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Efficient end-to-end learning for cell segmentation
with machine generated weak annotations

Prem Shrestha® !, Nicholas Kuang T& Ji Yu'™

Automated cell segmentation from optical microscopy images is usually the first step in the
pipeline of single-cell analysis. Recently, deep-learning based algorithms have shown superior
performances for the cell segmentation tasks. However, a disadvantage of deep-learning is
the requirement for a large amount of fully annotated training data, which is costly to
generate. Weakly-supervised and self-supervised learning is an active research area, but
often the model accuracy is inversely correlated with the amount of annotation information
provided. Here we focus on a specific subtype of weak annotations, which can be generated
programmably from experimental data, thus allowing for more annotation information con-
tent without sacrificing the annotation speed. We designed a new model architecture for end-
to-end training using such incomplete annotations. We have benchmarked our method on a
variety of publicly available datasets, covering both fluorescence and bright-field imaging
modality. We additionally tested our method on a microscopy dataset generated by us, using
machine-generated annotations. The results demonstrated that our models trained under
weak supervision can achieve segmentation accuracy competitive to, and in some cases,
surpassing, state-of-the-art models trained under full supervision. Therefore, our method can
be a practical alternative to the established full-supervision methods.
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based deep-learning models!2 have demonstrated unpar-

alleled performance in various machine vision tasks, and are
increasingly being adopted by biomedical researchers as the
method of choice for single-cell segmentation from microscopy
images3. Currently, there are two general approaches to building
deep-learning models for single-cell segmentation. The first is to
treat the problem as a pixel-level classification/regression task. In
the simplest case, the model takes a microscopy image as input
and assigns each pixel a unique class label (e.g., cell vs back-
ground) and thus produces a segmentation mask for the input
image. Because the image can have more than one cell, a post-
processing step, typically based on a simple morphological
operator, such as watershed?, is employed to break the segmen-
tation mask into instances of individual cells>®. Unfortunately,
this only works well for cells at low density or for nuclei
segmentations’, but cannot handle dense cell populations. Pre-
dicting cell border pixels as a distinct class®? serves as a simple
work-around, albeit with the caveat that it is often ambiguous to
which cell one should assign the border pixels. A more popular
solution for a true single-cell segmentation algorithm is to train
the model to predict a distance metric!9-16 for each pixel, e.g., the
Euclidean distance to the nearest background pixel. The resulting
“distance map” can then be processed to produce segmentations
for individual cells. The various models currently in the literature
differ in the exact distance metrics they choose to compute.
Nevertheless, a common characteristic of this general approach is
that the segmentation proceeds as a two-step process. In the first
step, a deep-learning model is used to convert a microscopy
image to an intermediate pseudo-image that is more algor-
ithmically manageable. Then at a second step, a hand-crafted
post-processing algorithm is used to convert the pseudo-image
into instance segmentations of single cells.

The second general approach to cell segmentation has its roots in
the object-detection literature from the computer science field. In
this case, a deep-learning model tries to perform the joint tasks of
object detection, object segmentation and object classification con-
currently in an “end-to-end” fashion. Instead of a pseudo-image, the
model was trained to directly output a list of segmentation masks,
each representing a single object (ie., a cell) in the input image.
Therefore, there are no post-processing steps. In addition, the
Individual object masks produced by these models are allowed to
have spatial overlaps, which in principle allow them to better handle
more complicated segmentation problems where cells crawl on top
of each other. Many general-purpose instance segmentation models
of this type have already been developed, e.g. MaskRCNN17,
CenterMask!® and YOLO!?. Although these models were not
designed specifically with biological applications in mind, several
studies have already successfully shown that they can be apply to
microscopy image data to solve cell segmentation problems20:21.

Regardless of the specific approaches, a well-known dis-
advantage of the deep-learning methods is that they are very data-
hungry and require a large amount of annotated training data.
For example, a recent study showed that the accuracy of the cell
segmentation models did not reach saturation even after training
with >1.6 million cell instances?’. Training data for single cell
segmentation are particularly costly to generate because the
annotations must be produced at the instance level, i.e., the exact
boundaries of each cell need to be manually determined, unlike
many other machine vision tasks such as image classification,
where the annotations were produced at the image level. This
drawback further raises concerns over the scalability of the deep-
learning method for three-dimensional (3D) microscopy, for
which manual annotations are even more expensive to produce.

