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More than half of data deficient species predicted
to be threatened by extinction
Jan Borgelt 1✉, Martin Dorber 1, Marthe Alnes Høiberg1 & Francesca Verones1

The IUCN Red List of Threatened Species is essential for practical and theoretical efforts to

protect biodiversity. However, species classified as “Data Deficient” (DD) regularly mislead

practitioners due to their uncertain extinction risk. Here we present machine learning-derived

probabilities of being threatened by extinction for 7699 DD species, comprising 17% of the

entire IUCN spatial datasets. Our predictions suggest that DD species as a group may in fact

be more threatened than data-sufficient species. We found that 85% of DD amphibians are

likely to be threatened by extinction, as well as more than half of DD species in many other

taxonomic groups, such as mammals and reptiles. Consequently, our predictions indicate

that, amongst others, the conservation relevance of biodiversity hotspots in South America

may be boosted by up to 20% if DD species were acknowledged. The predicted probabilities

for DD species are highly variable across taxa and regions, implying current Red List-derived

indices and priorities may be biased.
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Measuring ongoing and anticipating potential threats is
vital for preventing damage to the natural world1–8,
which entails detailed knowledge about the current

state of biodiversity. A central data resource enabling a multitude
of overarching analyses in conservation and sustainability
science9 is the International Union for the Conservation of
Nature (IUCN)’s Red List of Threatened Species (hereafter: Red
List). The Red List assesses extinction risks and reports Red List
categorization for more than 140,000 species based on a set of
quantitative criteria10 relying for instance on extent of occur-
rence, area of occupancy, population trends, or population size.
However, the sheer amount of known and unknown species
globally11,12, the dynamic nature of threats and trends7, and
limited human resources for undertaking such Red List
assessments13,14 turn this critical endeavour into a Sisyphean
task.

Consequently, only a small proportion of known species have
been assessed for their conservation priority so far15,16, unevenly
distributed across space, time and taxa13,16. In addition, numer-
ous assessed species are classified as Data Deficient (DD) even in
otherwise comprehensively assessed species groups. A species is
considered DD if there is “inadequate information to make a
direct, or indirect, assessment of its risk of extinction based on its
distribution and/or population status”17. More specifically Bland
et al. identified 8 main justifications as to why species are assessed
as DD: uncertain provenance, type series, few records (<5), old
records (before 1970), uncertain population status or distribution,
uncertain threats, new species (discovered in the last 10 years),
and taxonomic uncertainty18. In parallel, Butchart and Bird stated
that the DD category “is probably the most controversial and
misunderstood Red List category”19. One of the main reasons are
value choices when dealing with uncertainty and applying the
IUCN Guidelines. If, due to uncertain data, a species can be listed
as Critically Endangered (CR) and Least Concern (LC), the spe-
cies should be listed as DD. However, if the assessor considers a
species being not LC but is unsure about its exact threat-level, DD
is not the appropriate category. In this case, the assessor needs to
decide and assign the species to a category, i.e., risk tolerance. It is
important to note that we do not distinguish the DD species
according to the reason for their classification as DD17.

On average across all taxa and regions, one of six assessed
species is classified as DD15,18,20. Although DD species are
sometimes treated as being not threatened21, studies suggest that
they are of particular conservation importance because a higher
portion of them may be threatened by extinction compared to
data-sufficient (DS) species22–24. However, since DD species
could belong to any Red List category, they are difficult to handle
for practitioners21,25 and are therefore generally ignored in stu-
dies analysing biodiversity impacts and change26,27. For instance,
the Red List Index27 is built upon well-assessed threat-levels for
individual species at several points in time and directly applied in,
e.g., sustainable development goals28 and biodiversity targets29. In
addition, studies linking biodiversity loss to global trade
footprints30,31 and approaches to transform threat-levels to
numerical conservation indicators32 have ignored DD species.
Similarly, the recently suggested metric26 for measuring success of
the post-2020 Global Biodiversity Framework will not be
applicable for DD species.

