative Oncology Trials Consortium (COTC) 021/022 clinical trials65.
(Supplementary Tables 4, 5). Privately-owned pet dogs, which varied in age, breed,
and sex, were enrolled at participating COTC veterinary academic institutions,
with each institution maintaining compliance with its own Institutional Animal
Care and Use protocol for the clinical trial, which contained uniform trial proce-
dures and a harmonized clinical care/monitoring schedule. This cohort of canine
patients is henceforth referred to as DOG2 (Decoding the Osteosarcoma Genome
of the Dog) and consists of 324 dogs65. All tumor biopsies were obtained prior to
treatment and were evaluated by anatomic veterinary pathologists at participating
COTC institutions (https://ccr.cancer.gov/comparative-oncology-program/
consortium). After tumor sample QA/QC and medical record review, 186 primary
tumors were moved forward for analysis. All dogs had a confirmed diagnosis of
appendicular osteosarcoma and no evidence of macroscopic metastatic disease
based on standard staging methods and no prior treatment. All dogs underwent
amputation of the affected limb and subsequent randomization into one of two
treatment arms: (1) adjuvant carboplatin alone (n= 93; standard of care/SOC) or
(2) adjuvant carboplatin plus rapamycin (N= 93; SOC+ rapamycin). Significant
differences in outcome between the two different treatment arms were not
observed (Supplementary Fig. 11). The TARGET dataset was accessed through the
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National Cancer Institute Genomic Data Commons at https://portal.gdc.cancer.
gov/98. A total of 88 RNA-SEQ files were downloaded and compiled into a single
data matrix. Corresponding clinical data was available for 85 of 88 specimens. The
RNA-seq data from 6 specimens were excluded because they had fraction exon and
coding bases less than 0.5 and an intergenic rate greater than or equal to 0.3,
leaving RNA-seq data from 79 human specimens suitable for downstream analysis.

Nucleic acid isolation. RNA was isolated from canine frozen tumor tissue in
RNAlater using Qiagen Allprep DNA/RNA Mini Kit (Cat#80204). The total RNA
quality and quantity was assessed using Nanodrop 8000 (Thermofisher) and
Agilent 4200 Tapestation with RNA Screen Tape (Cat# 5067-5576) and RNA
Screen Tape sample Buffer (Cat#5067-5577). All samples forwarded for mRNA
sequencing had a RIN > 8 and a total RNA quantity > 100 ng.

Library Preparation and mRNA sequencing. Between 100 ng to 1ug of total RNA
was used as the input for the RNA sequencing libraries. Libraries were generated
using the TruSeq Stranded mRNA library kit (Illumina) according to the manu-
facturers protocol. The libraries were pooled and sequenced on NovaSeq S1 using a
2 × 150 cycle kit. The HiSeq Real Time Analysis software (RTA v.3.4.4) was used
for processing raw data files. The Illumina bcl2fastq2.17 was used to demultiplex
and convert binary base calls and qualities to fast format. The samples had 44 to 61
million pass filter reads with more than 91% of bases above the quality score of
Q30. Reads of the samples were trimmed for adapters and low-quality bases using
Cutadapt. The trimmed reads were mapped to the CanFam4 reference genome
(GSD_1.099 from NCBI) using STAR aligner (version 2.7.0 f) with two-pass
alignment option. RSEM (version 1.3.1) was used for gene and transcript quanti-
fication based on the CanFam4 GTF file. The average mapping rate of all samples
was 83% with unique alignment above 66%. There were 13.13–26.26% unmapped
reads. The mapping statistics were calculated using Picard software. The samples
had between 0.01–0.76% ribosomal bases. Percent coding bases were between
58–71%. Percent UTR bases were 10–16%, and mRNA bases were between 75–82%
for all the samples. Library complexity was measured in terms of unique fragments
in the mapped reads using Picard’s MarkDuplicate utility. The samples had
48–78% non-duplicate reads. In addition, the gene expression quantification ana-
lysis was performed for all samples using STAR/RSEM tools.

Computational methods. For the DOG2 dataset, filtering was performed to
remove low count genes using the R function filterByExpr of the edgeR package
using the parameters (min.count= 10, min.prop= 0.5, large.n= 5), leaving 13408
of 37952 probes. For the TARGET dataset, genes denoted as protein coding or
polymorphic pseudogene were used, leaving 20010 total genes. Each dataset was
then normalized using quantile normalization using the R package
normalize.quantiles100. The gene signatures applied herein were derived from
differential expression analysis between canine OS tumors and a canine reference
osteoblast as outlined in Gardner et al.21. After filtering the DOG2 dataset, 87% (27
of 31) of the genes in the first signature (GS-1) and 58.1% (157 of 270) of the genes
in the second signature (GS-2) remained. Similarly, almost all the genes in GS-1
and GS-2 present in DOG3 were conserved in TARGET except for 2 canine specific
genes. Clustering analyses were performed using packages accessible through
Python 3.8.3. (Fig. 1a). K-means clustering was performed using Scikit-learn ver-
sion 0.23.1. Clustering was done independent of any associated clinical outcomes.
The optimal number of clusters in the datasets was determined by ranging k from 2
to 6 and selecting the number of clusters with the maximum silhouette score101.
Kaplan–Meier curves were constructed for each cluster and compared using the
survminer package version 0.4.9 using R version 4.0.3. Gene set enrichment ana-
lysis (GSEA)102 was performed using version 4.1.0. using molecular signatures in
the msigDB hallmarks version 7.533. For differential expression analysis raw gene
expression was first filtered for low counts by the filterByExpr package using the
parameters (min.count= 10, min.prop= 0.5, large.n= 5) the data was then nor-
malized using the trimmed mean of m-values (TMM) method103 differential genes
were then calculated using the Limma-Voom pipeline104 of the edgeR R package.
To determine pathway enrichment, DEGs that met a cutoff criterion of a fold
change greater than 3 and an adjusted p-value less than 0.05 were used as input to
Qiagen Ingenuity Pathway Analysis (IPA)105. Virtual immune cell profiling was
carried out using the CIBERSORTx algorithm106, https://cibersortx.stanford.edu/
index.php, on non-log transformed TPM count data using the LM22 leukocyte
gene signature from Newman et al.107. P-values for the CIBERSORTx results were
calculated based on 100 random permutations and samples with a p-value greater
the 0.05 were removed from further analysis. The CIBERSORTx scores for each cell
type were evaluated between cluster groups using a Mann–Whitney U-test.