To alleviate the burden of image annotation, a lot of effort
has been put into the studies of weakly-supervised learning?? and

I n the recent literature, convolutional neural-network (CNN)

self-supervised learning?® from images, particularly within the
general instance segmentation literature. For example, it has been
shown that a MaskRCNN-type model can be successfully trained
with only bounding-box annotations, achieving more than 90% of
the performance relative to full-supervision (i.e., with instance
masks)?2. Combining bounding-box supervision with additional
randomly-sampled point supervision resulted in even better
performances?42> and this latter strategy has already been tested
on single-cell segmentation tasks2®. However, per-instance
bounding-box annotation is still time-consuming. Location-of-
interest (LOI)%7, which labels the approximate location of an
object, is easier to produce but also is a weaker form of super-
vision than either the bounding box or the point supervision. A
method to train instance segmentation models using LOI
supervision has been proposed, but the model performance is
lower?”. An attractive alternative approach is to rely on image-
level annotations, instead of instance-level annotations?-3!. For
example, class-activation maps>2 can be utilized as a stand-in for
segmentation masks28-30 because high gradients tend to localize
to regions of importance for the modeling objective. This allows
the model to be trained on simpler auxiliary tasks, such as image
classification. These approaches have achieved good results for
semantic segmentation tasks, but applying them to dense instance
segmentation, i.e. for single-cell segmentation, remains unproven.
Finally, advances have also been made in self-supervised
learning?3-37, which focuses on learning a useful representation
of the image features without focusing on a specific task or using
any labels - the learned representations can then be used for
more specific downstream tasks, including image segmentation.
Another revenue of research is to incorporate specific prior
knowledge into models built for specific microscopy modalities.
For example, Hou et al.3® were able to model H&E images by
combining a sparse autoencoder to represent nuclei blobs and a
light-weight CNN to represent background, and extracted useful
feature representations based on unsupervised training.

Faster annotation and higher model accuracy, however, are
often two conflicting goals. The model accuracy generally
improves with the more detailed annotations, which requires
longer time to generate, and vice versa. Therefore, in this paper,
we will focus on cell segmentation models trained with weak
annotations that potentially can be produced programmably or
semi-programmably from experimental data. We believe this
strategy is the best compromise between the goals of high model
accuracy and fast annotation (Fig. 1a). Specifically, we will focus
on two types of annotations: (1) Image-level segmentations
(Fig. 1b), which separates the cellular region from the background
region. Such an annotation can be produced by acquiring a
fluorescence image of the cellular sample and thresholding the
resulting image. (2) Location-of-interests (LOIs), which are the
rough locations for each cell present in the image (Fig. 1b). This
annotation can be produced by acquiring nucleus images using
widely employed labels, such as diamidino-2-phenylindole
(DAPI). One way to annotate LOIs is to apply an existing
nuclei segmentation model’, although it should be noted that
LOIs is a location label and can also be obtained without fully
segment the nuclei, by via simpler blob detection algorithms. By
focusing on these two specific annotations, a researcher can
potentially generate a large dataset quickly, and still offer anno-
tations with rich informational content for training an accurate
segmentation model.

Results

Model design. Figure 2a shows our model architecture for the
single-cell segmentation task. The overall model contains three
sub-modules, all of which are based on fully convolutional neural
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Fig. 1 Comparison of various training data annotations for single-cell segmentation models. a Diagram illustrating the conflicting goals of faster
annotation and higher model accuracy, and how experimentally acquired annotations offer a better compromise. b Examples of annotations. The top image
shows a representative microscopy image of cells. The second row shows the corresponding full annotation of single-cell segmentations, which is
expensive to generate. The bottom two rows showed two types of incomplete annotations that can potentially be generate programmably: (1) image-level
segmentation, which labels the pixels of all cells in the image, and (2) location-of-interests annotation, which a subtype of the point annotation that

denotes rough locations of individual cells.
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Fig. 2 LACSS model. a Model architecture showing all three components of the model: backbone, location proposal network (LPN) and segmentation FCN.
b Schematic diagram of LACSS model training under full-supervision. ¢ Schematic diagram of LACSS model training under semi-supervision.