In stark contrast, the continuous growth in knowledge turn-
over during the digital era has resulted in constant improvement
in the availability of global data on biodiversity, human activities,
and environmental threats33. Statistical tools, such as machine
learning (ML), can detect relevant signals in large datasets,
thereby offering a time- and cost-effective approach to tackle data
deficiency34–37. The utility of ML models for predicting species’
extinction risk or conservation status was successfully proven for

species in single taxonomic groups with great accuracy24,38–44,
regionally as well as globally. However, such predictions are
needed consistently for all relevant species to effectively benefit
global conservation and sustainability analyses16.

Here, we present a global multitaxon ML classifier that predicts
the probability of being threatened by extinction (hereafter: PE
score) based on, amongst others, species taxonomy, range extent,
and summarized stressors (min., max., mean and median) within
species range maps, as well as species occurrence cells (0.5-degree
cells). The classifier was trained and tested on threat levels for
28,363 DS species, drawing on selected features out of more than
400 predictors, human pressures, and environmental stressors.
We applied the classifier to predict PE scores for DD species
(n= 7699) that include range maps of their distribution in their
IUCN Red List database record (Version 2020-3)45,46, to our
knowledge the largest data provider of range maps for thousands
of species. Since biodiversity varies greatly through space, it is
crucial to perform assessments in a spatially explicit way and
include their entire spatial extent.

Results and discussion
Classifier performance. The trained classifier was able to suc-
cessfully separate between threatened and non-threatened species
within a set-aside testing dataset, as well as continuous predic-
tions (i.e., PE scores) (Fig. 1). The binary classifier obtained an
overall accuracy of 85% (Table 1), being more precise in pre-
dicting which species are not threatened by extinction than in
predicting which species are threatened. 93% and 92% of species
that we predicted to be not threatened were indeed not threatened
(for marine and non-marine species respectively). Hence, with
only 7–8% of negative predictions (i.e., predicted as not threa-
tened) being incorrect, we are confident that our binary classifier
avoids underestimating the conservation status of most taxa.
Instead, the binary classifier may be prone to overestimating the
status of some taxa; only 60% to 67% of species that we predicted
to be threatened are also classified as threatened by the IUCN (for
marine and non-marine species respectively). The continuous
classifier, however, seems to only underestimate the risk for
marine species when directly compared to non-marine species.
The relative ranking of continuous predictions within the groups
remains valid for all species (AUC= 0.91, AUCPR= 0.80, Gini-
Coefficient= 0.82) and across taxonomic classes (Supplementary
Table 1). Hence, on average, species being threatened by extinc-
tion obtain higher predicted PE scores than not threatened spe-
cies, for both marine and non-marine species (Fig. 1). Binary as
well as continuous predictions across marine versus non-marine
groups perform well but are not directly comparable.

We further tested our classifier against an IUCN update
(Version 2021-2)15 that was released after our model was trained
(Supplementary Fig. 1). In this update, we found that 123 former
DD species from Version 2020-3 were now assigned a threat-
level. Our classifier labelled 94 of those species (76%) correctly
(Table 1), being equally precise in predicting whether the species
was threatened (76%) or not threatened (77%) but more accurate
for non-marine (80%) than for marine species (74%).

Data deficient species are more threatened by extinction than
data-sufficient species. On average we obtained higher PE scores
for DD species (43%) than for DS species (26%), resulting in 56%
of DD species (n= 4336) predicted to be threatened by extinction
(Supplementary Table 1) versus 28% of DS species46. The gen-
erated predictions reinforce the concern that DD species are of
high conservation interest21,25 and, given the large variance in
predicted probabilities of being threatened (Supplementary
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Fig. 2), highlight the importance of treating DD species
individually.

On land, these likely threatened DD species are scattered across
all continents and are often geographically restricted to smaller
ranges (Fig. 2b; Supplementary Fig. 3), such as in central Africa,
Madagascar and southern Asia. The greatest number of
threatened marine DD species are found in south-eastern Asia,
followed by the eastern Atlantic coastline as well as numerous
atolls and islands (Supplementary Fig. 4). In fact, between a third
and half of marine DD species around the world’s coastlines were
predicted to be threatened by extinction, most notably along the
eastern Atlantic coastline including the Mediterranean basin
(Fig. 2a; Supplementary Fig. 3).

