
ARTICLE

Improved RNA stability estimation indicates that
transcriptional interference is frequent in diverse
bacteria
Walja C. Wanney 1,2,3, Loubna Youssar1,3, Gergana Kostova1 & Jens Georg 1✉

We used stochastic simulations and experimental data from E. coli, K. aerogenes, Synecho-

coccus PCC 7002 and Synechocystis PCC 6803 to provide evidence that transcriptional

interference via the collision mechanism is likely a prevalent mechanism for bacterial gene

regulation. Rifampicin time-series data can be used to globally monitor and quantify collision

between sense and antisense transcription-complexes. Our findings also highlight that

transcriptional events, such as differential RNA decay, partial termination, and internal

transcriptional start sites often deviate from gene annotations. Consequently, within a single

gene annotation, there exist transcript segments with varying half-lives and transcriptional

properties. To address these complexities, we introduce ‘rifi’, an R-package that analyzes

transcriptomic data from rifampicin time series. ‘rifi’ employs a dynamic programming-based

segmentation approach to identify individual transcripts, enabling accurate assessment of

RNA stability and detection of diverse transcriptional events.
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Genes in prokaryotes are often organized into polycistronic
operons, which combine several genes under the control
of a single promoter. Overall, this arrangement harmo-

nizes gene expression, but it lacks the needed fine-tuning for
different RNA abundances of individual genes within operons1.
Internal transcription start sites (iTSS) and partial termination
can divide the operon into distinct units2. Another mechanism is
the differential operon decay caused by stabilization sites in
the RNA structure3. Post-transcriptional gene regulation can
also be achieved by the binding of trans-acting sRNAs4 or
cis-antisense RNAs (asRNA) to the nascent transcripts5–7. An
interesting mechanism is the steric interaction of RNA poly-
merases (RNAPs), a mechanism known as transcription inter-
ference (TI)8. TI has been well analyzed on a theoretical level and
with synthetic constructs9–12. However, only few reports exist on
naturally occurring TI13–17 and it is unknown how widespread TI
actually is in bacteria. We employed stochastic simulations and
developed strategies to detect these patterns in high-resolution
rifampicin datasets from enterobacteria, E. coli3,18 and Klebsiella
aerogenes KCTC 21903 and Cyanobacteria, Synechococcus PCC
700219 and Synechocystis PCC 6803. Our approach (‘rifi’) allows
inference of the in vivo termination effect of TI and other factors
influencing transcription termination, such as trans-acting
sRNAs. We provide several examples of TI facilitated by asRNAs,
including the nuo or mazEF operons from E. coli. Moreover, we
demonstrate instances of TI between 3′−3′ overlapping genes and
transcription termination mediated by sRNAs (Spot42, RybB,
DicF).

Rifampicin, an antibiotic commonly used to study RNA half-
lives in bacteria, inhibits transcription initiation but does not
affect elongating RNAPs20,21. Chen et al.22. observed that this
property can lead to a delay of the exponential decay of RNA in
which the RNA concentration remains constant. The delay
depends on the time that the last elongating polymerase needs to
pass the investigated transcript position and increases with the
distance to the transcriptional start site (TSS). Furthermore, dif-
ferent modes of RNA decay have been hypothesized22. For the
“co-transcriptional decay” it is assumed that the decay is already
possible during RNA synthesis, e.g. by 5′ exo- or endonucleases.
In contrast, “post-transcriptional decay” means that the decay is
only possible from the 3′ end of the full-length transcript22. We
show that the different decay modes lead to very different RNA
abundance patterns that allow to differentiate between them.

Our approach ‘rifi’ differs from previous studies analyzing
rifampicin data3,18,19,22,23, because it is not relying on a given
genome annotation for, e.g., the calculation of transcript half-
lives. Instead, we used dynamic programming to combine bins
(RNA-Seq) or probes (microarray) of similar behavior. That
allows to detect transcript segments with different properties
within one and the same annotated gene. Around 90 E. coli genes
are associated with two or more transcripts with half-lives that
differ by factors from 1.7 to 14. Using ‘rifi’, an R-package
designed for platform- and organism-independent holistic ana-
lysis of high-resolution rifampicin time series data, we obtained
the following findings: (1) We provide evidence for frequent gene
regulation through transcriptional interference in bacterial model
organisms. (2) The RNA decay can initiate already during tran-
scription (co-transcriptional decay) in the investigated bacteria.
(3) The mode of decay can be inferred from abundance patterns
in standard transcriptomics data. (4) The transcriptome often
deviates from genome annotation, highlighting the benefits of
annotation-independent analysis for more accurate half-life cal-
culations. (5) It is possible to extract transcriptional features such
as termination sites and efficiency, elongation rates, TSS loca-
tions, and operon structures from rifampicin data.

Results and discussion
Decay pattern analysis reveals increased abundance for certain
transcripts upon rifampicin addition. The initial objective was
to estimate global half-lives of transcripts in the cyanobacterium
Synechocystis PCC 6803 by analyzing time-resolved microarray
transcriptome data after rifampicin treatment. Surprisingly, soft-
clustering of the time-series data from individual probes identi-
fied clusters with an initial abundance increase before onset of the
exponential decay (Fig. 1). To determine if this pattern was
present in other rifampicin time-series data we investigated four
datasets from E. coli BW251313, E. coli MG165518, Klebsiella
aerogenes KCTC 21903 and Synechococcus PCC 700219. The
increase was detectable in all datasets (Fig. 1), indicating that this
phenomenon is not specific to Synechocystis or our experimental
workflow. In the following we propose biological explanations for
the phenomenon and investigate the possibility of technical
artifacts.

Decay modes and decay scenarios. We built a stochastic simu-
lation framework to follow the synthesis and degradation of
individual transcripts and verified that the simulation results
actually followed the expected curves for the co-transcriptional
decay (Supplementary Fig. 1). Next, we modified the initially
published model for the post-transcriptional decay22, which was
not able to describe the simulation results (Supplementary Fig. 2).
The decay mode has a drastic effect on the RNA accumulation
during steady-state expression prior to rifampicin addition
(Fig. 2). In case of co-transcriptional decay, RNA concentrations
remain constant throughout the entire length of the transcript
(Fig. 2a). Conversely, in the hypothetical post-transcriptional
mode, RNA concentrations vary depending on the position
within the transcript (Fig. 2b). The concentrations are highest
closer to the 5′ end, while the very 3′ end has the steady-state
concentration. This discrepancy arises because the 5′ end is
present in all transcripts, while the very 3′ end is exclusive to the
full-length transcript (Fig. 2b). Distinguishing between decay
modes based on isolated decay curves is not possible (Supple-
mentary Fig. 2). Instead, we examined consecutive bins within a
single transcript. For post-transcriptional decay, there should be a
linear decrease in positional RNA concentrations before rifam-
picin treatment. Additionally, the decay curves of all positions
within the same transcript must align on a common exponential
decay curve (Fig. 2b, Supplementary Fig. 2). For short transcripts
and high elongation rates, both decay modes exhibit similar decay
and abundance patterns, making them indistinguishable (Sup-
plementary Fig. 3). Investigation on the four organisms did not
yield evidence for the post-transcriptional decay mode in longer
transcripts. The majority of transcripts did not exhibit a sig-
nificant position-dependent decrease in RNA abundance. While
certain transcripts, such as the E. coli gap pseudogene or the 3′
portion of the Synechocystis sll1951 gene, showed a positional
decline pattern, the decay curves of consecutive positions did not
align as expected for post-transcriptional decay. Moreover, the
position-dependent abundance decrease followed an exponential
curve rather than a linear one (Supplementary Fig. 4). This effect
could be attributed to a fixed termination probability after each
elongation step, possibly resulting from the collision mode of
transcriptional interference (TI) or a higher random termination
rate of untranslated RNAs, as reported in E. coli10,24. The simplest
mechanisms for co-transcriptional decay involve a 5′ exonu-
cleolytic decay, similar to what is observed in B. subtilis. Both
Synechocystis and Synechococcus possess a homolog of B. subtilis
RNase J1, with 5′ exoribonuclease activity19,25,26. In E. coli, RNA
decay primarily occurs through the combined action of endo- and
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3′ exoribonucleases27. A simulation example demonstrates that a
small number of internal processing sites coupled with rapid
3′ exonucleolytic decay can mimic co-transcriptional decay
mediated by a 5′ exoribonuclease (Supplementary Fig. 5).
Recent studies discovered a 5′ exoribonuclease, RNase AM, also
in E. coli28,29.

Explanations for a post-rifampicin abundance increase. We
explored two biological scenarios to explain the increase in RNA
abundance after rifampicin treatment:

1. Pre-steady-state case: The transcription of the transcript
began shortly before the addition of rifampicin, and the
concentration at the given position had not yet reached a steady
state (Fig. 2a, Supplementary Fig. 6a). In this case, the
concentration would increase from t= 0 until either the last
elongating RNA polymerase passes this position or the steady
state is achieved.

2. Rifampicin sensitive termination (RST): A partial termination
event occurs upstream of the investigated position, causing not all
RNAPs that initiated at the TSS to reach this position. However,
upon rifampicin addition, this termination is relieved, allowing
elongating polymerases upstream of the termination site to reach
the investigated position (Fig. 3, Supplementary Fig. 6b–e).
Importantly, this scenario relies on the termination being
sensitive to rifampicin. Since rifampicin targets RNAPs, it is
likely that the termination process depends on a short-lived or
non-processive factor, such as an sRNA or a protein that require
constant resynthesis. However, the simplest explanation is that
transcription interference (TI) by the collision mechanism8 is
responsible for the termination. In collision interference, RNAPs
transcribing in opposite directions collide, resulting in the
termination of one or both transcription processes. This requires
continuous de novo transcription initiation from the interfering
promoters. If there is an asymmetry in the time window during
which elongating polymerases are present for one but not the
other of the interfering transcripts the termination by collision
will be stopped for the former transcript. Consequently, a wave of
relatively higher RNAP concentration per nucleotide will pass the
post-termination positions (Fig. 3).