network (FCN) design. The backbone employs a standard enco-
der/decoder structure, and outputs feature representations
extracted from the input image at multiple resolutions. The sec-
ond component, the location proposal network (LPN), is analo-
gous to the region proposal network (RPN) of the popular
FastRCNN model for object detection3®. Its task is to predict a set
of LOIs from the feature outputs of the backbone. Unlike RPN,
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which computes regression for the object bounding-box (location
and size), the LPN does not predict the object size because the
information is unavailable in the annotations. The last compo-
nent, the segmentation FCN, is responsible for output the single-
cell segmentations, taking the high-resolution image features as
the input. To allow the network to focus on a specific cell, the
image features were first concatenated with small tensors
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encoding the predicted LOIs, one for each cell (Supplementary
Note 1. Fig. S1). This way, the segmentation FCN receives dif-
ferent inputs for different cells, and thus can produce variable
segmentations even though the image features are constant. To
increase the algorithm efficiency, the segmentation FCN only
performs computation within a small area around the LOI, as it
can reasonably assume that pixels far away from the LOI are not
part of the segmentation (Supplementary Note 1 and 2). Com-
bined, the three modules learn the segmentation task in an end-
to-end manner. We name our network architecture location
assisted cell segmentation system (LACSS).

Even though the model is designed with incomplete annotation
in mind, it is also able to learn under full supervision (Fig. 2b,
Supplementary Note 2). Under such a configuration, the model
loss is the sum of two components. The first is the LPN loss,
which measures the differences between the predicted LOIs and
the ground truth LOIs. The latter can be computed from the
individual cells’ ground truth segmentations. The second is the
segmentation loss, which is simply the cross-entropy loss between
the predicted cell segmentations and the ground truth cell
segmentations. On the other hand, if the model is trained under
the configuration of the weak supervision (Fig. 2¢), the LPN loss
can still be calculated because the LOIs are part of the image
annotation. The segmentation loss, on the contrary, is no longer
available. Therefore, we used instead a weakly-supervised
segmentation loss function (Supplementary Note 2), which
computes (i) the consistency between single-cell segmentation
with the image-level segmentation, and (ii) the consistency
between individual cell segmentations. The latter part aims to
minimize overlaps between individual cell segmentations.
Detailed mathematical formulations of all loss functions are
provided in Supplementary Note 2.

Cell image library dataset. As a proof of principle, we first
performed a quick segmentation test on the publicly available Cell
Image Library*? dataset (Fig. 3). The dataset contains high quality
two-channel fluorescence images of neuroblastoma cells, fully
annotated with single-cell segmentation masks. We first con-
verted the original cell segmentations to image-level segmenta-
tions by combining all cell masks and used the center-of-mass of
the individual cells as the LOIs. We then trained weakly super-
vised LACSS models using the generated annotations.

To benchmark the segmentation accuracy, we computed
average precision (AP) on the validation set, as well as the
aggregated Jaccard index (AJI). The APs were computed under a
series of intersection-over-unions (IOUs) criteria ranging from
50% to 95% (Fig. 3). The model trainings were run for multiple
times (n = 5). We found the best APs, score surpassed 0.91 in all
runs, with the best model reached AP5, = 0.933 and AJI = 0.751.
The AP values at higher IOU criteria and example segmentation
predictions are shown in Fig. 3.

Both the quantitative benchmarks and visual inspection of the
segmentation results (Fig. 3a) suggested that our model
performs well on this dataset. To our surprise, our APs, seem
to be better than previous reports based on segmentation models
training with full supervision!®. Using the exact same dataset,
Stringer et al. reported APs (IOU =50%) from three different
segmentation models (cellpose!>, MaskRCNN!7s and stardist!!),
all of which are lower than ours by more than ten percent points.
We also trained LACSS with full supervision and obtained
similar accuracy (best AP5y=0.937) as the semi-supervised
training. However, we did observe tendency to overfit under
full-supervision probably due to the small size of the dataset,
which may have contributed to the poorer results reported
previously.

LIVECell dataset. Encouraged by the positive outcome on the cell
image library data, we then moved on to test our model perfor-
mances on a much larger dataset, LIVECell?0. This is a recently
published cell segmentation dataset containing >1.6 million fully
segmented cells from eight different cell lines. The imaging
modality is bright field, which has lower contrast than fluores-
cence for the purpose of cell detection. The cell lines chosen
covered a diverse set of morphologies. Cell-cell contacts and cell-
cell occlusions are of frequent occurrences. Therefore, this is a
more difficult study case for cell segmentation but is also more
representative of real-life problems in biomedical research. In
addition, baseline benchmarks were already provided based on
two state-of-the-art models, MaskRCNN!7 and CenterMask!$,
trained on full-supervision with human annotated instance
segmentations.