In addition to roughly 40% of Data Deficient ray-finned fishes
(Actinopterygii), malacostracans (Malacostraca), bivalves, snails
and slugs (Gastropoda), we found a staggering 960 out of 1130

(85%) Data Deficient amphibians (Amphibia), and more than half
of Data Deficient anthozoans (Anthozoa; marine invertebrates
including anemones and corals), insects (Insecta), mammals
(Mammalia) and reptiles (Reptilia) likely to be threatened by
extinction (Supplementary Table 1).

This is highly relevant for conservation and sustainability
analyses, as some of these groups are amongst the most
frequently considered ones7. More specifically, the classification
of DD amphibians, mammals, and reptiles is likely to further
increase both the absolute and relative number of species
threatened by extinction in these taxonomic groups. For
instance, an additional 14% of amphibians were predicted to
be threatened by our ML classifier. This would raise the relative
number of amphibian species being threatened by extinction
from 39% to 47%. Similarly, the fraction of threatened
mammals and reptiles likely increases when accounting for
DD species (from 26% to 31% and 19% to 25%, respectively;
Supplementary Table 1).

For selected species groups, models that suggest Red List
categories or probabilities of being threatened for DD species
exist, e.g., for amphibians24, reptiles38, terrestrial mammals39 or
sharks and rays43. Howard and Bickford found 63% of DD
amphibians to be threatened, mostly in South America, central
Africa and North Asia, but also state that this is an
underestimation24. Our model predicts 85% of DD amphibians
to be threatened. Bland and Böhm identified 19% out of 292 DD
terrestrial reptile species as threatened38, while our model
identified 59% of reptiles as threatened, but we include over
1000 species and terrestrial, freshwater and marine species, the
latter of which are thought to be more likely to be threatened47.
The regions for conservation priorities for both reptiles and
amphibians match those previously found, which are congruent
with known hotspots for threatened species38. A previous
assessment for terrestrial mammals identified 64% of DD
terrestrial mammals as threatened39, while our model classifies
61% of DD terrestrial and marine mammals as threatened. Sharks
and rays in the Mediterranean and North East Atlantic were
modelled to contain 62% and 55% threatened species,

Fig. 1 Predicted scores for threatened versus not threatened species. Boxplot showing the interquartile range (box), median (black line), minimum and
maximum values without outliers (error bars), and outliers (points) of predicted probability of being threatened by extinction (PE score) across the actual
IUCN assessment (not threatened and threatened) for marine (n= 875) and non-marine (n= 5982) species in the set-aside testing data.

Table 1 Classifier performance.

Reference

Predicted Not
threatened

Threatened Not
threatened

Threatened

Not
threatened

695 (26) 54 (10) 3786 (20) 309 (4)

Threatened 51 (8) 75 (25) 616 (7) 1271 (23)

Marine species Non-marine species

Accuracy 0.88 (0.74) 0.85 (0.80)
Specificity 0.93 (0.76) 0.86 (0.74)
Sensitivity 0.58 (0.71) 0.80 (0.85)
Negative Pred. Value 0.93 (0.72) 0.92 (0.83)
Positive Pred. Value 0.60 (0.76) 0.67 (0.77)
Balanced Accuracy 0.76 (0.74) 0.83 (0.80)

Confusion matrix and resulting performance measures for marine and non-marine species based
on the set-aside testing data (25% of the dataset) and based on formerly Data Deficient species
(n= 123) in IUCN version 2021-2 (in brackets).

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03638-9 ARTICLE

COMMUNICATIONS BIOLOGY |           (2022) 5:679 | https://doi.org/10.1038/s42003-022-03638-9 | www.nature.com/commsbio 3

www.nature.com/commsbio
www.nature.com/commsbio


respectively44. On a global scale, we found 26% of DD species in
this group to be threatened (Supplementary Table 1). This is
concordant with Dulvy et al., which found every fourth species of
the ray and shark family to be threatened with extinction and
who found the Mediterranean to be a hotspot for extinction48,
explaining the large discrepancy of the local values to our
global one.

