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An evolutionary functional genomics approach
identifies novel candidate regions involved in
isoniazid resistance in Mycobacterium tuberculosis
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Efforts to eradicate tuberculosis are hampered by the rise and spread of antibiotic resistance.
Several large-scale projects have aimed to specifically link clinical mutations to resistance
phenotypes, but they were limited in both their explanatory and predictive powers. Here, we
combine functional genomics and phylogenetic associations using clinical strain genomes to
decipher the architecture of isoniazid resistance and search for new resistance determinants.
This approach has allowed us to confirm the main target route of the antibiotic, determine the
clinical relevance of redox metabolism as an isoniazid resistance mechanism and identify
novel candidate genes harboring resistance mutations in strains with previously unexplained
isoniazid resistance. This approach can be useful for characterizing how the tuberculosis
bacilli acquire resistance to new antibiotics and how to forestall them.

Tnstitute of Biomedicine of Valencia (IBV-CSIC), Valencia 46020, Spain. 2 FISABIO Public Health (CSISP), Valencia 46010, Spain. 3 CIBER in Epidemiology
and Public Health, Madrid 28029, Spain. “These authors contributed equally: Victoria Furié, Miguel Moreno-Molina. ®email: viurio@ibv.csic.es

COMMUNICATIONS BIOLOGY | (2021)4:1322 | https://doi.org/10.1038/s42003-021-02846-z | www.nature.com/commsbio 1


http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-021-02846-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-021-02846-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-021-02846-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-021-02846-z&domain=pdf
http://orcid.org/0000-0001-5511-7722
http://orcid.org/0000-0001-5511-7722
http://orcid.org/0000-0001-5511-7722
http://orcid.org/0000-0001-5511-7722
http://orcid.org/0000-0001-5511-7722
http://orcid.org/0000-0003-0305-4445
http://orcid.org/0000-0003-0305-4445
http://orcid.org/0000-0003-0305-4445
http://orcid.org/0000-0003-0305-4445
http://orcid.org/0000-0003-0305-4445
http://orcid.org/0000-0002-0463-0101
http://orcid.org/0000-0002-0463-0101
http://orcid.org/0000-0002-0463-0101
http://orcid.org/0000-0002-0463-0101
http://orcid.org/0000-0002-0463-0101
http://orcid.org/0000-0001-5504-9408
http://orcid.org/0000-0001-5504-9408
http://orcid.org/0000-0001-5504-9408
http://orcid.org/0000-0001-5504-9408
http://orcid.org/0000-0001-5504-9408
mailto:vfurio@ibv.csic.es
www.nature.com/commsbio
www.nature.com/commsbio

ARTICLE

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02846-z

tuberculosis and a further 214,000 people died from it!. Resistance

to antitubercular drugs has been present ever since their intro-
duction decades ago but it is now becoming a pressing problem, as it
hampers our ability to control and eradicate the disease. Drug-
resistant tuberculosis requires longer treatments, has lower cure rates,
and spreads in the population, particularly in high-burden countries!.
Licensing new antibiotics is not a definitive solution as the bacteria
can develop resistance to those antibiotics as well>>. A new approach
is needed in which a thorough understanding of the evolutionary
forces shaping resistance helps us understand how it is acquired and
how it can be reversed.

Most of what we know of tuberculosis drug resistance comes from
genetic association studies in which a particular mutation is asso-
ciated with a specific resistance phenotype?. We now have large
databases of diagnostic mutations with which we can reliably predict
the resistance phenotype of our strain when we determine its
genomic sequence’. For instance, we can detect rifampicin resistance
with a 92% sensitivity, but the figure drops to 87% for isoniazid and
58% for ethambutol®. However, there is still a knowledge gap as the
catalog of mutations is incomplete and we do not know most of the
resistance-causing mutations and mechanisms for some antibiotics.
To close this gap, there are a series of ongoing efforts by consortiums
like ReSeqTB and CRyPTIC, wherein tens of thousands of isolates are
being phenotyped and genotyped in order to obtain a comprehensive
mutation database with the overarching aim to develop new diag-
nostic assays with maximum specificity and sensitivity. However, we
still need more than mutation databases to effectively combat drug
resistance. First, it is impossible to predict the phenotype for a
mutation never seen before. For this reason, it is very difficult to
accurately predict resistance to newly licensed antibiotics. In addition,
an approach that prioritizes diagnostic mutations generally provides
very little information on other mutations that contribute to the
resistant phenotype but are normally overlooked, because their
clinical effect is small or they are in genes not known to be associated
with resistance. Finally, we need extensive insight on the genetic
architecture of resistance and especially on any changes that can
increase sensitivity to the antibiotic. This is important, as this
information could be used to find companion drugs that potentiate
the action of antibiotics or that prevent or even reverse resistance’.