Similar to the Cell Image Library case, we first converted the
original instance-level annotations to image-level segmentations
and LOIs. We then trained LACSS models with the converted
weak annotations. We also train LACSS with the original full-
supervision in order to understand the performance gaps between
the two configurations. We found that indeed LACSS trained
under weak-supervision underperform by a quite large margin
(Fig. 4). Among the eight cell lines, the SkBr3 line exhibited the
smallest performance gap (APso=0.857 / 0.948 for weakly-
supervised/fully-supervised models), and the SHSY5Y line
showed the largest gap (APso=0.128 / 0.520).

Manual examination of the segmentation results indicated that
the main weakness of the semi-supervised models is with the
determination of the exact cell-cell boundary (Supplementary Fig.
S2). Indeed, we noticed that the weakly-supervised model can
correctly infer the cell locations as well as the rough sizes and
shapes of the cell but has trouble discerning the detailed shape of
the cell border. To correct this issue, we introduced an auxiliary
convolutional network (auxnet) during the training specifically to
predict the cell boundaries (Fig. 2¢). Of course, the auxnet cannot
be directly trained against ground truth, as the cell boundaries are
not part of the annotation. Therefore, we train auxnet against the
segmentation output from the main LACSS network (Fig. 2c),
and the auxnet predictions in turn help to train the LACSS model
weights by constraining LACSS outputs. Auxnet is only used
during training and is not part of the computation during
inference.

Importantly, we designed the auxnet to be of low field-of-view
(FOV). The rationale is that this is also how humans perform cell
segmentations. Typically, we first scan a relatively large area in
order to recognize the cell and understand its rough shape, but
when it comes to tracing the exact cell boundaries, we will look at
a much smaller area in order to find the exact pixel separating
two cells. By designing the auxnet to be of low FOV, we force it to
focus on a different set of image features than that of LACSS,
which has a much larger FOV.

Introducing the auxnet in the training significantly improved
the model accuracy (Fig. 4, Supplementary Table S1). For two of
the cell lines (BV2 and SkBr3), the differences between the
weakly-supervised models and fully-supervised models had
almost entirely disappeared as measured by the APs. For the
rest of the cell lines, the weakly-supervised models still under-
perform, but the gaps are much smaller (Fig. 4).

We also compare our results with the previously published
baselines (Table 1). The two baseline models were trained end-to-
end with full supervision and employed more complex
backbones?! (ResNet200) than ours (ResNet50). Nevertheless,
we found that our results were competitive to these previous
models. For BV2 and SkBr3 lines, our model had APs, scores
slightly higher than previous baselines. When using more
stringent IOU criteria (e.g., >=75%) our results are less
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Fig. 3 Segmentation of cell image library dataset with a LACSS model trained with incomplete annotations. a A representative example of segmentation
results showing the input image (left), the ground-truth segmentation (middle) and model prediction (right). The pseudo colors were generated via
skimage's label2rgb function for visual clarity and carried no extra meaning. b Model performances quantified by average precisions and false negative
rates at various 10U thresholds. Scale bar represents 50 micrometers.
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Fig. 4 LACSS model accuracy trained with LIVECell dataset. Models were trained either under full-supervision using the original single-cell annotation
(supervised, solid line), under semi-supervision using synthetic annotation but without auxnet (dotted line), or under semi-supervision with boundary-
defining auxnet (dash line). AP values were computed for eight cell lines at increasing 10U thresholds from 50% to 95%. The results showed significant
improvements in model accuracy by introducing auxnet in the training for models trained with semi-supervision.

competitive (Table 1). Similar trend can be seen in comparison of
AJI values (Table 1), indicating LACSS has difficulties achieving
pixel-perfect segmentations.

Our results showed the highest performance gap in the
SHSY5Y cell line (Table 1). Interestingly, for this cell line, the
LACSS model performs poorly even when trained under full
supervision (AP, =0.520), suggesting that the weakness stems
from the model architecture and not from the training strategy.

The exact reason why our model architecture performed poorer
on SHSY5Y is not fully understood yet and will be examined in
the future.