Data-deficiency causes regionally biased conservation prio-
rities. The high variance found in the predicted probabilities of
being threatened by extinction (i.e., PE scores) at the species level
implies that more accurate assessments of DD species could shift
regional conservation priorities. We predicted higher PE scores
for DD than for DS species in most regions of the world (Sup-
plementary Fig. 5), suggesting that current conservation concerns
could, in fact, be underestimated. In marine systems, however,
this seems to be restricted to coastal waters as well as high
latitudes.

DD species in marine systems seem to be most relevant around
the world’s coastlines, as well as around temperate to tropical
islands and atolls, but less relevant in international waters
(Fig. 3a). For instance, we found an increase in average PE score
by more than 20% once DD were considered alongside DS species
in e.g., the Gulf of Mexico, the Caribbean and south America’s
Atlantic coast (Fig. 3a). Even in biodiversity-rich regions the
average PE score increased another 10% to 15% due to the extant
DD species, such as in the Gulf of Guinea and South-eastern
Asian seas. Here, numerous DD reef forming corals, sharks, rays,
chimaeras, and marine fish species seem to be particularly

relevant for a timely and expert-based threat assessment
(Supplementary Figs. 3, 6). In contrast, including DD species
did not change or even lowered the average PE score in large
parts of international seas (Fig. 3a). Although marine biodiversity
as we know it today is richest in coastal waters49, these results
should be interpreted with caution because the underlying range
maps for many marine species can be too coarse50, which may be
especially true for DD species in international seas.

Furthermore, DD species on land (i.e., strictly non-marine
species) seem to have the potential to regionally boost the
conservation relevance in most of the world’s megadiverse
countries51. Across Central to South America, we found a
widespread increase of 10% to 20% in average PE score when
including DD in addition to DS species (Fig. 3b). Notably, often
only few taxonomic groups accounted for most of the observed
increase in average PE score (Supplementary Fig. 6). For instance,
the addition of predicted scores for DD amphibians, reptiles,
mammals, rays and other freshwater groups in large parts of
South America resulted in a widespread increase in average PE
score, including for example the Amazon basin, the tropical
Andes, the Atlantic Forest and Cerrado. However, these estimates
are based on limited taxonomic groups and may be different if
spatially explicit range maps for more taxa were available (e.g.,
plants).

In Africa, DD amphibians, reptiles, mammals, and freshwater
ray-finned fishes (Actinopterygii) increased the average PE score
locally across freshwater systems (e.g., Lake Victoria), tropical
rainforests and savannas throughout the continent (Fig. 3b;
Supplementary Fig. 6). We further discovered an increase in
average PE score in numerous smaller isolated patches distributed

Fig. 2 Potentially threatened fraction of data deficient species. Fraction of Data Deficient species (n= 7699, IUCN Version 2020-3) predicted to be
threatened by extinction for marine (a) and non-marine species (b) according to our machine learning classifier.
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around the world once DD extant species’ scores were acknowl-
edged, such as in the Northern Territory and the Murray–Darling
basin of Australia. Overall, the potential effects on PE score due to
DD species were much more restricted to a regional level on land
compared to marine systems, presumably due to spatially more
explicit, and restricted, range maps for DD species on land.

Conclusion
Previously, the risk of misjudging the importance of individual DD
species outweighed the benefits of including them in Red List
applications, resulting in regionally biased conservation prior-
itization. This study suggests that automatized classifiers built on
species’ range maps and species observations can provide accurate
and rapid pre-assessments on a large, global, and multitaxon scale.
In contrast to previous approaches, our classifier is able to provide
standardized predictions across multiple taxonomic groups16,
making results between taxa directly comparable. The presented
results show that DD species vary greatly in probability of being
threatened by extinction, indicating a highly heterogenous bias that
propagates into consequential Red List applications. As such,
inferences built upon Red List-derived numbers of threatened
species30 as well as numerically converted threat-levels32 could be
biased. The generated predictions (i.e., PE scores) could facilitate
the inclusion of DD species in sustainability-relevant applications27

and modelling approaches26. We encourage the extended use of
our algorithm for screening for updates14 in the status of DS
species, as well as large-scale pre-assessments of species not yet
evaluated by the IUCN42 for a targeted completion of the IUCN
Red List of Threatened Species.