One way to unveil the genetic basis of resistance is by means of
functional genomics, such as transposon mutagenesis approaches.
This technique involves the genetic alteration of every gene in the
genome for explicit genotype-phenotype associations®®, thus
revealing more genetic determinants than regular association studies
do. This approach successfully overcomes the shortcomings of
genetic association studies: it can be used in a prospective way, as it
involves the systematic generation and testing of resistant mutants; it
can detect both genes with large and small effects on resistance; and it
explicitly detects genes that increase sensitivity when disrupted, thus
indicating which genes are most promising for treatments to prevent
or reverse the evolution of resistance. However, transposon muta-
genesis alters the gene by disrupting it, highly informative about the
biology of resistance but limited in clinical explanation potential, as
most type of mutations found in clinical resistance of Mycobacterium
tuberculosis are single-nucleotide polymorphisms (SNPs). Conversely,
the low diversity of the M. tuberculosis Complex (MTBC), its clon-
ality, and the fact that clinical resistance is encoded in the chromo-
some makes M. tuberculosis amenable for phylogenetic association
tests'0, which can determine which mutations are associated with
resistance in the bacterial phylogeny and are thus clinically relevant.

In this study, we provide a combined approach that uses func-
tional genomics and phylogenetic inference from clinical data to
provide an in-depth picture of resistance to the first-line antibiotic
isoniazid. Isoniazid is a well-studied drug, yet we are still unable to
determine the causal mutation in around 6% of resistant strains!l,

I n 2018, an estimated 484,000 people contracted drug-resistant

although some researchers have reported up to 25% in certain
settings!2. Here we systematically determine the effect on isoniazid
resistance of every non-essential gene in the tuberculosis genome
using transposon sequencing (TnSeq) and afterwards we use clinical
data to find out which of those genes are more likely to harbor
resistance mutations. We successfully find novel regions associated
with increased resistance in vitro, determine two major resistance
pathways for the mode of action of the antibiotic and identify novel
associated regions to clinical resistance not described before. We
believe this approach will help uncover the resistance determinants
for poorly studied antibiotics, as well as deepen our understanding of
resistance emergence, spread, and evolution.

Results

Functional genomics allows for detection of resistance-
associated genomic regions. We generated a highly saturated
M. tuberculosis H37Rv pool with over 100,000 different
transposon-insertion mutants following the protocol by Long
et al.8. Using TnSeq, we found 58,389 out of 74,603 possible
insertion sites had at least one read, meaning a saturation of 78%.
For comparison, a systematic study with 14 independent pools
found saturations in the range of 42% to 64% and a combined
saturation of 84.3%13, meaning that our pool is highly saturated.
In addition, as many as 43% of our non-inserted sites and only
0.03% of our inserted sites were in regions described as essential
in that study. The pool also showed a tenfold increase in the
frequency of bacteria resistant to isoniazid compared to the ori-
ginal clone (Supplementary Fig. 1a).

The pool was tested in duplicate with a subinhibitory dose of
isoniazid close to the IC50 for 13 generations (Fig. la). We
expected this specific dose of isoniazid to provide intermediate
levels of selection and to maximize the number of genomic
features detected. Optical density measurements showed that
isoniazid was partially inhibiting bacterial growth (Fig. 1b). In the
presence of isoniazid, the proportion of isoniazid-resistant
bacteria increased 100-fold to 1000-fold, whereas control cultures
showed no change (Supplementary Fig. 1b).

We determined the frequencies of the different insertion
mutants in all four experimental populations using TnSeq
(Supplementary Data 1). Isoniazid-treated populations had a
higher proportion of sites with null frequency and the top
100 sites comprised a larger share of the total counts (Fig. 1c). We
transformed the normalized data into standardized fitness
measurements, which can be directly compared between popula-
tions. We defined resistance as the net change in fitness in the
presence of the antibiotic and calculated it as the difference
between fitness in the presence and absence of the antibiotic for
each insertion site (Supplementary Data 1). Insertion mutants for
katG, the gene most frequently involved in isoniazid resistance,
were disproportionately overrepresented in antibiotic-treated
populations and thus displayed very high resistance values. All
these results show that the selection step had the intended effect.