Both scenarios can account for the post-rifampicin abundance
increase. Example simulations and corresponding model fits are
presented in Supplementary Fig. 6 and real data examples in
Fig. 4. The two scenarios can be differentiated based on the
intensities observed at different positions within a transcript
before rifampicin addition (Supplementary Fig. 6). Technical
artifacts such as sequencing noise (Fig. 5a, Supplementary Fig. 7)
and a normalization artifact (Supplementary Fig. 8) were
excluded as reason for the post-rifampicin abundance increase
(details next to Supplementary Fig. 7).

Rifampicin sensitive termination: examples for sRNAs and
transcriptional interference. In total, we observed 66 to 327 RST
(Supplementary Data 1) segments across the studied organisms
(Fig. 5b). Among them, 38 to 269 segments exhibited a distinct
pre- and post-RST phase. Additionally, 23 to 177 RST events were
linked to identified termination events, characterized by a sharp
decline in the synthesis rate (further details below), indicating an
impact on the expression of the corresponding transcript. Pre-
sence of a clear RST boundary and association with a termination
event distinguishes RST from cases of “pre-steady-state” expres-
sion. The differences between the RST numbers in the investi-
gated organism are most likely due to the different time-
resolutions in the experimental setups as discussed below. Table 1
provides 16 selected RST instances from E. coli BW25113,
including example RST events at the junctions of mazE/F
(Fig. 4a), dam/rpe (Supplementary Fig. 9), and nuoC/E (Fig. 4c),
which are correlated with detectable or reported asRNAs.

One of the detected RST events correlates with the position of
the asRNA to the mazEF toxin/antitoxin transcript (aMEF).
Gundy et al. 7 demonstrated that absence of aMEF results in an
increase in polycistronic mazEF transcript and a decrease in the
shorter mazE transcript, aligning with the ~34% partial termina-
tion observed through RST analysis (Fig. 4a). Wang et al. showed
that binding of the sRNA Spot42 enhances termination at the
galT/K junction30, which corresponds to an identified RST site
(Fig. 4b). We also see RST at the known yebK/pykA DicF31 and
rbsC/K RybB32 sRNA binding sites which have not previously
been associated with sRNA-dependent termination (Supplemen-
tary Data 2). Additionally, 14 potential instances of RST are

Fig. 1 Clusters of decay patterns from Synechocystis PCC 6803, E. coli, Klebsiella and Synechococcus PCC 7002 that show an RNA abundance increase
after rifampicin addition. Individual probes (microarray) or bins (RNA-Seq) were separated into 20 clusters per dataset based on soft-clustering of
standardized expression levels in a time course after rifampicin addition. The figure shows one representative cluster for each organism that shows the
abundance increase pattern.
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conserved in the data of the closely related strains E. coli
BW25113, E. coli MG1655 and/or K. aerogenes KCTC 2190
(Table 1). An example is the RST event in the E. coli
nuoABCEFGHIJKLMN operon which is also conserved in
Klebsiella (Fig. 4c). Other examples are RST instances between
dam and rpe, (Supplementary Fig. 9) and at the mazE/F junction
which are present in the two E. coli strains.

Excludons and overlapping mRNA-mRNA transcription. Also
protein-coding transcripts can have sense-antisense overlapping
transcription2,33. These overlaps can have a regulatory function,
e.g. if the gene products of the opposing transcripts also have
antagonistic functions, then called excludon34. While it is rela-
tively easy to detect regions of overlapping coverage in tran-
scriptome data, it is not directly evident if this overlap
actually results in e.g., co-degradation or TI. In an example from
Synechococcus there is a 3′−3′ overlap between a TU with 7 genes
and a single gene TU (Fig. 4d). The 3′ bins of the shorter tran-
script showed no indication of RST, but a clear position-
dependent decline of the synthesis rate. For the 3′ bins of the long
TU a clear position-dependent increase in the RST rate is
accompanied with a decrease in the synthesis rate. For bins at the

very 3′ end of the operon the increase is delayed, which distin-
guishes RST from pre-steady-state expression. A potential
excludon from E. coli and Klebsiella is the 3′−3′ overlapping
matP/ompA pair (Table 1, Supplementary Data 2). In E. coli, K.
aerogenes and Synechocystis only a small number of RST events in
3′−3′ overlapping transcripts were detected. However, in Syne-
chococcus 107/177 RST events belong to this class (Supplementary
Data 1). It is unclear if this high number has technical reasons or
if 3′−3′ overlapping transcription is a more general termination
mechanism in Synechococcus.

Potential transcriptional interference at sites with no detect-
able asRNA coverage. Many RST instances do not correlate with
a detectable asRNA or a known sRNA binding site. An interesting
example is the asRNA to the mazEF toxin/antitoxin transcript
(aMEF). Previously, Gundy et al.7 showed that this asRNA is
hardly or not detectable in E. coli wildtype strains, but that it
becomes visible in a RNase III mutant strain. This indicates that
the asRNA is rapidly degraded by RNases and has a very low
stability. Nevertheless, mutations in the asRNA promoter proved
that the transcription of this asRNA has a regulatory effect7.
There are strong indications for termination by TI exactly at the

Fig. 2 Comparison of different decay scenarios. Two positions are highlighted, one directly behind the TSS (pos1, blue) and another at the end of the
transcript (pos2, orange). For all considered time points (tx) the decay curves for the two positions (decay curves, left column of plots) and the RNA
concentrations at tx are shown as a function of the distance to the TSS (abundance patterns at tx, right column). a Co-transcriptional decay: t1 - the
transcription of the gene has just started. The first RNAP has passed pos1 but is not yet at pos2, i.e. the RNA concentration at pos1 is higher than at pos2.
The expression has not reached an equilibrium between synthesis and degradation rate, i.e. the steady state has not yet reached and the RNA
concentrations increase over time. The time difference, the delay, between the onset of transcription at pos1 and pos2 depends on the elongation rate and
the distance between the positions and the TSS. The abundance patterns show a position-specific decline of the RNA concentrations. t2—the concentration
at pos1 but not at pos2 has reached its steady state. The positional abundance decline is shallower at this later time point. t3—if rifampicin is added, after
the steady state for all positions is reached, all positions have the same concentration. Due to the stochastic co-transcriptional decay by 5′ exo- and
endonucleases, no transcript position is overrepresented. The RNA concentration at a given position stays constant, i.e. the exponential decay is delayed
until the last elongating RNAP has passed it. t4—the last RNAP has passed pos2 and the exponential decay now starts at this position as well. b Post-
transcriptional decay: t1—(steady state) if only full-length transcripts can be degraded by 3′ exonucleases, the 5′ end is more frequent than downstream
positions. This leads to a position-specific decline in the abundance patterns in the steady state. t2—after addition of rifampicin the concentration stays
constant until the last polymerase has passed the respective position. This is followed by a linear decline which represents the remaining transcription of
the full-length transcript from all RNAPs that are still elongating. t3+ t4—after the last RNAP has reached the 3′ end, the exponential decay becomes
visible. Note that, in contrast to the co-transcriptional decay, the linear decline and the exponential decay fall on the same curve for all transcript positions.
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position of aMEF (Fig. 4a). Termination by TI does not require
the accumulation of a regulatory RNA and the stability of the
asRNA can be low. This limits the detectability of the antisense
transcription but not its regulatory function. Furthermore, at
collision, RNAPs transcribing the asRNA are more likely to ter-
minate than the RNAPs transcribing the translated mRNA
counterpart10,11. In transcription simulations of mRNA and
asRNA pairs with an asymmetric termination probability, the
asRNA concentration rapidly declines with the distance from its
TSS (Fig. 5c, Supplementary Fig. 10). The RNA concentration
reflecting the actual synthesis rate is only measurable in a short
window <10 nt. In the example, the asRNA counts have dropped
by >50% after 50 nt and to ~0 after 100 nt. In consequence, if
RNA-seq workflows discriminate against short RNAs, asRNAs
involved in TI by collision are likely underrepresented and the
measured read counts do not reflect the actual synthesis rate.

General detectability of RST events: Is this only the tip of the
iceberg? Several asRNAs were not associated with an RST sig-
nature. That might have biological explanations, e.g. that mRNA
and asRNA are not expressed simultaneously in the same

individual cells, or that TI is prevented by other means. More-
over, the method can only detect a subset of RST instances.
Assuming that an RST event is visible if it results in a post-
rifampicin abundance-increase of at least 7.5%, this renders a
wide range of RST events undetectable. Various parameters
determine the shape of the abundance increase (Supplementary
Fig. 11). The elongation rate and the position of the RST define
the available time for the increase, the decay constant determines
the time until steady state is reached and the termination rate sets
the maximum possible abundance increase. Figure 5d illustrates
the detectability of RST events for a high termination rate of 0.5
and different elongation rates and RNA stabilities. In an example
(elongation rate: 25 nt/s, half-life: 5 min) the RST site needs to be
at least 843 nt upstream of the TSS to yield the threshold increase.
Supplementary Fig. 12 shows that a wide range of terminations by
TI or sRNAs that occur closely after a TSS (Supplementary
Fig. 6d) will not result in a detectable increase in post-rifampicin
abundance.

Furthermore, it is essential that the abundance increase is
captured within the sampling time points. An RST event in the
tolA gene was detected in the K. aerogenes dataset3 but likely

Fig. 3 Rifampicin sensitive termination (RST): Example for transcription interference by an asRNA based on the co-transcriptional decay case. t1—the
RNAPs from the sense and antisense strand collide. This leads to a transcription termination of one of the two RNAPs. RNAPs transcribing a non-translated
RNA have a higher termination probability. Due to the termination, in the steady state, the RNAP concentration is higher 5′ of the asRNA TSS and because
the asymmetric termination probability of sense and antisense RNAPs we see a rapid, steplike decrease in the RNA concentration close to the asRNA TSS.
t2+ t3—rifampicin stops the transcription initiation at the sense and antisense TSSs. Without the collision with the antisense RNAPs, all remaining sense
RNAPs can now reach the positions after the asRNA TSS. This resembles an increase in positional synthesis rate and an increase of the RNA concentration
after rifampicin addition for positions after the asRNA TSS. The delay of the increase depends on the time that the first RNAP of the “high-concentration
wave” needs to reach the respective position. t4—After the last RNAP has passed the respective position, the exponential decrease begins.
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missed in E. coli MG1655 dataset18 due to a lower time resolution
(Fig. 5e, Supplementary Fig. 13). The temporal resolution is a
critical aspect for RST detection. This is reflected in the lower
number of RST instances for the datasets of E. coli MG1655 and
Synechocystis (Fig. 5b), which both have a lower temporal
resolution and lack e.g. a 1 min sampling point. We conclude that
only a fraction of RST events are actually detected in this study
and hence their frequency and biological relevance are likely
underestimated.