Figure 5 showed examples of segmentation results on the eight
cell lines. The model generally was able to trace the boundary
between cell-cell contacts, despite the fact the training data
contains no such information. The model also recaptured certain
annotation choices to a degree. For example, for BV2 cells, the
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Table 1 Comparison of LACSS model and the baselines on the LIVECell dataset.
Cell lines MaskRCNN (fully-supervised) CenerMask (fully-supervised) LACSS (semi-supervised)

AP50 AP75 mAP AJl AP50 AP75 mAP AJl AP50 AP75 mAP AJl
A172 0.74 0.36 0.38 0.59 0.72 0.30 0.35 0.59 0.68 0.29 0.33 0.54
BT474 0.76 0.44 0.43 0.56 0.78 0.43 0.43 0.52 0.68 0.36 0.37 0.53
Bv2 0.85 0.60 0.53 0.68 0.85 0.45 0.46 0.67 0.88 0.58 0.52 0.63
Huh7 0.80 0.58 0.52 0.64 0.78 0.50 0.46 0.64 0.70 0.48 0.43 0.60
MCF7 0.74 0.36 0.38 0.53 0.76 0.33 0.37 0.57 0.71 0.27 0.33 0.53
SHSY5Y 0.61 0.16 0.25 0.49 0.61 0.14 0.24 0.50 0.43 0.06 0.14 0.40
SKOV3 0.87 0.60 0.54 0.73 0.86 0.53 0.49 0.71 0.82 0.48 0.46 0.66
SkBr3 0.91 0.80 0.65 0.81 0.90 0.80 0.66 0.79 0.93 0.81 0.65 0.75
All baseline models were trained with the full annotation, whereas LACSS models were trained using the incomplete annotation. Bold font highlights categories for which the LACSS outperformed the
baselines.

Al172

BT474

BV2

Huh?7

SKOv3 SHSY5Y MCF7

SkBr3

Fig. 5 Segmentation examples for LIVECell dataset using LACSS models trained with the semi-supervision configuration. Examples for all eight cell
lines were shown. The input phase contrast images (left) were overlaid with model predictions drawn as yellow contours. The ground truth segmentations
were shown on the right, for which the model predictions were also shown as white contours for comparison. Scale bars represent 20 micrometers.

annotator chose not to label dying cells with an abnormal
appearance, and the model similarity avoided their detections. On
the contrary, for BT474 cells, the annotator frequently avoided
labeling cells at the center of the colonies, probably due to poor
contrast. However, this preference was not learned by the model.

TissueNet dataset. To further examine the generalizability of the
LACSS approach, we tested our model on the TissueNet dataset,
which is a fully-annotated dataset focusing on tissue imaging
datal®. Like in the case for LIVECell, we ignored the original
single-cell masks and generated new annotations of LOIs and
image-level segmentations to train a semi-supervised LACSS
model (Fig. 6). The best model achieved AP5y=0.78 and AJI =
0.66 (Table 2 and Supplementary Fig. S3). In addition, we also
evaluated custom defined precision, recall and F1 score (harmo-
nic mean of precision and recall) according to the original

publication!®, so that we can compare our results with previous
published baseline (Table 2). We found that our model achieved
about 95% of the performance in comparison to the fully-
supervised model measured by the F1 score (0.78 vs 0.82). More
detailed examinations showed that the main deficiency of our
model is with lower recall, while the model accuracy is similar to
the fully-supervised model.

LACSS with machine generated annotations. Finally, we turn to
test a training pipeline, in which the annotation is generated semi-
programmably (Supplementary Fig. S4). To do that, we acquired a
dataset on cultured A431 cells using fluorescence microscopy. The
cell line is chosen for its tendency to grow in large rafts/colonies
with closely packed cells, which means that there will be sig-
nificant loss of information going from the instance segmentation
annotation to the image-level segmentation. This allows for a
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Fig. 6 Segmentation examples for TissueNet dataset using LACSS models trained with the semi-supervision configuration. a Example segmentations of
representative images from the test split, one for each of the six different imaging platforms. b Example segmentations of images from the six different
tissue sources. The top rows show the two-channel input images (blue: nucleus, green: membrane) with the segmentation results plotted as contour

overlay in red. The bottom rows show the ground-truth segmentations by human annotators, with the model prediction plotted as the contour overlay in

white. Scale bars represent 50 micrometers.