It is important to note that transposon libraries have limitations, as
they only allow us to study the effect of gene disruptions. This has
two main consequences: (i) we cannot study essential genes, as they
cannot tolerate insertion, and (ii) we cannot observe the effect of
more subtle genetic changes such as single-nucleotide mutations. To
overcome these limitations, we used two main approaches: first, we
used functional and pathway analysis to understand which portions
of bacterial metabolism were involved in isoniazid resistance and,
second, we used phylogenetic association to determine which genes
were accumulating mutations in clinical settings.

We analyzed all insertion sites with an annotation-aware
sliding window approach to find changes in resistance that were
consistent over stretches of the genome independent of the size of
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Fig. 1 Transposon sequencing detects changes in response to isoniazid. a Design of the experiment. Parallel antibiotic-containing and antibiotic-free
cultures were inoculated with a saturated insertion mutant pool. After ~13 generations, bacterial DNA was extracted and sequenced to determine the
relative abundance of each mutant. b Optical density of the different cultures throughout the experiment. Graph shows that isoniazid partially inhibits
bacterial growth. ¢ Isoniazid-containing cultures show strong enrichment of a fraction of insertions indicating a selective advantage relative to the bulk of
the population, showing that those cultures experienced higher levels of selection (blue = control, red = isoniazid experiment).
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Fig. 2 Isoniazid resistance is associated with multiple genomic regions. Median fitness in the presence and absence of isoniazid and median resistance
for all resistance-altering genes, ordered in decreasing fitness in the presence of the antibiotic (red = increased resistance, blue = decreased resistance).
Most genes that increased resistance when disrupted also had a higher fitness in the presence of the antibiotic.

the effect. We detected a total of 555 genes and intergenic regions
that alter isoniazid sensitivity when disrupted (resistance-altering
genomic features, Supplementary Data 1). Of those regions, 411
were associated with increased resistance, whereas 144 were

associated with increased sensitivity (resistance-increasing and
sensitivity-increasing features, respectively). Figure 2 depicts these
regions ordered by their fitness in the presence of the antibiotic.
Given that fitness in the presence of the antibiotic is the primary
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Fig. 3 Genes associated with isoniazid resistance follow definite functional patterns. a Classification of all genes and intergenic regions in the M.
tuberculosis genome according to the effect of insertions on resistance. Essential genes were obtained from DelJesus et al.'3. b Genes associated with
increased sensitivity were enriched in cell envelope genes (n=130), whereas those associated with increased resistance were enriched in energy
metabolism genes (n=329). ¢ Oxidoreductases were even more enriched in the final candidates than they were in the genes detected with functional
genomics (n=57 and 459). d Cell wall biosynthesis genes were enriched in features associated to resistance both functionally and phylogenetically to

resistance.
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driver of the resistance phenotype, we observed resistance was
split into two groups according to whether the genes conferred
increased sensitivity or resistance when disrupted. Multiple
features showed a significant change in resistance, implying that
they could, in theory, confer clinically relevant resistance in vivo
when mutated. Features that could be tested but showed no
significant effect were considered non-associated features. Our
method did not allow us to test regions that had fewer than six
inserted TA sites (genomic regions where the sequence
is exactly ‘TA’), although not all of these regions were essential.
Intergenic regions tend to be small and often harbor regulatory
sequences for the genes they precede but were massively
overrepresented in non-evaluated features. Thus, we can assume
that intergenic regions preceding candidate genes and with
resistance scores that show the same sign as those in the gene are
probably associated with resistance. Using this approach, we
found 126 additional probable resistance-altering features, 82 of
which were associated with increased resistance (Fig. 3a). Among
resistance-altering features we found several regions known to be
associated with clinical isoniazid resistance, such as katG, ahpC
and its promoter region, and fabGl and its promoter region!4.
Our results were also consistent with similar data from Xu et al.!>,
further confirming that resistance-altering features are associated
with isoniazid resistance (see “Methods”).

Genes associated with altered resistance follow definite func-
tional patterns. We noticed that resistance-altering features
tended to group together on the genome. One explanation for this
observation is that functionally related genes sometimes cluster in
operons, so they can be transcribed together. To test this we
obtained the H37Rv operon annotations from BioCyc!® and used
a sampling approach, finding that significant genes clustered in
operons more than expected by chance in 100,000 random
samples (388 transcription clusters vs. at least 395 in the simu-
lations, p < 107°). In partiular, two large operons nearly entirely
comprised resistance-altering features (Fisher’s exact test,
P <0.01): nuo and mcel. This proves that these features are not
randomly distributed around the genome but show at least some
functional relatedness to one another.