Methods
Species data. We retrieved all spatial range map datasets (i.e., mammals,
amphibians, reptiles, fish, marine groups, selected vascular plant groups and
freshwater groups) available at the IUCN Red List (https://www.iucnredlist.org/
resources/spatial-data-download, Version 2020-3)45,46 in March 2021, covering
44,924 species in the following taxonomic classes: Actinopterygii, Agaricomycetes,
Amphibia, Anthozoa, Aves, Bivalvia, Branchiopoda, Bryopsida, Cephalaspidomor-
phi, Charophyaceae, Chondrichthyes, Clitellata, Gastropoda, Hydrozoa, Insecta,
Jungermanniopsida, Lecanoromycetes, Liliopsida, Lycopodiopsida, Magnoliopsida,
Malacostraca, Mammalia, Myxini, Polypodiopsida, Reptilia and Sarcopterygii.
Range maps for bird species were not downloaded separately, because of their
limited number of DD species. Species taxonomy, native countries, environmental
domain (i.e., the occurrence in terrestrial, freshwater, marine systems and com-
binations thereof) and Red List category were available from IUCN for all species,
i.e., Least Concern (LC), Lower Risk/Least Concern (LR/LC), Lower Risk/Con-
servation Dependent (LR/CD), Near Threatened (NT), Vulnerable (VU), Endan-
gered (EN), Critically Endangered (CR), Extinct (EX), Extinct in the Wild (EW)
and Data Deficient (DD). The spatial dataset consists of seasonal range maps (i.e.,
for each species one or several range maps out of “resident”, “breeding season”,
“non-breading season”, “passage”, and “seasonal occurrence uncertain” were
available). Only those range maps labelled as “native” and “extant” and only species
that were not categorized as EW or EX were considered (n= 44,908 species).

Predictor data. The correlate variables are summarized in Supplementary Table 2.
Species taxonomy (i.e., taxonomic kingdom, phylum, and class) was included as
potential predictor and surrogate for phylogenetic data42. Habitat preferences were
retrieved from the Red List using rredlist52 in R. Occupied types of habitats as well as
the number of different types of habitats, sub-habitats, and habitats of major
importance were included as predictor. Occurrence data was retrieved from the
Global Biodiversity Information Facility (GBIF)53 and the Ocean Biodiversity Infor-
mation System (OBIS)54 using their corresponding application programming inter-
faces via the packages rgbif55 and robis56 in R. We only considered occurrence data
that were collected between the years 2010 and 2020. For each species, we retrieved
the maximum number of occurrence points per native country from GBIF (i.e.,
100,000 data points per request), and for marine species, we additionally downloaded

Fig. 3 Data Deficient species change conservation priorities. Percent change in average PE score (i.e., predicted probability of being threatened by
extinction) for marine (a) and non-marine species (b) following the inclusion of Data Deficient species alongside data-sufficient species.
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all data available from OBIS. The total number of occurrence points as well as the
number of occurrence cells in a global grid (0.5-degree cells) was counted.

Because environmental threats can vary considerably across space and we
expect the species to be exposed heterogeneously within their ranges, we extracted
mean, minimum, maximum, and median values of environmental stressors and
features across each species’ seasonal range map as well as its occurrence cells.