Table 2 Benchmarks of the semi-supervised LACSS model
on the TissueNet dataset.

F1 Precision Recall AJI AP50 AP75 mAP
Mesmer 0.82 0.83 0.81 071 - - -
LACSS 0.78 0.84 0.73 0.66 0.78 0.42 042

The results from the Mesmer model (fully-supervised) are shown for comparison.

more stringent test of our method. We acquired 500 images
(512 x 512 pixels) of the sample labeled with anti-PY100 (Fig. 7),
which served as the training set. We also acquired DAPI images of
the same cells to help producing the LOI annotations. Further-
more, using the same protocol but in a separate experiment, we
acquired 25 more fluorescence images, which we manually seg-
mented to serve as the validation set.

We computed LOIs for the training set from the DAPI images
using a simple blob detection algorithm based on the difference-
of-Gaussian filter. Much more sophisticated algorithms are
available”#2. However, our strategy minimized the dependencies
on external training data. Even with such a simple algorithm,
the results were accurate enough: we estimated that both false
positive and false negative rates to be around 1-2% based on the

visual inspections. We also opted to not manually correct these
mistakes, in order to evaluate the model performance in a more
streamlined pipeline. To generate image-level segmentations, we
used an existing graph-cut software (see methods for details).
Figure 7a shows two examples of such machine generated
annotations. It took a total of several hours to generate and
validate the annotations for the whole training set.

In Fig. 7b we showed representative examples of the LACSS
segmentation results. Visual examining confirms that the trained
model produced segmentations qualitatively consistent with
manual segmentation. Evaluation of the model showed that it
achieved APsy=0.84 (Table 3, Fig. S5).

Our results on the A431 dataset confirm that the exact nature
of the LOIs can be flexible. In previous tests, we used the locations
of the center-of-mass of cell segmentations, because the dataset
was already pre-segmented. Here the nucleus locations were
typically off-center to the cell and randomly localized. Neither are
the LOIs center of the nucleus, as the results depend on the exact
intensity distributions of the DAPI signal. However, these features
did not seem to prevent training of the segmentation model.

Discussion
Annotation burden is a well-known bottleneck of deep learning
methods. The issue is particularly challenging for single-cell
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Fig. 7 LACSS model trained with semi-programmably generated annotations. a Examples of training data and accompanying annotations generated
semi-programmably. b Examples of model inferences. The left panel shows the input fluorescence image. The middle panels show the comparison of input
image and the model predictions (yellow contours). The right panel shows the comparison of model prediction (white contour) with manual segmentation
(color map). The bottom example represented a more challenging case with atypical image contrasts. Scale bars represent 20 micrometers.

Table 3 Benchmarking LACSS models trained with A431
image data and annotations.

AP50
0.84

AP75
0.28

mAP AJl
0.39 0.65

LACSS

The training dataset includes 500 immunofluorescence images of A431 cells at high density. All
annotations were derived from experimental data semi-programmably. See text for more details.

segmentation tasks. One way to solve the problem is to use
models that can be trained with weak supervisions, but one needs
to strike a balance between the model accuracy and the amounts
of annotations. Here, we focus on utilizing annotations that can
be generated automatically or semi-automatically, leveraging on
experimental resources that are commonly available in biological
research labs. This allows us to retain as much annotation
information as possible, while not being slowed down by manual
annotations. We believe this is the best chance to create an effi-
cient model building pipeline, without sacrificing too much about
the model accuracy, which is one of the top priorities for most of
the biological researchers. We demonstrate here that segmenta-
tion models can be built by utilizing two types of weak annota-
tions: the image level segmentation and the location-of-interests,
both of which are incomplete descriptions of the cell segmenta-
tion but combined provided sufficient information to achieve
good model accuracies.

Technologically, the main contributions of this study are
twofold. Firstly, we designed a new loss function that allows us to
train the network using a weak supervision scheme. Additionally,
we also demonstrated that using a low FOV auxnet as a training
aid can significantly increase the model performance for the
segmentation task. While the general idea of using one CNN to
train another CNN is not new (e.g., GAN*3), to our knowledge
this technique has not been used in cell segmentation literature
previously. It is interesting to note that in GAN, the discriminator
can be viewed as a particularly complicated loss function for
training the generator. Analogously, in our LACSS model, the
auxnet can be viewed as a complex regularization term to the loss
function.