We further hypothesized that resistance depends on specific
cellular processes. To test this at the most general level, we
compared the relative shares of both versions of the TubercuList
functional categories!”>18 in the resistance-altering features with
their global shares (Fig. 3b and Supplementary Data 2). We found
that although all categories were represented, resistance-
increasing features were enriched in energy metabolism (Fisher’s
exact test, p = 0.0029), intermediary metabolism and respiration
(Fisher’s exact test, p = 0.012), and virulence genes (Fisher’s exact
test, p=0.017), whereas sensitivity-increasing features were
enriched in cell envelope (Fisher’s exact test, p =0.0002), and
cell wall and cell process genes (Fisher’s exact test, p = 0.00001).

To further understand the genetic architecture of isoniazid
resistance, we conducted a pathway enrichment analysis using
data from both Kyoto Encyclopedia of Genes and Genomes!® and
BioCyc using resampling (Supplementary Data 2). Results were
consistent using both databases and revealed that pathways
associated with the mycolic acids and cell wall biosynthesis were
significantly enriched among sensitivity-increasing features
(1000 samples, p < 0.05). This result is not surprising, given that
isoniazid interferes with the biosynthesis of mycolic acids, one of
the main components of the bacterial envelope, although the
main mycolate biosynthesis pathway itself was not significantly
enriched (p=0.09). Finally, we collated a data set with all cell
wall biosynthesis genes (Supplementary Data 2) from published
sources?? and confirmed that sensitivity-increasing features were

enriched in those genes (Fisher’s exact test, p=0.0001).
Resistance-increasing features were enriched as well (Fisher’s
exact test, p=0.0069), but that depended mainly on the mcel
operon as shown in Fig. 3d. In contrast, sensitivity-increasing
genes can be found all over the cell wall biosynthesis pathway,
which demonstrates the central role of the cell envelope in
intrinsic resistance and in isoniazid resistance in particular.

Among resistance-increasing genes, oxidative metabolism was
enriched as well (p <0.001) with the electron transport chain as
the most enriched pathway overall (p<0.001). In addition,
nicotinate and nicotinamide metabolism was enriched for both
resistance-increasing and sensitivity-increasing genes (p <0.02),
suggesting that NADH metabolism might be of importance. To
ensure that the enrichment in oxidative metabolism pathways did
not depend entirely on the nuo operon, we mined the genomic
annotation for H37Rv from the National Center for Biotechnol-
ogy Informatio (NCBI) using the terms: oxidoreductase, oxidase,
reductase, redox, peroxidase, dehydrogenase, NAD, NADH,
NADP, and NADPH, and we flagged any feature that contained
any of those terms in their name or function description as redox-
associated. We found that resistance-increasing genes were
significantly enriched in oxidative metabolism genes (Fisher’s
exact test, p = 0.03; Fig. 3¢). All these observations point to redox
metabolism having a role in isoniazid resistance.

A phylogenetic association test identifies candidate regions
associated with clinical resistance. So far, we have successfully
linked resistance-altering features to isoniazid resistance at an
in vitro and functional level, but we still do not know what their
importance in a clinical setting is. We used a phylogenetic test to
identify regions associated with resistance in clinical strains. We
first set out to obtain a phylogeny that encompassed tuberculosis
strain variability using 4762 globally distributed, published M.
tuberculosis complex genomes (Supplementary Data 3) with
around 240,000 polymorphic sites (Supplementary Fig. 2). The
data set included 32% of strains resistant to at least one drug. We
reconstructed the evolutionary history for each variable site
inferring how many substitution events had occurred and where
in the phylogeny they had taken place (Supplementary Data 4).
Finally, we sought to determine which regions in the whole
genome are more strongly associated with resistance by calcu-
lating the PhyC parameter?!, which acts as an association test and
measures the degree of mutation accumulation for a particular
gene in predetermined branches of the phylogeny. We first
determined in which specific branches an antibiotic-resistance
mutation had occurred using a comprehensive list of resistance
mutations based on PhyResSE?? and ReSeqTB (Supplementary
Data 5). We then tested which mutations tend to appear in
resistant versus susceptible subtrees by random sampling.