We then sought out to devise novel gene signatures beyond what was previously
reported in Gardner et al. Single Sample Gene Set Enrichment Analysis
(ssGSEA)108 was performed using version 10.1.0 using Gene Pattern web server as
follows109 (Fig. 1b). Low gene counts were filtered using filterByExpr
(min.count= 10, min.prop= 0.5, large. n= 5) and normalized using (TMM)103 by
the calcNormFactors function in the edgeR package and the Log 2 transformed
counts per million leaving a data matrix 186 samples by 13408 probes. The few
probes that mapped to the same gene were averaged, while several of the

uncharacterized probes were removed because of ambiguity in naming
conventions. This left a final data matrix of 186 samples by 13164 genes. Using the
hallmark gene signatures33 in the mSigDB, ssGSEA was performed resulting in a
transformed representation of the data. With this transformed data matrix K-
Means clustering was performed using Scikit-learn version 0.23.1. The optimal
number of clusters in the datasets was determined by ranging k from 2 to 6 and
selecting the number of clusters with the maximum silhouette score101. Based on
the clusters formed in the previous step DEG analysis was performed using the
limma-voom pipeline104 of the R edgeR package version 3.32.1. Bi-clustering was
performed on the DEGs using the iterative search algorithm (ISA). ISA requires
initial seeding vectors both on genes and samples. These vectors were generated by
first doing hierarchical clustering using the hclust function in R with the method
set to ward.D resulting in 10 gene clusters and 7 sample clusters. From these
clusters, 3 samples in each cluster were selected randomly and used to create the
seeding vectors. Because ISA is stochastic in nature, the results can vary based on
seeding vectors, thus we ran the algorithm 25 times and only bi-clusters that
appeared in more than 75% of the trials were considered legitimate (Supplementary
Fig. 12). Kaplan–Meier analysis was then done between each bi-cluster and the
remainder of the samples. To assess whether bi-cluster gene signatures based on
the canine data were applicable to the human TARGET dataset, K-Means
clustering was performed with optimal K, ranging from 2 to 6, chosen by selecting
the maximum silhouette score and then followed by Kaplan–Meier analysis.

Immunohistochemical (IHC) analysis. All canine tissues were fixed with 10%
neutral buffered formalin, decalcified using 12% EDTA with a pH of 7.2, and
subsequently embedded in paraffin. An antibody panel against specific immune cell
markers (Supplementary Tables 1, 2) was used to stain a subset of 20 specimens.
Labeling of canine tissues for CD204 was completed by the Animal Health Diag-
nostic Center at Cornell University. The remaining canine tissue IHC was com-
pleted by the Histology Laboratory at the University of Georgia, College of
Veterinary Medicine. Immunohistochemical labeling was examined at 400x (hpf;
0.196 mm2) using an Olympus CX43 microscope. Cells expressing Iba1 and CD204
were numerous and scored semi-quantitatively as 1+ (0–50/hpf), 2+ (51–100/hpf),
or 3+ ( >100/hpf). Cells expressing CD3, CD45RA, FOXP3, CD20, and MUM1
were similarly scored as 1+ (<1/hpf), 2+ (1-5/hpf), or 3+ (>5/hpf). Toluidine blue
staining was completed by VitroVivo (Supplementary Fig. 10) using the VitroView
Toluidine Blue Stain Kit (VB-3013). Two canine tumors were excluded from the
immunohistochemical analysis due to poor tissue quality and high background
labeling. Five human OS samples, decalcified with formic acid, were labeled and
examined for expression of CD3, CD20, and CD204 (Supplementary Table 2).

Statistics and reproducibility. For Kaplan–Meier analysis, the log-rank test was
computed by the R function ggsurvplot survminer version 0.4.90. P-values or false
discovery rates (FDR) less than 0.05 were considered significant. All statistics were
corrected for multiple testing using Benjamini Hochberg (BH) method either
provided as an option by the software package used or using the p.adjust function
in R. Details on the calculation of GSEA FDR can be found in Subramanian
et al.102. A two-tailed Mann–Whitney U-test was used to evaluate CIBERSORTx
scores among clusters. Overrepresentation Analysis (GO analysis) was performed
on the gene sets with the PANTHER platform using a Binomial test and FDR
correction110,111 The Mann–Whitney U-test was used to perform statistical ana-
lysis on the IHC staining with a p-value of less than 0.05 being considered
significant.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Human osteosarcoma data obtained from the TARGET Childhood Cancer Program is
openly available from NCI Genomic Data Commons Portal. Canine mRNAseq data were
deposited into the Gene Expression Omnibus database under accession number
GSE238110 and are available at the following URL: https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE238110.

Code availability
Code can be found at https://doi.org/10.5281/zenodo.8125077 and is also provided in the
Supplementary Information as Supplementary Note 1. Standard algorithms were used as
reported in Methods. All software packages used are open source, except for Ingenuity
Pathway Analysis, and are freely available to the public.
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