High-fidelity RNA stability calculations must consider the
transcriptome architecture. In the simplest case, a gene or
operon is transcribed into a single transcript with constant

properties along its entire length. In reality, iTSSs, partial ter-
mination events and processing or stabilization sites can lead to
transcript species with different lengths and stabilities (Fig. 6).
These different transcript species do not necessarily follow the
respective gene annotations and an annotation-based analysis
would not lead to exact stability estimates. The ‘rifi’ approach
aims to infer the complex transcriptome architecture from the
data. First, we fit the local features of 50 nt bins (RNA-Seq) or
individual probes (microarray). The fits yield information about
the delay, the decay constant (half-life) and, in case of RST, the
termination rate, for each bin or probe. The RNA abundance
before addition of rifampicin (t= 0) is another valuable piece of
information. Based on these data we combine bins that belong to
distinct transcripts with unchanged transcription parameters by a

Fig. 4 Examples of rifampicin sensitive termination (RST) caused by various means. The log2 synthesis rate (dark pink dots) is displayed along the
respective genomic segment. The synthesis rate is calculated from the RNA abundances at t= 0 and the fitted decay constants. The gray line indicates the
mean log2 synthesis rate for a clustered segment. The blue dots show the calculated synthesis rate without RST. The black dots in the lane above or below
show the estimated termination rate in %. Boxes beneath the plots: Fitted decay curves for selected pre- and post-RST bins and the respective raw data.
The fit is based on three replicates (green, blue and pink dots), the mean of the replicates is indicated as black dots. a The pink arrow shows the asRNA TSS
from Gundy et al.7. b Probable RST by the trans-acting sRNA Spot42 at the galT/K junction. c Probable RST by an asRNA in the nuo operon. The position of
the RST is conserved between E. coli and Klebsiella. d Probable excludon in PCC 7002.
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dynamic programming algorithm. This segmentation is used by
‘rifi’ to identify transcriptional events such as iTSSs and (partial)
termination sites between consecutive transcript segments and to
define continuous transcriptional units (workflow summarized in
Supplementary Fig. 14, 15). All full genome visualizations are
available in Supplementary Data 3.

Consequences for the inference of RNA stabilities and half-
lives. For E. coli, we found in general a good correlation between
the ‘rifi’ results and the published results3,18 (Supplementary
Fig. 16a, b). However, there are ~90 transcripts with a wrong sta-
bility estimate due to the previous annotation-based workflow in E.
coli MG1655 (Fig. 7a). The miaA gene is covered by 3 transcript
segments of very different stability (t1/2:0.83, 3.45 and 6.14min,
Fig. 7a, c). Other examples are tgt or the ftsI gene and its stable,
gene-internal processing product, the FtsO sRNA sponge35

(Fig. 7b, d). The separate half-lives of the ftsI mRNA and the FtsO
sRNA were estimated to be 0.6 and 12.8 min, respectively, showing
a vast difference in stability. Previous averaging over the ftsI

annotation led to a combined half-life of 8.4 min18, which deviates
by more than one order of magnitude from the actual half-life of
the mRNA. We compared genes covered by two or more tran-
scripts with different half-lives with the results from theMoffit et al.
dataset18 (Fig. 7a) to show that this situation leads to significant
and frequent half-life deviations. The same was true for all other
investigated organisms (Table 2, Supplementary Data 4). A good
correlation was also seen for Synechococcus data19 although the
originally used model did not consider the delay leading to a slight
overestimation of the half-life. This can be seen as a general trend in
the scatterplots, where data points are slightly shifted towards
higher half-lives for the original study (Supplementary Fig. 16c, d).
This effect is more problematic for longer transcripts. Supple-
mentary Figure 16g shows a ~8600 nt long TU with a delay of
~6min for the last gene. For an example-bin within this gene, a
model without delay misinterprets the delay as stability and cal-
culates a half-life of 5.3 min versus the delay-adjusted half-life of
1.3 min. With ‘rifi’ we can compare the fragment-based half-life
distributions of different organisms using a common standardized

Fig. 5 Evaluation of post-rifampicin abundance increases. a Expected (in case of random noise) and observed numbers of segments with an post-
rifampicin abundancy increase in the E. coli BW25113 dataset3. If post-rifampicin-increases are due to technical noise, they should be randomly distributed
across all reads/probes. In contrast a systematic effect, such as TI, should affect consecutive reads/probes after an RST event (for details see methods).
7420/46803 bins from E. coli BW25113 are tagged as potential RST probes resulting in a background probability of propBG= 0.159. More details next to
Supplementary Fig. 7. b Bar plot of the total number of RST instances for the respective datasets/organisms. “All”: all RST segments with an average RST
termination rate of ≥15%, a length of at least 5 bins and at least 75% RST bins, “+ clear pre-RST phase”: Subset from all cases for which the segmentation
identified a clear pre-phase without RST based termination. “+ clear termination”: subset of the “+ clear pre-RST phase” instances, which are associated
with an independently identified termination event. *numbers after manual subtraction of probable artifacts. c Simulation of positional abundances of sense
mRNA and asRNA expression (synthesis ratesense= synthesis rateanti= 0.6 molecules/s, elongation rate = 20 nt/s, λ= 0.01, term_probsense= 0.3, three
replicates). d Estimation of RST detectability dependent on elongation rate and RNA stability at a high term_probsense of 0.5. The y-axis shows the minimal
distance of the RST position from the TSS that ensures a post rifampicin abundance increase of at least 7.5%. The dotted lines indicate the lowest
detectable distance from the TSS at an elongation rate of 25 nt/s for different RNA stabilities. e Example for RST that is not detectable, due to a relatively
low time resolution. The example is based on a probable RST instance in the E. coli tolA gene. The black line shows the calculated solution for RST
(term_prob = 0.48) in combination with a high elongation rate (60 nt/s) and a low stability (λ= 2.31 1/s, t1/2= 0.3min). The pink curve shows the fit
based on the available time points (0, 2, 4 min, taken from the calculated RST curve) that misses the RST due to low temporal resolution. More information
in Supplementary Fig. 13.
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Table 1 Selected examples and possible reasons for instances of RST in E. coli BW25113 mentioned in the text.

5′ gene 3′ gene possible reason termination [%] adj. p-value Strand Position BW25113 RST event conserved in:

galT galK Spot42 56 1.15 ×10−26 BW − 785426 BW, KLw
matP 3′UTR – ompA 3′−3′ 84 4.29 ×10−12 BW + 1014500 BW, MGw, KL
yebK pykA DicF 35 6.82 ×10−9 BW + 1931975 BWw

nuoC nuoE asRNAT,D 38 1.15 ×10−15 BW − 2395476 BW, KL
iscX pepB asRNAT,M 47 2.27 ×10−10 BW − 2649876 BW, MG
mazE mazF asRNAT,G 34 2.13 ×10−7 BW − 2904476 BW, MG
dam rpe asRNAT 47 1.66 ×10−16 BW − 3508526 BW, MG, KL
malP malQ asRNAT,G 53 1.29 ×10−22 BW − 3543526 BW
rbsC rbsK RybB 38 5.43 ×10−8 BW + 3929575 BW
sdhB sucA asRNAT 46 2.93 ×10−13 BW + 754075 BW, MGw

narG narH 56 1.02 ×10−8 BW + 1277075 BW, KL
nirB nirC 82 1.43 ×10−5 BW + 3489725 BW, MG
glgB glgB 63 1.08 ×10−10 BW − 3566376 BW, KL
fruA fruA 57 3.42 ×10−22 BW − 2254676 BW, KLw
rplL rpoB 48 5.85 ×10−15 KL + – KL, MG
gsiA gsiB 38 1.51 × 10−19 KL + – KL, BWw

The asRNA sites are from the Supplementary Table 3 in Thomason et al., 201437 (T), the E. coli BW25113 dataset3 (D), Gundy et al. 7. (G) or the MG1655 dataset18 (M). P-values were calculated by t-test
on the distributions of the RST-termination rates before and after the RST event and adjusted for multiple testing by the method of Benjamini Hochberg (BW: p-value from E. coli BW25113; KL: p-value
from K. aerogenes). The final column shows if the RST event is conserved between the two E. coli strains and/or K. aerogenes. BW= E. coli BW25113, MG= E. coliMG1655, KL= K. aerogenes KCTC 2190. A
subscript “w” in the conserved column indicates that an RST instance was detected by ‘rifi’ but did not match all required filter criteria.

Fig. 6 Addressing the complex transcriptome architecture. Schematic example for a complex transcriptome architecture. a An operon consisting of three
genes with its primary TSS (A), a partial termination site (C), an internal TSS (D), a cis-asRNA resulting in termination by TI (E) and the final full
termination (F). The 3′ part of gene A is more stable than the 5′ part due to a processing or stabilization site (B). The transcriptional events A–F are
automatically detected by ‘rifi’ as explained below and in Supplementary Fig. 14. b The architecture results in various overlapping transcripts. c The
corresponding decay curves for different positions within the operon. (Position 1) The classic exponential decay at the start of the operon. (Position 2) A
delayed exponential decay at a higher distance from the TSS. (Position 3) A delayed exponential decay with a shallower decline indicating a higher stability.
Furthermore the RNA abundance at t= 0 is higher than in the previous curves (dotted line). In this example the abundance increase is explained by the
stability increase and no iTSS is assumed. (Position 4) Delayed exponential decay with the same decline as at positions 1 and 2 but with a lower RNA
abundance at t= 0. Here the lower RNA abundance is not explainable by changes in the stability, which indicates a partial termination. (Position 5) Only
the combination (black curve) of the transcripts coming from the primary TSS (blue, long delay) and the transcripts coming from the iTSS (pink, short
delay) is actually measureable. The increase in the abundance at t= 0 without a stability change and a potential reduction of the delay indicate an iTSS.
(Position 6) The combined curve (black) for the transcripts coming from the primary and the internal TSS shows a post-rifampicin abundance increase,
indicating TI. Also, the abundance at t= 0 is lower than for the positions located more 5′, at constant stability, this indicates termination.
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Fig. 7 Improved half-live estimates by considering transcriptome complexity. a Genes covered by two or more transcripts of different half-lives, for
which the gene annotation-based half-life calculation leads to incorrect results. The plot compares the results from the original, annotation-based analysis,
from Moffit et al.18. (x-axis) with the annotation independent workflow from this study based on the same raw data (two replicates). The following sub-
panels show example genes. Each dot represents the fitted half-life in minutes for a 50 nt bin. The colors and the lines indicate the automatically
segmented half-life fragments. The upper plots show the raw data and decay curves for a bin in the low stability fragment and a bin in the high stability
fragment. The data from the replicates are colored (red, blue) and the mean abundance is given as black dots. The black line represents the fitted decay
curve. b The miaA gene is covered by 3 transcripts with different stabilities. c The tgt gene is covered by 2 transcripts. d The stability for the ftsI gene and
the stable internal FtsO sRNA is shown.