The included features were representative for the major drivers of biodiversity
change, i.e. climate change, habitat change, overexploitation, invasive species and
pollution57. As climatic dataset we retrieved all CHELSA bioclimatic variables58,59.
The European Space Agency’s land cover product for the year 2015 in 300m
resolution60 was used to calculate fractions for different natural land cover types
(n= 17). One raster was calculated per land cover class, representing the proportion
of land covered by that class per cell. As general indicators of anthropogenic land use
and land use change we included the global human footprint index61, including
associated stressors such as population density, cropland area and pasture area,
human modification index62, future urban expansion probabilities63, fraction of land
designated to protected areas64, deforestation rates between the years 2000 and
201965, different habitat heterogeneity metrics66 and cumulative application rates of
different pesticides67. We counted the number of power plants68 and dams69 within
each species geographical range, and included country-specific water scarcity
estimates70, annual streamflow71, stream connectivity indices72 as well as freshwater
environmental variables73, including eutrophication, pollution and upstream land use
fractions, to account for the most severe impacts in freshwater systems74,75. Illegal
hunting activities remain problematic for many species76. Yet, to the best of our
knowledge, global poaching data does not exist. Therefore, we included factors that
may affect the rate of poaching on a global scale77,78, i.e., the human development
index (HDI) in 2019, the average annual HDI growth between 1990–201979 and the
corruption perceptions index (CPI) in 2020 at country-level80. We further included
estimated threats from species invasions, country-specific capacities to respond to
invasion81, a set of modelled impacts on marine ecosystems82,83 and marine
environmental variables84,85. All layers were aggregated for computational efficiency
by averaging to 0.5-degree cells (approximately 56 km at the equator).

Machine learning classifier. We aimed to estimate the probability of being
threatened by extinction (hereafter: PE score) for DD species by training a machine
learning classifier, fitted using species with known threat-levels. All DS species were
reclassified into two groups based on their IUCN Red List categories: threatened by
extinction (i.e., all species in the categories VU, EN, and CR) and not threatened by
extinction (i.e., all species in the categories LC, LR/LC, LR/CD and NT). Species
classified as DD (n= 7699) were set aside and not used for training or testing the
classifier. All assessments identified by the IUCN as in need of an update were
removed16, with one exception: if fewer than five records remained for a given
taxonomic class, outdated assessment were kept to maximize the amount of training
data. We used a data split for model validation16,39,86,87. Therefore, the remaining
dataset (n= 28,363 species) was split into training (75%) and testing (25%) data.
During the data split the balance of threat categories were maintained within both
taxonomic families and environmental domains, i.e., marine and non-marine.

We used different partitions of the dataset to train ML classifiers in two ways: (1)
all species together, and (2) separate classifiers for marine and non-marine species to
account for the different spatial extents of the predictor data. For each data partition,
we utilized a set of machine learning methods suitable for classification problems,
each with its own strengths and weaknesses88. The best performing data partition (i.e.,
partition 1; for all species) was selected based on the highest average AUC (see section
Model evaluation) across all taxonomic groups. Although irrelevant covariates tend to
be automatically ignored in the utilized algorithms89–92, a smaller set of covariates can
improve performance and increase interpretability of the model. Therefore, we
performed feature selection on the training data of each partition by using the Boruta
algorithm93. This algorithm compares the original feature importance to the
importance of random shadow features while accounting for possible correlations and
interactions. All features considered relevant at the 99% confidence level after 50 runs
of the algorithm were kept (i.e., 270 features in partition 1). NA-values were imputed
with random values using the packageHmisc94 in R, i.e., about 5% of the values in the
remaining features. Optimal model settings and parameters were selected using the
AutoML function in H2O.ai89,90. We used 10-fold cross validation for calibrating all
models (e.g., tuning hyperparameters). In addition, the two classes (i.e., threatened
versus not threatened species) were balanced during cross validation by oversampling
of the smaller class (i.e., threatened species). In partition 1, a total of 220 models (i.e.,
base-learners) was trained, including generalized linear models, random forests,
gradient boosted classification trees, deep neural networks and an extremely
randomized forest (details in reference90). Ultimately, a so-called super-learner95 was
generated using a non-negative generalized linear model with regularization (least
absolute shrinkage and selection operator) to produce more sparse ensembles90,
combining the best features of the trained base-learners into one superior model. In
total, 23 base-learners contributed to the predictions of the super-learner
(Supplementary Table 3).

Model evaluation. The performance of all base-learners and the super-learner of
the best performing data partition (i.e., partition 1; trained using all species) was
assessed using the set aside testing data (n= 6857 species). In addition, we assessed

model performance using DD species that have been re-evaluated and assigned a
threat category in Red List Version 2021-2 (n= 123 species)15.