We identified 511 regions significantly associated with
antibiotic resistance in the phylogeny (p <0.05, Supplementary
Data 4). Most of the top scoring regions were already known
resistance genes for first- and second-line antibiotics (Supple-
mentary Data 4), which shows that there are still many
unidentified resistance mutations in those genes. Some other
top scoring regions are known to be associated with compensa-
tory mutations, which were also expected to appear after
resistance mutations to compensate for their cost. Thus,
phylogenetic association does a good job in identifying genes
known to be relevant to antibiotic resistance.

Novel isoniazid resistance determinants were identified by
combining functional genomics and phylogenetic association.
We combined our functional data on isoniazid resistance with
phylogenetic convergence results to look for isoniazid resistance
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Table 1 Candidate genes.

Rv number Call Name or associated gene Function

RvO0O1 IR dnaA Chromosomal replication initiator protein, regulates chromosomal replication

Rv0010c IS Rv0010c Conserved membrane protein

IG_Rv0020c_Rv0021c IR fhaA Conserved hypothetical protein, thought to be involved in signal transduction

Rv0134 IR ephF Epoxide hydrolase, thought to be involved in detoxification reactions following oxidative
damage to lipids

IG_Rv0237_Rv0238 IS*  Rv0238 Transcriptional regulator, tetR-family

Rv0392c IR ndhA Membrane NADH dehydrogenase, transfer of electrons from NADH to the
respiratory chain

Rv0450c IR mmplL4 Transmembrane transport protein, thought to be involved in fatty acid transport

Rv0740 IR Rv0740 Conserved hypothetical protein

IG_RvO767c_Rv0768 IR aldA Aldehyde dehydrogenase NAD-dependent

Rv0994 IR moeAT Molybdopterin biosynthesis protein

Rv1022 IS IpqU Lipoprotein

Rv1053c IR Rv1053c Hypothetical protein

Rv1086 IS Rv1086 Short-chain Z-isoprenyl diphosphate synthase, catalyzes the first committed step in the
synthesis of decaprenyl diphosphate, a molecule that has a central role in the biosynthesis
of most features of the mycobacterial cell wall

Rv1194c IR Rv1194c Conserved hypothetical protein

IG_Rv1364c_Rv1365c  IR*  Rv1364c Conserved hypothetical protein

IG_Rv1482c_Rv1483 IS*  fabG1 3-Oxoacyl-[acyl-carrier protein] reductase, involved in the fatty acid biosynthesis pathway
(first reduction step, mycolic acid biosynthesis). Secondary isoniazid resistance gene

Rv1504c IR Rv1504c Conserved hypothetical protein

Rv1512 IR epiA Nucleotide-sugar epimerase

Rv1692 IR Rv1692 Phosphatase

Rv1767 IR Rv1767 Conserved hypothetical protein

IG_Rv1773c_Rv1774 IR*  Rv1773c Transcriptional regulator

Rv1780 IR Rv1780 Conserved hypothetical protein

Rv1830 IR Rv1830 Conserved hypothetical protein

Rv1836¢ IS Rv1836¢ Conserved hypothetical protein

IG_Rv1843c_Rv1844c IR*  guaBT Inosine-5-monophosphate dehydrogenase

IG_Rv1900c_Rv1901 IS*  cinA Competence damage-inducible protein A

Rv1905c¢ IR aao p-Amino acid oxidase

Rv1908c IR katG Catalase-peroxidase-peroxynitritase T, main isoniazid resistance gene

Rv1928c IR Rv1928c Short-chain type dehydrogenase/reductase

Rv2021c IR Rv2021c Transcriptional regulator

IG_Rv2208_Rv2209 IR Rv2209 Conserved membrane protein

Rv2214c IR ephD Short-chain type dehydrogenase, thought to be involved in detoxification reactions
following oxidative damage to lipids

Rv2333c IR stp Conserved membrane transport protein, involved in transport of drug across the membrane
(export)

Rv2386c¢ IR mbt! Isochorismate synthase, involved in mycobactin siderophore construction

IG_Rv2427A_Rv2428 IS*  ahpC Alkyl hydroperoxide reductase C protein, involved in oxidative stress response and
secondary isoniazid resistance gene

Rv2428 IS ahpC Alkyl hydroperoxide reductase C protein, involved in oxidative stress response and
secondary isoniazid resistance gene