Table 2 Overview about the findings for the different investigated datasets.

Organism E. coli BW25113 E. coli MG1655 K. aerogenes KCTC 2190 Synechococcus PCC
7002

Synechocystis
PCC 6803

Platform RNA-Seq RNA-Seq RNA-Seq RNA-Seq Microarray
Sampling time points [min]
(after rifampicin addition)

0,1,2,3,4,5,6,8,10,15 0,2,4,6,8,10,15 0,1,2,3,4,5,6,8,10,15 0,0.5,1,2.5,5,7.5,10 0,2,4,8,16,32,64

Culturing parameters LB-media,
37 °C,
shaking,
OD600= 0.5

LB-media,
32 °C,
shaking,
OD600= 0.4

LB-media,
37 °C,
shaking,
OD600= 0.5

A+-media,
37 °C, 215 µE,
air bubbling,
OD730= 0.2

BG11-media,
30 °C, 50 µE,
shaking,
OD750= 0.7

Predominant mode of decay co-transcriptional
High confidence RST eventsa 39 26 28 177 23
Global median half-life [min] 1.53 1.65 1.01 0.78 0.93
Global mean elongation rate [nt/s]b 33.2 27 28.5 42.1 22
Genes covered by transcript
segments of different stabilityc

90 89 46 206 293

Differential operon decayd 131 138 62 82 71
raw data from Dar and Sorek3 Moffit et al.18 Dar and Sorek3 Gordon et al.19 This study

aManually curated.
bExcluding segments with a calculated elongation rate > 120 nt/s.
cDoes not consider if the different segments belong to the same TU, i.e. the segments with different half-lives could be also shaped by terminators or iTSSs.
dOnly sites with a log2 synthesis rate FC ≥ −0.5 ≤ 0.2 are considered in order to distinguish stability events from termination and iTSSs (p-value ≤ 0.05, |log2 half-life FC| ≥ 1 min). Culturing parameters:
growth parameters and sampling optical density (OD). µE = μmol photons m−2 s−2. For more details regarding the experimental parameters please refer to the original publications.
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workflow. All investigated organisms have a median half-life below
2min (Supplementary Fig. 16e, Table 2). Both E. coli datasets are
similar with the highest median half-life of 1.53 and 1.65 min, while
Synechococcus has the lowest median half-life of 0.78min. The
median half-life for Synechocystis was 0.93min.

Delay based estimates: Transcriptional units, internal start
sites and transcription velocity. The delay is dependent on the
distance of a given position from the TSS and the elongation
rate22. Assuming a constant elongation rate, the delay should
linearly increase from the TSS to the end of the transcript
(Fig. 8a, Supplementary Fig. 17a). Deviations from the linear

delay-increase indicate transcriptional events such as iTSSs
(Fig. 8b) or velocity changes (Fig. 8c). The higher the differences
in delay the higher the synthesis rate differences between con-
secutive bins. Thus, a steep drop suggests termination of the
previous transcript or a considerably stronger new promoter. This
connection makes the delay coefficient valuable for classifying
contiguous transcriptional units (TUs), where a steep delay drop
between two segments indicates the start of a new TU, while a
minor drop implies an iTSS. It is important to consider that
delay-based estimates rely on a low number of data points due to
the relatively low temporal resolution of rifampicin data. This is
evident in the tendency of the delay to be fitted at distinct points
in the time series (Supplementary Fig. 18a). Chen et al.22. used the

Fig. 8 Classification of contiguous transcriptional units from the delay coefficient. a Example for a long transcriptional unit in E. coli. The delay for the
pink TU-A is steadily increasing from mraZ to ftsZ; this indicates the existence of a contiguous transcript. There is a drop in the delay in the middle of fstA
indicating an iTSS. Transcription from both promoters overlap. At lpxC the delay starts again at 0min, indicating that the previous transcript(s) were
terminated and a new non-overlapping TU starts. Transcript regions with a continuous linear increase of the delay are clustered by ‘rifi’ and connected by a
black trendline. The estimated transcription velocity is written above the respective fragments (un-physiologically high velocities in gray). In the shaded
gray area the simple one promoter model is violated and the fitted delay is a combination from two individual transcripts. Using dynamic programming, ‘rifi’
automatically detects potential events such as TSSs (b) and velocity changes (c). d A simulation was done to assess the general accuracy of the elongation
rate estimate. Data are based on the simulations with 36 parameter combinations (half-life: 1, 2 or 3.33min; velocity: 15, 30, 45 or 60 nt/s; synthesis rate:
0.2, 0.4 or 0.8 molecules/s, 3 replications) and a continuous transcription without a parameter change. The jitter plots show the real input velocity used for
the simulation versus the calculated velocity based on the fits. The Pearson correlation r-value and the mean fitted velocities with their standard deviation
are given in the plots. The fragments with a biologically unrealistic velocity higher than 120 nt/s were excluded from the mean, sd and correlation
calculation.
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delay to calculate the transcription elongation rate. We tried to
estimate the expected accuracies for the elongation rates based on
simulated data. The calculated velocities are clearly correlated
with the actual input velocities but show a significant dispersion
(Fig. 8d, Supplementary Methods). In conclusion, given the time
resolution, the delay-based elongation rates for individual tran-
scripts are rather rough estimates. A high number of the fitted
transcript segments in all organisms have a calculated elongation
rate >120 nt/s. We excluded these segments for a global com-
parison of the elongation rate distributions of the investigated
organisms. The highest mean elongation rate was calculated for
Synechococcus (42.1 nt/s) (Supplementary Fig. 18d). Synechocystis
has the lowest mean elongation rate (22 nt/s) and E. aerogenes
(28.5 nt/s), E. coli MG1655 (27 nt/s) and E. coli BW25113 (33.2
nt/s) lie in between. The mean elongation rate of 27 nt/s from E.
coli MG1655 is close to the previously reported 25 nt/s22.

Actually, there are many iTSS known within operons and
genes36–38. This leads to overlapping transcription processes from
transcripts initiated from different starting sites (Fig. 6), which
violates the simple delayed-co-transcriptional decay model.
Fitting those cases with the simple model can lead to an
“artificial” delay (Supplementary Fig. 17b–d), which lies between
the delay of the two independent transcription processes (ftsA,
Fig. 8a). In theory, the model could be adapted to two or more
overlapping transcripts. However, the fit with the wrong simple
model and the solution for the two-promoter model are very
close (Supplementary Fig. 17d). It needs to be considered that the
“artificial” delay can also lead to an incorrect elongation rate
calculation. An example is the calculated elongation rate of 4nt/s
for the transcript segment after the iTSS in ftsA (Fig. 8a). The
impact of internal TSSs and velocity changes on the fit of decay
curves and the segmentation accuracy (Supplementary Fig. 17e–h
and Supplementary Fig. 18b, c) are discussed in greater detail
beside Supplementary Figs. 17, 18.

Changes in the synthesis rate: Start and termination. RNA
abundance changes can result from alterations in stability and/or
synthesis rate. Assuming RNA abundance reached a steady state
prior to rifampicin addition, synthesis rates can be calculated from
fitted decay constants. An increase in the synthesis rate ratio
between a 3′ fragment and its 5′ segment (log2 synthesis rate ratio:
Rsynt > 0) indicates the presence of a new iTSS (Fig. 9b, f). Con-
versely, a decrease (Rsynt < 0) suggests (partial) termination (Fig. 9c,
e) and an Rsynt � 0 implies that observed changes are solely due to
differences in transcript stability (Fig. 9a, d). Figure 9e illustrates a
termination site at the 3′ end of lpxC, closely matching a site
identified by term-seq3. The Rsynt of −3.47 corresponds to
approximately 91% termination efficiency at this site. Similarly, a
suggested TSS at the 5′ end of secM matches a start site from
dRNA-Seq37. The ‘rifi’ synthesis-ratio-based terminator and TSS
estimates demonstrated a significantly better-than-random overlap
with results from term-seq3, dRNAseq3 and data from
RegulonDB39 (Supplementary Fig. 19, Supplementary Methods).
Despite the relatively low resolution of the used 50 nt bins, ‘rifi’ also
detected terminators in 5′ regions encoding small leader peptides
(thrL, pheL, mgtL) or containing a riboswitch (btuB). Supplemen-
tary Figure 20 shows examples for ‘rifi’ terminator sites.

Differential RNA decay within an operon. Processing sites,
stabilizing motifs, secondary structures or varying translation
efficiencies can lead to fragments with different half-lives within
the same operon3. This is likely an important aspect of bacterial
gene regulation, but the identification of differential operon decay
requires knowledge about the actual operons or more precisely
about continuous TUs that start from the same TSS. For E. coli

such operon lists are available3,39, but that might not be true for
other organisms of interest. ‘rifi’ uses a bootstrapping approach to
identify the TUs and the differential decay sites from the same
data and calculates the stability differences between consecutive
half-life segments within a TU. With this automatic approach we
recovered 36/49 (Supplementary Data 4) previously described
processing sites3. Two of the previous sites were not segmented
with the used segmentation penalties, for 8 sites the expression
was low and the reads were filtered prior to the analysis and for
three sites we detected similar half-life differences but the seg-
ments were predicted to be in different TUs. From the latter three
cases, two TU borders are likely artifacts from the delay calcu-
lation, but one TU border between gpmM and envC is strongly
supported by dRNA-Seq data35 (Supplementary Fig. 21). Beyond
the previously reported cases ‘rifi’ detects 95 additional cases of
differential operon decay in E. coli and many cases in the other
investigated organisms (Table2, Supplementary Data 4; examples:
cysW/A, minC/D, napD/A, Supplementary Fig. 21).