While our network architecture is derived from MaskRCNN, it
is worth pointing out an important distinction: In LACSS the
segmentation network operates on a linear combination of image

features with positional encodings, while MaskRCNN does not
utilize such technique. The positional encodings are needed in
order to break the translational invariance of the CNN archi-
tecture, without which the model will have no concept of different
cells. MaskRCNN does not need such a component because the
segmentation is performed only within the bounding box of each
object. LACSS, on the other hand, has no access to the bounding
box information and relies on a different strategy. We demon-
strated here that a light-weight linear encoding scheme is suffi-
cient to achieve this goal.

We have tested LACSS on four different datasets with varying
imaging modalities and sample characteristics. The overall results
confirmed that the approach is generalizable and not limited to
specific types of data. In several cases, the accuracy of LACSS is
similar or close to fully-supervised models, but large performance
gaps still exist for certain samples, e.g., SHSY5Y cells of LIVECell
dataset. We also noticed that if a fully-supervised model can
perform well on certain data (e.g., SKBr3 cell), then LACSS can
often perform equally well. On the other hand, if a fully-
supervised model already struggles with the data (e.g., SHSY5Y
cell), then LACSS seems to perform even worse.

Comparing to fully supervised models, the semi-supervised
LACSS has relative weakness at higher IOU criteria (i.e.
IOU > = 0.75), which is probably not too surprising. Greenwald
et al.10 had asked different human annotators to re-segment the
TissueNet data, and compared the results against the “ground
truth”. They found that new human annotators typically achieve
a score (F1~0.65) much lower than the fully-supervised CNN
models (F1 > 0.8). This suggests that part of the model perfor-
mance should be attributed to its ability to reproduce the
annotator biases/preferences the model was trained on. For
weakly supervised models, fully recapitulating annotator biases
might be quite difficult because they don’t have full access to all
the annotations. We suspect this factor partly explains the
performance gap between LACSS and other fully-supervised
models.

Our goal is to build a streamlined annotation-training pipeline
that requires little to no manual input from humans. Our
demonstration on the A431 fluorescence dataset indicated that
this is indeed feasible. However, the requirement of image-level
segmentation annotation remains to be somewhat of a bottleneck.
Image-level mask is relatively easy to obtain when fluorescence
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data are available, but there are cases when this condition is not
easily met, e.g., histological samples. It is much preferable if a
model can be trained using only the LOI annotations. It should be
noted that the LOI annotation is very different from the so-called
‘point” annotation that has already successfully been used in the
literature?426, The “point” annotations are randomly sampled
points from a segmentation mask. The randomness is critical in
order to provide sufficient shape information regarding the mask.
In addition, typically both positive samples and negative samples
are needed for point annotation to be effective. The LOI anno-
tation, on the contrary, has no such constraints, and is thus a
much weaker form of supervision. Indeed, training segmentation
models using LOI remains to be a challenge and will be the focus
of our future efforts.

In conclusion, we provided a practical alternative for efficiently
building single-cell segmentation deep-learning models, which
would be of interest to biological researchers in need of per-
forming single-cell analysis from microscopy images.

Methods

Image acquisition. For this study we experimentally acquired a small microscopy
dataset on the human squamous-cell carcinoma line A431 (ATCC CRL1555). Cells
were seeded on glass substrate and grown to ~80% confluence in standard growth
media before fixation for imaging. Cells were labeled with the standard immuno-
fluorescence protocol. They were washed with a blocking buffer (2% BSA in PBS,
1% TX100), incubated with Alexa647-labeled anti-PY100 (1:500 in blocking buffer
containing DAPI) for 2 h while rocking at 4 °C. Images were acquired on an
automated inverted fluorescence microscope (Olympus IX) with an 20x objective.
Images were captured on a camera with a 512 x 512 sensor. The per pixel
dimension is 0.8 micrometer under this configuration.

Image annotation. Only the lab acquired A431 cell data were annotated by us. All
other dataset used in this study was previously segmented manually. To annotate
the A431 training set, we use the existing GraphCut function of the FIJT software*4
to produce image-level segmentation. All images were segmented at five different
intensity thresholds and a human annotator later manually examined the output to
pick one out of five for each input image. To produce LOIs, we first apply a
difference-of-Gaussian filter to the DAPI images, with the ¢ values of 4.2 and 5
pixels. We then searched for all local maxima with four-connectivity and used their
locations as LOIs. To annotate images in the validation set, we used the online
annotation software described by Stringer et al.!® to generate single-cell segmen-
tations for all cells in the image. The software takes polygon input indicated by
mouse clicks and converts the inputs into single-cell segmentations.