We calculated accuracy as the fraction of correctly classified species across the
total number of species (Eq. 1), specificity as the fraction of not threatened species
being correctly classified as not threatened (Eq. 2), sensitivity (i.e., recall) as the
fraction of threatened species being correctly classified as threatened (Eq. 3), the
false positive rate as fraction of not threatened species being classified as threatened
(Eq. 4), the negative predictive value as the fraction of not threatened species across
species predicted to be not threatened (Eq. 5), the positive predictive value (i.e.,
precision) as the fraction of threatened species across species predicted to be
threatened (Eq. 6) and, balanced accuracy as the average of specificity and
sensitivity.

Accuracy ¼ True Positiveþ True Negative
True Positiveþ False Negativeþ TrueNegativeþ False Positive

ð1Þ

Specificity ¼ True Negative
True Negativeþ False Positive

ð2Þ

Sensitivity ¼ True Positive
True Positiveþ False Negative

ð3Þ

False positive rate ¼ False Positive
False Positiveþ TrueNegative

ð4Þ

Negative predictive value ¼ True Negative
True Negativeþ False Negative

ð5Þ

Positive predictive value ¼ True Positive
True Positiveþ False Positive

ð6Þ

In addition, AUC, AUCPR and GINI coefficient were calculated89,90 as
threshold-independent performance measures for binary classifiers. A value of 1
depicts the highest performance for all metrics. AUC is the area under the receiver
operating characteristic curve for sensitivity (Eq. 3) versus false positive rate
(Eq. 4). This measure is influenced by correctly assigned species as being not
threatened (True Negatives), which is the dominating class in our dataset. In
contrast, AUCPR, as the area under the receiver operating characteristic curve for
precision (Eq. 6) versus recall (Eq. 3), is not affected by true negatives (i.e., correctly
predicted not-threatened species) but instead affected by how precise the classifier
is in predicting which species are threatened. The GINI coefficient describes the
degree of separation between both classes (i.e., threatened versus not threatened),
with a value of 1 indicating perfect separation.

Permutation variable importance was calculated as the performance loss (i.e., in
AUC) on the testing data before and after a feature was permuted. Features were
permuted one at a time in a total of 50 repetitions. In partition 1, the species’
taxonomic affiliation, proxies for geographic range size (i.e., number of native countries,
species range extent and number of occurrence cells), anthropogenic activities within
the species’ range (number of dams, road density, number of powerplants, human
footprint index), and occupied environmental domains (combinations of terrestrial,
freshwater and marine) are most important for the super-learner in accurately
separating not threatened and threatened species (Supplementary Fig. 7).

Statistics and reproducibility. Analyses were conducted using R version 4.0.396 in
RStudio version 1.4.110397. Data were obtained from GBIF, OBIS and IUCN using
the packages rgbif, robis, and rredlist52,55,56. Handling of spatial and other data was
conducted using the R packages caTools, doParallel, exactextractr, fasterize, map-
tools, parallel, raster, readxl, rgdal, rgeos, sf, sp, stringr, tidyverse, and xlsx96,98–110,
and in python using the arcpy module from ArcGIS Pro version 2.9.0111. Machine
learning algorithms were trained and evaluated using the H2O.ai interface (Version
3.36.0.4) for R89 and caret112. Figures were created using ggplot113, ggridges114,
rnaturalearth115, viridis116 and base R96.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Previously published and open-access source data were retrieved from
refs. 45,46,53,54,58–73,79–84. All data generated in this study is available without restrictions.
The generated predictions for the testing data, complete dataset and updated Data
Deficient species are provided as supplementary files (Supplementary Data 1–3). Any
further requests can be directed to the corresponding author.

Code availability
All code generated in this study is available without restrictions. R code for preparing the
data, for training and testing the ML classifier, as well as applying the algorithm is
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available on GitHub (https://github.com/jannebor/dd_forecast)117. Although
functionality may be given in other version, the code in this study was used in R version
4.0.396 in RStudio version 1.4.110397. The classifier can be applied for single species using
our web application (https://ml-extinctionrisk.indecol.no/). Any further requests can be
directed to the corresponding author.
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