Conclusion
Extending on previous studies22, we show that most, if not all,
transcripts from E. coli, K. aerogenes, Synechococcus PCC 7002 and
Synechocystis PCC 6803 can undergo degradation before the RNAP
terminates (co-transcriptional decay). The decay mode can be
determined directly from steady-state RNA abundance patterns in
standard transcriptomic data, without requiring rifampicin time
series. A constant RNA abundance throughout the transcript
indicates co-transcriptional decay, while post-transcriptional decay
is indicated by a linear decrease towards the 3′ end. Stochastic
simulation reveals that the co-transcriptional decay patterns can
result from 5′ exoribonucleases or a combination of endo- and 3′
exoribonucleases. Notably, Synechocystis and Synechococcus pos-
sess both 5′ exo and endoribonucleases19,25,26, whereas E. coli is
thought to primarily rely on endo- and 3′ exoribonucleases27. Co-
transcriptional decay is consistent with coupled transcription-
translation, which is common in many prokaryotes40. However,
uncoupled transcription-translation is also frequent. In B. subtilis,
transcription elongation outpaces translation, leading to
uncoupling41, and there are instances of spatiotemporal separation
of transcription and translation40. Nevertheless, the contradiction
of co-transcriptional decay and uncoupled transcription-
translation is not as substantial as anticipated. As previously
mentioned22, co-transcriptional decay is a stochastic process and
depending on the decay constant, transcript length and elongation
rate, a given percentage of full-length transcript can be expected in
the steady state. For a transcript length of 1000 nt (half-life: 2 min,
elongation rate: 25 nt/s) approximately 79% of transcripts are not
degraded before termination (Supplementary Fig. 22). ‘rifi’ is a
versatile R-package applicable to high-resolution rifampicin time
series datasets from various platforms (microarrays, RNA-Seq) and
diverse organisms (Table 2). Using the E. coli MG1655 data18, we
illustrate hat considering the complex transcriptome structure leads
to corrected half-life estimates for around 90 genes. This observa-
tion holds true for other organisms (Table 2). “rifi’ automatically
detects processing or stabilization sites that lead to differential
stabilities within a transcriptional unit. It also detects transcrip-
tional start- and termination sites based on calculated synthesis rate
changes. This complements RNA-Seq-based approaches like
dRNA-Seq38 and term-seq42 for defining transcriptional start sites
(TSS) and terminators. Although the bin-based ‘rifi’ method lacks
the resolution of RNA-Seq, it can integrate multiple data types to
provide a more comprehensive understanding compared to
sequencing-based methods. By analyzing synthesis rate changes
‘rifi’ distinguishes 3′ processing sites from termination sites and
calculates actual termination rates.
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The delay of exponential decay serves as a measure to track
uninterrupted transcription processes from the transcription start
site (TSS) to the final termination site. The delay-based tran-
scription unit (TU) definition remains unaffected by partial ter-
mination sites or internal processing sites and has the potential to
detect iTSSs associated with parallel transcription processes.
However, compared to the more accurate stability estimates, all
delay-based estimates suffer due to the limited number of data
points available for fitting the delay. A higher time resolution in
sampling points following rifampicin addition would significantly
improve the performance of velocity estimation, TU definition,
and iTSS detection.

A surprising discovery of this study is that rifampicin time-
series data offer a live view of TI by the collision of RNAPs and

transcription termination by trans-acting sRNAs. These phe-
nomena are indicated through decay curves that exhibit increased
RNA abundance after rifampicin addition.

– Stochastic simulations confirm that these distinctive patterns
are fully explainable by the biological phenomenon of RST,
i.e. through TI or sRNA interaction, or pre-steady-state
expression.

– Technical noise and a systematic normalization bias have
been excluded as explanations for these patterns.

– RST patterns are observed in all five datasets representing
four organisms from divergent phylogenetic groups (Cyano-
bacteria and Proteobacteria) (Fig. 5b, Table 2), independent of
different experimental workflows.

Fig. 9 Detection of termination sites, TSSs and processing/stabilization sites. Example scenarios are shown. For each pair of consecutive abundance
fragments in an estimated TU the synthesis ratio Rsynt is calculated (α = synthesis rate [molecules/min], Int= RNA abundance at t= 0 [counts], HL =
half-life [min], the indices indicate values for the 3′ and 5′ segment). a If Rsynt ≈ 0 the abundance differences are only due to changes in the transcript
stability. b An Rsynt > 0 indicates a new TSS. c An Rsynt < 0 indicates a terminator. In panels B and C only examples with no change in transcript stabilities
are shown. In reality mostly both, stabilities and synthesis rates, differ. The following data are based on the Dar and Sorek3 dataset (3 replicates).
d Estimated half-lifes, RNA abundances and calculated synthesis rates are plotted for each 50 nt bin. Colors and the mean-line indicate fragments from the
dynamic programming (DP). Bins that are taken as outliers by the DP algorithm are drawn as stars. Example for two RNA fragments in the folX-yfcH operon
that have different stabilities. The differences in the intensities are fully explainable by the different half-lifes. Note that the exact fragment borders are only
detectable if the fragmentation appears independent of existing annotations. e Example for a termination site 3′ of lpxC which closely co-locates with a site
estimated by term-seq3 and f a TSS at the 5′ end of secM which co-locates with a start site estimated by dRNA-seq37. Note that the resolution of the
rifampicin approach is rather low, as we use bins of 50 nt for the site estimation.
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– In E. coli, two instances of RST are supported by prior
experimental findings. These include termination at the
mazE/mazF junction likely due to TI by a cis-antisense
RNA7 and termination at the galT/K junction by the trans-
acting sRNA Spot4230.

– 14 potential RST instances are conserved between different E.
coli strains and/or Klebsiella. This makes technical artifacts
very unlikely, as the data are not only from different
organisms but also from different research groups and
partially based on different growing conditions.

The identified potential cases of RST likely represent only a
fraction of the overall occurrences. Our model demonstrates that
a considerable number of TI events would not lead to a noticeable
increase in RNA abundance after rifampicin treatment if the
termination site is located too close to the TSS. We present evi-
dence supporting the significant impact of asRNAs on the dif-
ferential expression of operons, despite their limited detectability.
This finding contributes to the growing body of evidence sug-
gesting that many asRNAs are not merely products of futile
pervasive transcription but actively participate in gene regulation.

Methods
Models. First, the decay curves for all individual bins/probes are normalized to the
highest RNA abundance value in the time course and fitted with the appropriate
model to extract the delay and the decay constant λ. The decay is then transformed
into the half-life (t1=2 ¼ lnð2Þ

λ ). In case of RST also the termination probability is
extracted. The co-transcriptional decay is fitted by the previously described
model22 where the concentration of the RNA c is dependent on the position
downstream of the TSS n and the time after rifampicin addition t, where α is the
synthesis rate, λ the decay constant and v the elongation velocity. As we do not now
n, we internally fit the delay ðdelay ¼ n

vÞ directly. A graphical explanation of the
models is given in Supplementary Fig. 23. Used parameters: λ = decay constant
[1/s], α = synthesis rate [mol/s], v = elongation rate [nt/s], n = position relativ to
the TSS [nt], t = time after rifampicin addition [s], L = total transcript length [nt],
nterm = position of rifampicin sensitive termination [nt], β = termination pro-
portion:

cðt; nÞ ¼
α
λ if t < n

v
α
λ ´ e

�λðt�n
vÞ if t ≥ n

v

(
ð1Þ

For microarrays, we mostly use a variant of the co-transcriptional decay model
that accounts for a constant background (bg). The non-BG model is only used for
probes where the RNA abundance at the last available time point is above a
definable background threshold:

cðt; nÞ ¼
bg þ α

λ if t < n
v

bg þ α
λ ´ e

�λðt�n
vÞ if t ≥ n

v

(
ð2Þ

Depending on the decay pattern and information about the data generation, i.e.
microarray or RNA-Seq, different fitting models are used. In regions of RST we use
a dedicated model. We furthermore distinguish between a model without
background (BG) as it is suitable for RNA-Seq and a model with BG for most
probes from microarrays. Fitting with or without BG can make a considerable
difference, especially when a stable transcript has not yet reached the baseline at the
last measured point in time. In this case, a model with BG will misinterpret the
RNA abundance at the final time as BG and the estimated half-life will be too low.
An extreme case is grxB from the E. coli MG1655 dataset (Supplementary Fig. 16f);
the original fit was done with a BG model resulting in a half-life of 0.87 min18,
while the fit without BG estimates 26 min, a roughly 30 fold deviation. Vice versa, a
fit without BG would result in artificially high stabilities in data which do have a
background, as e.g. data from microarrays.