Datasets. In addition to the lab-generated A431 dataset, we used three published
cell segmentation datasets: Cell Image Library*?, LIVECell??, and TissueNet!¢. Cell
Image Library dataset contains 100 dual channel fluorescence images of neuro-
blastoma cells. We split the images into training (n = 89) and validation (n=11)
sets, following Stringer et al.!>. The LIVECell dataset consists of fully segmented
bright field images of eight different cell lines. The original authors had pre-split
the dataset into training (3253 images), validation (570 images), and testing (1564
images) sets. TissueNet data consists of dual-channel fluorescence images of his-
tological tissue samples from six different tissue types, acquired using six different
imaging platforms. Additionally, samples were sourced from six different tissue
types, representing a wide variety of cell morphologies and organizations. The
dataset was also pre-split into training (2601 images of 512 x 512 pixels), validation
(3104 images of 256 x 256 pixels) and testing (1249 images of 256 x 256 pixels) sets.
For both LIVECell and TissueNet, we use the dataset according to the original
splits.

Model training. Here we provide a general outline of the model training proce-
dure. See Supplementary Note 3 for detailed descriptions of the hyperparameter
choices and the training procedures of each model.

Models for the cell image library dataset were all trained with He initialization*>
of model weights. The experiments were repeated five times and the best model was
chosen based on the highest APs, score on the validation set. Models for LIVECell
and TissueNet dataset were also trained with the initialization scheme, i.e., without
pretraining on external datasets. Best models were chosen based on benchmarks on
the validation split of the dataset. The testing set was not used when choosing
models. For the lab-acquired A431 dataset, the model was pretrained on the
LIVECell dataset, then transferred to training on the A431 data and evaluated on
the A431 validation set. All models were trained using a single NVIDIA Tesla A100
GPU. ADAM optimizer was used for all experiments.

Model benchmarks. To evaluate model accuracy, we relied primarily on the
average precision (AP) metrics, which were widely used in the instance segmen-
tation literature for evaluating ranked list of segmentation predictions:

AP = %ZZZIP(k)T(k) 1)

where C is the total number of ground truth cells, # is the total number of
detections, T'(k) is an indicator function of whether the k-th detection is positive
(T(k) = 1) or negative (T(k) = 0), and P(k) is the precision of the first k detections.
Whether a detection is considered positive is determined by the intersection-over-
union (IOU) of the detection against the ground truth. We use the notation AP;oy
to denote the AP values at a specific IOU threshold, i.e, APs, is the average
precision when the positive detection requires a minimal IOU of 50%. We also use
the notation mAP to denote the average AP over a series of IOU thresholds. In our
study, we chose IOU thresholds from 0.5 to 0.95 (inclusive) in a 0.05 step size. Per
convention of instance detection literature, we do not allow multiple detections to
match against the same ground truth instance.

A secondary benchmark for segmentation accuracy is aggregated Jaccard index
(AJI), as defined in Kumar et al.%¢. AJI is an extension Jaccard index, a pixel level
metric, by incorporating object matching to allow it to be used for instance
segmentation results.

z|GNs|
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where G; is a ground truth cell, and S; is the best model prediction of G;, and §}
represents predictions that doesn’t match any ground truth.

Additionally, for the TissueNet datasets we computed a custom F1 score
according to the original publication, to facilitate comparison with the previously
published baselines. The specific score is a measure for the accuracy of cell
detection using an IOU threshold of 0.6 as the criteria for positive detection.

Statistics and reproducibility. The study did not employ statistical analysis when
comparing LACSS models with published baselines. All reported model benchmarks
are based on best models obtained from multiple reruns of the training pipelines.

Optimized model weights are available (see below) to allow re-evaluation of the models.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The A431 image dataset and the associated annotation is available at Mendeley data
repository: https://data.mendeley.com/datasets/89s3ymz5wn/1. Model weights for all
LACSS models shown in the paper are available at the LACSS website: https://github.
com/jiyuuchc/lacss. Source data for Figs. 3b and 4 can be found in Supplementary Data.

Code availability

All software source code is available at https://github.com/jiyuuchc/lacss.
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