In case of the post-transcriptional decay also the total length of the transcript L
is relevant. The concentration at t= 0 is the steady-state concentration plus the
number of transcripts that are currently actively transcribed and contain the
respective position. The below model corrects the model presented by Chen et al.22,
which models a constant position dependent RNA concentration in steady state
before rifampicin addition instead of the actual position dependent abundance
decline (Supplementary Fig. 2):

cðt; n; LÞ ¼
α
λ þ α L�n

v if t < n
v

α
λ þ α L

v � t
� �

if n
v ≤ t <

L
v

α
λ þ ´ e�λðt�L

vÞ if t ≥ L
v

8><
>: ð3Þ

If rifampicin is added in the pre-steady-state time window, meaning that the
time of first transcription initiation tini is smaller than the time of rifampicin
addition trif and that the time between the start of the transcription and the

rifampicin addition trif is smaller than the time required to reach the steady-state
concentration tsteady, the concentration is (t is always relative to tini):

ðt; nÞ ¼
0 if t < n

v

α
λ � α

λ ´ e
�λ t�n

vð Þ if n
v ≤ t <

n
v þ trif

α
λ � α

λ ´ e
�λ t�n

vð Þ� �
´ e�λ t�n

vð Þ if t ≥ n
v þ trif

8>><
>>: ð4Þ

In case of the rifampicin sensitive termination (RST), the concentration is
dependent on the termination proportion β and the position of the rifampicin
sensitive termination nterm. Here, n�nterm

v is the time that the polymerases need from
the (relieved) termination site to position n, i.e. the delay of the increase. The
maximal time the RNA abundance can increase is nterm

v , which resembles the
maximal time window of the higher RNAP concentration for post termination site
positions:

cðt; nÞ ¼

α�α ´ β
λ if t< n�nterm

v

α
λ � α ´ β

λ ´ e�λ t�n�nterm
vð Þ if n�nterm

v ≤ t< n
v

α
λ � α ´ β

λ ´ e�λ t�nterm
vð Þ� �

´ e�λ t�n
vð Þ if t ≥ n

v

8>>><
>>>:

ð5Þ

It is a frequent case that a position is passed by polymerases which have been
started at two or more different TSSs. Here the measured RNA concentration/
count/intensity is based on a mixture of transcripts of different lengths. Assuming a
case with two promoters, were the more upstream promoter has the synthesis rate
α1 and the downstream promoter α2, we can model the transcript number with the
following equations. For simplicity we assume similar elongation velocities v1 ≈ v2
≈ v and degradation constants λ1 ≈ λ2 ≈ λ for both types of transcripts. The
distance to the first promoter is given by n1 and the distance to the second
promoter by n2:

n2 <n1

cðt; nÞ ¼

α1
λ þ α2

λ if t< n2
v

α1
λ þ α2

λ ´ e�λ t�n2
vð Þ if n2

v ≤ t< n1
v

α1
λ ´ e�λ t�n1

vð Þ þ α2
λ ´ e�λ t�n2

vð Þ if t ≥ n1
v

8>><
>>: ð6Þ

The lag of the action of rifampicin after addition to the media is between 5 and
10 s in E. coli. 21. Assuming that all RNAPs are equally affected by the lag, this
should result in an ubiquitous delay of some seconds for the 5′ ends of all
transcripts. For hypothetical data with a much higher temporal resolution in the
time frame <30 s this ubiquitous delay would be detectable by the delayed co-
transcriptional model. In reality the temporal resolution is much lower and an
experimental error of some seconds in the time taking for the sample time points
can be assumed. In conclusion, the small lag of the rifampicin action should not
seriously affect the results.

‘rifi’ workflow. First, all regions with continuous coverage, i.e. regions with no
coverage gap >300nt, are taken as initial segments. The further segmentation is
done in a hierarchical manner. Starting on the delay, then on the half-life and
finally on the RNA abundance before rifampicin addition, i.e. the assumed steady-
state expression level. The operon structure and transcriptional events (e.g. start
sites or termination sites) are estimated based on this initial fragmentation as
described in the following (Supplementary Fig. 14). The general structure of the
‘rifi’ tool is visualized in Supplementary Fig. 15. The segmentation problem boils
down to setting the right splits within the data43. Therefore, ‘rifi’ tries to minimize
the residuals of the data points to a linear regression (delay) or the average (half-
life, RNA abundance) of the whole segment. In order to prevent excessive seg-
mentation, each split adds a penalty P to the global segmentation score. Thus, the
number of clustered fragments strongly depends on the penalties. Lower penalties
lead to a stronger fragmentation and a higher sensitivity for event detection at the
cost of a lower specificity. ‘rifi’ tries to automatically estimate the best penalties
based on a sample of the given dataset. Different scoring functions are used to
assess the similarity as described below. The optimal segmentation Sn,k that splits a
sequence of n ordered elements in k non-empty segments is defined by the
recursion

Sn;k ¼ min
n�1≥ k≥ 1

min
i ≤ n

Si�1;k�1 þ f ði; nÞ þ P ð7Þ
where f ði; nÞ defines the optimal score of the segment from element i to n. Mostly
we use the variant where the total score Sn,k is minimized but for the TU definition
the score is maximized and the penalty P is negativ:

Sn;k ¼ max
n�1≥ k≥ 1

max
i ≤ n

Si�1;k�1 þ f i; nð Þ � P ð8Þ
‘rifi’ consists of seven top level steps for data processing, at the core of which,

the fitting of the input data and the fragmentation of the resulting data are
conducted.

‘rifi_preprocess’. ‘rifi_preprocess’ filters the data, assigns the bins to the correct
fitting model (i.e. co-transcriptional model with or without background (BG) or the
RST model) and performs the general processing of the data structure. For the
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RNAseq data, bins with an average count below 10 were discarded and no further
filtration was conducted. For the microarray dataset, probes were tagged for the BG
model if the latest time point was below our BG threshold of 4000 A.U. Probes with
the highest expression at the last time point or the lowest expression at the first
time point were filtered. As the dynamic programming approach has a polynomial
time complexity, it is paramount to divide the whole genome into smaller pieces by
regions without expression. We segmented the genome at regions without
expression over 300 nts (changeable parameter).

A two-step process assigns the bins to the RST fitting model. Bins influenced by
RST are likely to show an increase in relative RNA abundance. Bins or probes for
which at least one time point t > 0 (averaged over all replicates) shows a 7.5%
higher abundance than time point t = 0, are labeled with a value y of 1, while all
other bins are labeled with y = −1. Dynamic programming is used to identify
regions with predominantly probes that behave like they are under the influence of
RST, to account for noise and irregularities. For this, a simple scoring function is
used that calculates the sum of the absolute deviation from the mean of each
fragment:

y 2 �1; 1f g

f ði; nÞ ¼ ∑
n

i¼1
yi �

1
n
∑
n

i¼1
yi

����
���� ð9Þ

A split penalty P of 10 is applied in this segmentation. Segments with at least 75
% of such RST indicator bins are flagged as potential RST candidates and fitted
with the RST model. Additionally, 1000 nucleotides before the potential RST event
are likewise subjugated to the RST fit, to create a region of pre-RST. The fits are
done using the R nls or nls2 functions with the appropriate models. The RST model
introduces, compared to the simple co-transcriptional mode, 2 additional free
parameters. For a termination proportion β = 0, the model boils down to the co-
transcriptional model. The additional freedom in the RST model can favor a β > 0,
also in the non-RST case, especially if the number of datapoints are low. On the
other hand, a comparison of the RST with the non RST model by e.g. the Bayesian
information criterion40 would be to conservative, too; again because usually only
few data points can be used to fit the increase. Here we use the workaround that we
collect all fits in a given residual range compared to the best fit (default: 20%). From
these fits we choose the fit with the smallest termination probability. Reducing the
range increases the sensitivity to detect regions with RST. All analyses were done
with rifi R-package version 1.2.2 from Bioconductor version 3.16.

‘rifi_penalties’. Penalties for delay, half-life, RNA abundance, and TI fragmenta-
tion are highly dependent on the number of datapoints per nucleotide and thus the
bin size for RNA-seq data or probe size and probe distribution for microarray data.
‘rifi’ tries to automatically estimate the best penalties based on a sample of the
coverage segments in the given dataset. For this sample a range of penalties is tried,
then for all consecutive fragments, ‘rifi’ tests if they are statistically significantly
different. Finally, the penalty with the highest difference between significant- and
non-significant splits is selected. ANCOVA and t-test are used to evaluate the splits
for delay and half-life, abundance, and TI respectively.

‘rifi_fragmentation’. The values extracted from the fitting (delay, half-life, and TI-
termination factor) alongside the RNA abundance are all representative of a certain
cellular behavior at the given position. By the various fragmentation steps, the bins
are clustered into groups of similar behavior.

The bins are fragmented by the described dynamic programming in a
hierarchical manner (Supplementary Fig. 14). Each position segment is fragmented
into fragments of uniformly increasing delay, which in turn are then fragmented
into fragments of similar half-life, which are finally fragmented into fragments of
similar RNA abundance. From the delay fragments TUs are formed by the overall
increase of the delay, on which TI fragments are formed.

Delay segment scoring function. To fit the increase in delay, a scoring function is
used that calculates the sum of the absolutes of the residuals of the linear fit
through all delay values y over the positions of the bins x. The slope u of the linear
fit is restricted within biological meaningful borders between zero and 1/60.
Individual noisy data points or small transcripts (covering less than the required 3
data points for being a separate segment) might interfere with the
proper segmentation or force artificial splits. For that reason we use a scoring
function that allows the exclusion of data points (outliers) from a segment. A
maximal allowed number O of outliers can be defined, by default maximal 0.4*n
but not more than 10 outliers are allowed. If a segment with n data points is scored,
the number of values {1, …, n} considered in the fit will be reduced O times in a
manner where the value corresponding to the highest residual is excluded each
round, resulting in the vector o representing the indices of the elements that have
the respective highest residuals.

Outlier selection:

oj ¼ argmax
i

yi � u � xi þ t
�� ��; i ϵ ð1; :::; nÞ= o1; :::; oj�1

n o
; j > 0 ð10Þ

For the addition of each outlier, an outlier-penalty N will be added to the score.
The scoring function chooses the number of outliers j = {0, …, O} that lead to the

minimal combined score. The minimal allowed length m for a delay fragment
is three.

Scoring function:

0≤ u≤
1
60

f ði; nÞ ¼ min
j

∑
n

i¼1
jyi � u � xi þ tj ; i 2 ð1; ¼ ; nÞ ; j ¼ 0

∑
n

i¼1
jyi � u � xi þ tj þ P � j ; i 2 ð1; ¼ ; nÞ=fo1; ¼ ; ojg ; j > 0

8>><
>>:

f ði; nÞ ¼ min
j

∑
n

i¼1
jyi ¼ u � xi þ tj i 2 ð1; ¼ ; nÞ; j ¼ 0

∑
n

i¼1
jyi ¼ u � xi þ tj þ P � j ; i 2 ð1; ¼ ; nÞ=fo1; ¼ ; ojg; j > 0

8>><
>>:

ð11Þ

Half-life, RNA abundance and transcriptional interference. The fragmentations
of the half-life, RNA abundance and TI fragments all use the same scoring function
that, similarly to the scoring function for the assignment for the TI fit, calculates
the sum of the deviations to the mean. In addition, outliers are penalized here in
the same way as described for the delay fit, resulting in the following scoring and
outlier detection functions. The abundance values are calculated as their log2 to
normalize for higher spread in the data at higher intensities. The minimal allowed
length m for a delay fragment is three:

oj ¼ argmax
i

yi �
1
n
∑
n

i¼1
yi

����
����; iϵð1; :::; nÞ=fo1; :::; oj�1g; j > 0 ð12Þ

f ði; nÞ ¼ min
j

∑
n

i¼1
yi � 1

n ∑
n

i¼1
yi

����
����; iϵð1; :::; nÞ; j ¼ 0

∑
n

i¼1
yi � 1

n ∑
n

i¼1
yi

����
����þ P � j; iϵð1; :::; nÞ= o1; :::; oj

n o
; j > 0

8>>><
>>>:

ð13Þ

Transcription unit. All delay fragments are combined into TUs by the distance
between the delay at their last position and the delay of the first position of the
consecutive fragment. A steep drop of the delay is more likely the initiation of a
new TU, while a small drop implies an internal start (iTSS_I). If the delay does not
revert back to ~0 min at the start of a new segment, in general overlapping tran-
scription can be assumed. A delay fragment starting at zero minutes always initiates
a new TU. In the current version ‘rifi’ defines TUs only based on the delay, which
can be problematic if the delay difference between the final and the first segments
of two TUs is too small for segmentation. This can happen for short TUs, or if the
elongation rate is very high. In contrast to the other segmentations, here the score
is maximized. The default split penalty P is −0.75.

The scoring function sums up the distance between the delay at the ending
points e of each fragment except the last one to the delay at the starting point s of
each corresponding consecutive fragment in potential TU with n + 1 segments and
n splits. We furthermore assume that fragment-starts with a low delay, below
0.6 min, are more likely to initiate a new TU than fragment-starts with higher
delays. For that reason, each start gets a delay-based modifier based on a
logarithmic function. The formula causes delay values at the start of the second
fragment to be penalized exponentially harsher the closer the value is to 0, while
values higher than 0.6 are rewarded but only lightly. The final scoring function is

f ði; nÞ ¼ ∑
n

i¼1
si � ei þ ∑

n

i¼1
lnðsiÞ þ 0:5 ð14Þ

Statistics and Reproducibility—‘rifi_stats’. The statistics for decay constant,
delay and RST termination rate from the nonlinear-least-square model fits to the
individual bins/probes are not used for a probe filtering or as weights for the
dynamic programming. Fits were done on all available replicates simultaneously
(Escherichia coli K12 BW251133: 3 replicates, Klebsiella aerogenes KCTC 21903: 1
dataset no replicate, Synechococcus sp. strain PCC 7002:19 3 replicates, E. coli K12
MG165518: 2 replicates, Synechocystis PCC 6803: 3 replicates). All statistics are
based on the distributions from the fitted values (delay, HL log2(abundance)) from
individual segments. For the HL segments and the abundance segments the HL and
abundance standard deviation and standard errors are calculated based on the
distributions from the individual probes/bins belonging to the segments. The
values are reported in the final ‘rifi’ results R-object. Consecutive HL and abun-
dance segments are tested using a two-sided Student’s t test for a significant fold
change. The log2 fold-changes and p-values are reported in the ‘rifi’ output as
“Int_event” and “HL_event”. The log2 synthesis rate ratio Rsynt is calculated
between all consecutive abundance fragments within the same TU, with the
synthesis rates α, the RNA abundance before rifampicin addition int, the degra-
dation constant λ and the half-life HL. Due to the hierarchical segmentation
strategy an abundance segment will never overlap two half-life segments, but the
matching half-life segment might be bigger than it. In those cases, the half-life
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segment is adapted to match the bins/probes of the abundance segment before the
calculations:

Rsynt ¼ log 2
α30

α50

� �
¼ log 2

int30
int50

� �
þ log 2

λ30

λ50

� �
¼ log 2

int30
int50

� �
� log 2

HL30
HL50

� �
Rsynt > 0 : new TSS (iTSS II)

Rsynt < 0 : ðpartialÞ termination site ðtermÞ

Rsynt � 0& log 2
λ30

λ50

� �
≠ 0 : processing or stabilization site:

The p-value of Rsynt is calculated by MANOVA. The independent variable is the
segment type (5′ segment = s50 and 3′ segment = s30 ), while HL and RNA
abundance are two dependent variables. The partial termination percentage is
tp ¼ ð1� 2Rsynt Þ � 100, i.e. a Rsynt ¼ �0:5 equals ~29% termination.

Internal TSS identified by a delay drop (iTSS I). The drop is calculated from the
respective fitted delays (linear regression) at a position between the two consecutive
segments. In order to get the distributions for the t-test, the residuals from the
segment-specific linear regressions are summed with the respective fitted delays at
the comparison position. To check if two consecutive delay segments have a
significantly different elongation rate (velocity event) we checked if the slopes of
the respective linear regressions are significantly different with ANCOVA. In this
case, segments are the categorical variables, the position is covariate and the delay
is the response. We checked for a significant interaction of the categorical variables
with the position. For the evaluation of the relation and events between fragments
the following statistical tests and measures of differences are considered. For all
t-tests and MANOVA we assumed a normal distribution of the values. The p-
values for each set of events were adjusted for multiple testing by the method of
Benjamini Hochberg. The respective statistical tests for allevents are given in
Table 3.

Statistical assessment of RST segments. We assessed the probability that the
post-rifampicin-increase is due to technical noise. If post-rifampicin-increases are
based on technical noise, they should be randomly distributed within all reads/
probes. In contrast a systematic effect, such as TI, should affect consecutive reads/
probes after an RST event. The background probability of RST bins/probes was
calculated from the total number of bins/probes tagged as potential RST bins
divided by the total number of bins/probes. In case of E. coli BW25113 7420/46803
probes are tagged as potential RST probes resulting in a background probability of
0.159. Based on this background probability we calculated the probability of getting
≥ 0:75 � n RST-bins in a sequence of n bins, i.e. the probability of getting ≤ 0:25 �
n non-RST bins, with the cumulative probability function for binomial distribu-
tions in R (pbinom) for all segment sizes from 5 to the maximal segment length of
an ‘rifi’ detected RST segment in the respective organisms. The ≥ 0:75 � n
threshold was used, because by default ‘rifi’ requires only 75% of RST bins in a
potential RST-segment prior to the actual fit (see above). The expected numbers
and probabilities of the occurrence of RST segments of length ≥n were compared
with the actual observed numbers and frequencies (Fig. 4a, Supplementary Fig. 7),
showing that the observed RST segments cannot be explained by random
sequencing noise. Observed segments needed to fit the following requirements: 1.
Segment size ≥ 5 bins; 2. average fitted termination rate ≥0.15; 3. number of
individual bins with a fitted termination rate of ≥0.15 needed to be ≥75% of the
total number of bins (always rounded up to the next integer to be more stringent).

RNA-Seq data from published studies. Rifampicin treatment sequencing data
from Escherichia coli K12 BW25113 and Klebsiella aerogenes KCTC 2190 from the
data set of Dar & Sorek3 was used for the analysis. The data is available at the ENA
project ID PRJEB21982. Additionally, we used rifampicin treatment data from
E. coli K12 MG165518 and Synechococcus sp. strain PCC 700219. Data available at
Gene Expression Omnibus (accession no: GSE75818) or and Gene Expression
Omnibus (accession no: GSE109174), respectively. Standard quality control was
performed, the reads were aligned to their respective reference genome (E. coli
BW25113, CP009273.1; K. aerogenes KCTC 2190, NC_015663.1; E. coli K12
MG1655, NC_000913.2; Synechococcus sp. strain PCC 7002, NC_010475.1) using
the BWA alignment tool (0.7.17)44. Bedtools (2.30.0) genomecov was used to count

the sequencing depth on every position45. Spike-in RNAs were used to calculate the
normalization factor. Data from Synechococcus sp. strain PCC 7002 was readily
available as normalized count data. The normalized counts for each base were then
averaged into groups of 50 nt, creating bins to reduce the number of samples. The
position of the bin refers to the genome position of the last nucleotide in the bin.
Samples with an average count below ten were discarded.

Synechocystis PCC 6803 microarray data. Liquid cultures of Synechocystis PCC
6803 strain PCC-M were cultivated at 30 °C in standard BG11 medium with
constant shaking and illuminated with white light of 50 μmol of photons
m−2s−1. Triplicate liquid cultures with 250 mL volume were grown at standard
conditions until an OD 750 nm of approximately 0.7. Samples for RNA
extraction (25 mL each) were taken at time points 0 min (before the addition of
rifampicin) and in a time series of 2 min, 4 min, 8 min, 16 min, 32 min and
64 min after the addition of 300 μg/mL rifampicin. For RNA extraction cells
were harvested on Supor 800 membranes via vacuum filtration. The folded
membrane was transferred into a Sarstedt tube with 1 mL PGTX solution46, snap
frozen in liquid nitrogen and stored at −80 °C until extraction. The RNA
extraction process started with 15 min incubation at 65 °C with vortexing several
times in between. Then, 700 μL chloroform/IAA (isoamyl alcohol) 24:1 mixture
was added to the samples, they were mixed well and incubated for 10 min at
room temperature with gentle mixing several times. Afterwards, the samples
were centrifuged for 3 min at 6000g and the upper phase was transferred to a
new tube. The next step was adding 1 volume phenol/chloroform/IAA mixture,
centrifuging and transferring the upper phase to the new tube. Next, one volume
chloroform/IAA was added, samples were centrifuged and the upper phase was
transferred to a new 2 mL RNase free tube. One volume isopropanol was added
and mixed to the samples and RNA was precipitated overnight at −20 oC. The
next day samples were centrifuged at 4 °C at 12,000g for 30 min, the supernatant
was removed and the transparent RNA pellet was washed with 200 μL 70%
ethanol (without mixing). The samples were centrifuged for 10 min, 12,000g at 4
oC, the ethanol was removed, and the RNA pellet was air dried and dissolved in
20 μL RNase free H2O. RNA samples were stored at −80 oC. The RNA samples
(10 μg) were DNase treated and precipitated by ethanol overnight, the quality
was checked on an agarose gel and concentration was measured by Nanodrop.
The RNA was directly labeled36,47 with the ULS labeling Kit (Kreatech). 2 μg of
RNA was mixed with 0.8 μl Cy3-ULS solution per 1 μg of nucleic acid in a
volume of 20 μl with 2 μL 10x labeling solution. The samples were incubated at
85 °C for 15 min in the dark and residual unused dye was removed with
KREApure columns. The efficiency of labeling was controlled photometrically
with the Nanodrop spectrophotometer (microarray mode), which measured
simultaneously the absorption at 260 nm (nucleic acid) and 550 nm (Cy3).
Agilent custom microarray 8X60k with one color technique were used. The
hybridization, washing and scanning procedure was done according to the
Agilent protocol for one-color microarray-based gene expression analysis.
Shortly, labeled RNA samples were mixed with 10X blocking solution, RNase
free water and 25X fragmentation buffer and incubated for 30 min at 60 °C in
the dark. Subsequently, 2X Hybridization buffer was carefully mixed with the
samples and after short centrifugation they were loaded on the microarray.
Hybridization was performed for 17 hs at 65 °C with constant rotation. Sub-
sequent washing was performed with washing buffer 1 and 2 and with acet-
onitrile for 1 min each. An Agilent Technologies Scanner G2505B was used for
the detection of the signals. All array data can be downloaded from NCBI GEO
(GSE209879). Signal intensities for probes were obtained from the scanned
microarray image using Agilent Technologies’ Feature Extraction software ver-
sion 10.5.1.1 (protocol GE1_105_Dec08). Rifampicin time series data have very
asymmetric fold-changes because basically the expression of the whole tran-
scriptome declines compared to the pre rifampicin time point. This is a problem
for the common normalization methods such as quantile normalization. As we
do not have spike-in RNA samples for an unbiased normalization we resorted to
a cyclic loess (cLOESS) based on the least changing dataset, which was done in a
similar way for diurnal time series data48. We selected genes showing no dif-
ferential expression when comparing time 0 and after 64 min (log2FC ~ 0). In

Table 3 Statistical tests used for the transcriptional events.

Type of fragment Event Test Criterion

Delay iTTS I t test (two-sided, unpaired, unequal
variance)

Difference between projected end of the first segment and start
point of the consecutive segment.

Delay vc ANCOVA Difference in slope
Half-life HL_FC t test (two-sided, unpaired, unequal

variance)
Fold change of mean half-life

RNA abundance & half-life iTSS II & term MANOVA Fold change of mean abundance and fold change of mean half-life
TI TI t test (two-sided, unpaired, unequal

variance)
Fold change of mean TI termination factor
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practice we used the 1% of probes with the lowest fold change as reference for
the cLOESS normalization with limma49.

Soft-clustering. Soft-clustering of the time-series data of individual bins or probes
was done with Mfuzz50 using 20 clusters and a fuzzification parameter of 1.25 on
standardized expression data.

Stochastic simulation. The simulation was used for an unbiased confirmation of
the models for post-transcriptional decay, rifampicin sensitive termination by a cis-
asRNA or a fixed termination factor and position as well as the multiple TSS
model. Furthermore, it was used to generate an unbiased dataset with known truth
for the evaluation of the delay-based ‘rifi’ estimates (velocity, velocity changes and
delay-based TSSs). For the simulation, RNAs are represented as vectors of integers.
An RNA ranging e.g. from position 1 to 5 is represented as r = {1,2,3,4,5}. The
integers resemble the positions that are existing in the respective transcript.
Growing transcripts and terminated full-length transcripts are stored in separate
lists. Potential asRNAs are also stored in dedicated lists. All actions are simulated in
1 s steps, for a predefined number of steps as described in the following.

1. De novo transcription initiation: At each timestep one or more overlapping
sense transcripts are initiated with a selectable initiation rate (initiations/s)
at selectable starting positions (≥1). A random number between 0 and 1 is
generated. If the number is smaller or equal to the respective given initiation
rate at the respective position a new vector containing the respective
start site as an integer is added to the growing transcript list. Given the
starting positions 1 and 100, the respective RNA vectors would be r = {1}
and r = {100}.

a. Rifampicin addition time: If the predefined rifampicin addition time step
is reached no further transcription initiations are triggered. All other
steps, e.g. elongation or decay continue until the predefined maximum
time step is reached.

b. Initiation of an asRNA: The asRNA is initiated as described for the sense
RNA, but written in a dedicated growing asRNA list. In contrast to sense
RNAs only one antisense TSS is possible. The start position of
the asRNA needs to be given relative to 1, i.e. an asRNA start site of
1000 means that the 5′ end has position 1000 and that the 3′ end extends
towards 1 (ras = {1000,999,998}).

c. Change of initiation rate: It is possible to set a time point and a set of
secondary initiation rates. If the respective time step is reached the
secondary rates are taken (only sense transcripts).

2. End of a transcriptional pause: For each RNA in the pause list a random
number between 0 and 1 is sampled. If the number is smaller or equal to the
pause off-rate, the RNA is moved from the pause list into the growing
RNA list.

3. Elongation: Each growing RNA vector is extended by n consecutive
ascending integers depending on the defined elongation rate (nt/s). Given
the RNA vector r = {1,2,3,4} and an elongation rate of 5 nt/s, the RNA
vector after one elongation step is r = {1,2,3,4,5,6,7,8,9}.

4. Start of a transcriptional pause (only for sense RNAs): If the defined pause
start probability is greater than 0, all growing transcripts for which the 3′
end overlaps with the defined pausing site are identified. For each of those
RNAs a random number between 0 and 1 is sampled. If the number is
smaller or equal to the pause start probability (default: 1) the transcript is
moved from the growing RNA list into a pause list. Paused RNAs can still
undergo decay but they are excluded from the elongation.

5. Decay: For each existing transcript a random number between 0 and 1 is
sampled. If this number is smaller or equal to the input decay constant (s−1)
the respective transcripts are subjected to the decay function. If transcripts
are selected for decay the actual degradation is considered to appear
instantaneous within the respective time step.

a. Post-transcriptional mode: Only full-length RNAs are considered for
decay. Selected transcripts are completely deleted.

b. Co-transcriptional mode: Both growing and full-length transcripts are
considered. Selected full-length transcripts are completely deleted. For
growing transcripts all positions but the most 3′ prime positions are
deleted. The cut transcript can still undergo further rounds of elongation
and decay. An example RNA vector r = {5,6,7,8,9,10} would become r =
{10} after the co-transcriptional decay.

c. Endo_exo mode: This mode simulates endonucleolytic cuts at defined
positions and a rapid 3′ to 5′ exonucleolytic decay of the new 3′ ends. For
all RNA vectors that contain the predefined endo-site-positions a
random number between 0 and 1 is sampled. If this number is smaller or
equal to the input decay constant, the rightmost endo site becomes the
new 5′ end of the respective RNAs.

6. Termination: If the integer at the 3′ position of a growing RNA vector is
equal to or bigger than the selected input total RNA length, the transcript is
deleted from the growing RNA list and added to the full-length RNA list.
The following additional non-standard termination options exist:

a. A fixed random termination probability at each time step: For each
growing transcript a random number between 0 and 1 is sampled. If this
number is equal to or smaller than the given fixed termination
probability, the respective transcript is moved to the full-length RNA
list before reaching the given maximum transcript length.

b. Partial termination at given position: For all growing transcripts for
which the 3′ position in the growing RNA vector is in a window with the
given partial termination site (window size dependent on elongation
rate) a random number between 0 and 1 is sampled. If this number is
equal to or smaller than the given termination probability, the respective
transcript is moved to the full-length RNA list.

c. Termination by collision: For this mode, the transcription of an cis-
asRNA is simulated in parallel. In a first step sense/anti transcript pairs
are selected if their 3′ positions are in the same window (default: 30nt).
For all selected pairs a random number between 0 and 1 is sampled. If
the number is smaller or equal to the given sense collision termination
probability (ti_prob_sense) the sense transcript is moved to the full-
length sense RNA list. Otherwise the growing asRNA is moved to the
full-length asRNA list. A ti_prob_sense <0.5 means that the sense RNA
is less often terminated than the asRNA. Collisions without termination
are not implemented.

7. Transcript number counting (position dependent): Finally, for a predefined
set of positions, the number of transcripts containing the respective position
is counted at each time step. Here, all lists (growing RNA list, full-length
RNA list, pause list) are considered. Potential asRNAs are counted
independently.

Elongation rate fit accuracy. To test the accuracy of the velocity estimate a 1000nt
transcript with constant elongation rate was simulated. In total 36 parameter
combinations (decay constants: 0.003465736, 0.01155, and 0.00578 1/s; initiation
rates: 0.2, 0.4 and 0.8 initiations/s) including 4 different elongation rates (15, 30, 45
and 60 nt/s) were used. The simulations for each parameter set were done in
triplicates. Poisson noise was added to somewhat resemble technical sequencing
noise before fitting and segmenting the data with the penalties used for the Dar &
Sorek data (split penalty 3.5, outlier penalty 2.5). This procedure was repeated 50
times for each parameter set. The velocities of the resulting segments were com-
pared with the input velocities.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The Synechocystis PCC 6803 microarray data from this study have been deposited with
the GEO accession number GSE209879. The data sources and respective references for
the other organisms are: Escherichia coli K12 BW25113 and Klebsiella aerogenes KCTC
2190 (Dar and Sorek3, ENA project ID PRJEB21982). E. coli K12 MG1655 (Moffit
et al.18, GEO: GSE75818). Synechococcus sp. strain PCC 7002 (Gordon et al.19, GEO:
GSE109174). The ‘rifi’ R objects containing the source data for all analyses and figures
based on experimental data are available in Supplementary Data 5.

Code availability
The R-package ‘rifi’, for a holistic analysis of rifampicin data, is available via
Bioconductor (https://bioconductor.org/packages/rifi) or GitHub (https://github.com/
JensGeorg/rifi), analyses in this paper were done with R-package version 1.2.2 from
Bioconductor version 3.16 (https://zenodo.org/record/8054675). The script for stochastic
simulation of transcription and degradation at GitHub (https://github.com/JensGeorg/
Stochastic-simulation-of-transcription).
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