IG_Rv2560_Rv2561 IR Rv2561 Conserved hypothetical protein

IG_Rv2709_Rv2710 IR*  sigB RNA polymerase sigma factor

Rv2710 IR sigB RNA polymerase sigma factor

Rv2886¢ IR Rv2886¢ Resolvase

Rv2994 IS Rv2994 Conserved membrane protein, could be involved in efflux system

Rv3154 IR nuoJ NADH dehydrogenase | chain J

IG_Rv3210c_Rv3211 IR rhlE ATP-dependent RNA helicase, has a helix-destabilizing activity

IG_Rv3213c_Rv3214 IS*  gpm2 Phosphoglycerate mutase

Rv3229c IS desA3 Linoleoyl-CoA desaturase, thought to be involved in lipid metabolism

IG_Rv3260c_Rv3261 IR fbiA F420 biosynthesis protein

Rv3268 IS Rv3268 Conserved hypothetical protein

Rv3272 IR Rv3272 Conserved hypothetical protein

Rv3278c IS Rv3278c Conserved membrane protein

Rv3490 IR otsA Alpha, alpha-trehalose-phosphate synthase, involved in osmoregulatory trehalose
biosynthesis

Rv3501c IR yrbE4A Hypothetical membrane protein

Rv3600c IS Rv3600c Conserved hypothetical protein

Rv3777 IR Rv3777 Oxidoreductase

Rv3788 IR Rv3788 Hypothetical protein
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Table 1 (continued)

Rv number Call Name or associated gene Function

Rv3789 IR Rv3789 Conserved membrane protein

Rv3843c IR Rv3843c Conserved membrane protein

Rv3908 IR mutT4 Conserved hypothetical protein, possible mutator protein?

For intergenic regions, the neighboring gene most probable to be regulated by the region is given.
IR increased resistance, IR* probable increased resistance, IS increased sensitivity, IS* probable increased sensitivity.

candidate genes. Our reasoning was that if resistance-altering
regions from our TnSeq experiment accumulated changes speci-
fically in association with resistance mutations then they would
probably be involved in the evolution of isoniazid resistance. We
found 57 resistance-altering features that had more mutations
occuring in resistant subtrees than expected (Table 1). Four of
them were well-known isoniazid resistance determinants or
associated regions (katG, ahpC and its promoter region, and the
promoter region of fabG1I), which still showed association even
though diagnostic mutations had already been removed, thus
confirming that the catalog of mutations conferring isoniazid
resistance in those features is far from complete. This finding is in
agreement with the frequent identification of unidentified, but
rare, mutations in katG associated with isoniazid resistance in
different settings!223.

These candidate resistance features are functionally diverse,
showing the different ways in which M. tuberculosis can adapt to
antibiotics (Table 1). Looking the genome annotation, the
probable mechanisms operating here include increased efflux/
decreased influx of the antibiotic (mmpL4, stp), altered transcrip-
tional regulation (sigB), mycolic acids biosynthesis (fabGl),
changes in NADH balance (ndhA, nuoJ among others), and
increased mutagenesis due to changes in DNA repair (mutT4),
among others. Some of the candidate features have no known
function, which means that our strategy allows for discovery of
new resistance determinants even if they are poorly characterized.

Only one of the candidate regions (fabGI) was involved in cell
wall biosynthesis pathways but a further 16 out of the 95 genes in
cell wall biosynthesis pathways showed phylogenetic association
with resistance, which is a significantly enriched fraction (Fisher’s
exact test, p < 0.016, Supplementary Data 4 and Fig. 3c). We do not
have functional data for some of these regions as they are essential
and cannot tolerate insertion, but mutations in these genes probably
also affect isoniazid resistance as they are in the same pathway as
the antibiotic target itself and our TnSeq data show that cell wall
biosynthesis pathways are enriched in genes functionally associated
with isoniazid resistance. These results highlight the importance of
cell wall biosynthesis in isoniazid action and resistance, demon-
strating that functional genomics is a powerful tool for discovering
important pathways or even determining the mode of action.

We found that 8 out of 42 candidate genes were associated with
redox metabolism. This result was mainly due to resistance-
increasing genes, which accounted for seven of the eight redox
genes and represented a significantly enriched fraction (Fisher’s
exact test, p=0.024; Fig. 3c). In contrast, genes phylogenetically
associated with resistance as a whole were not enriched in redox
genes (44 out of 377 genes; Fisher’s exact test, p = 0.09). In addition,
3 of the 15 candidate intergenic regions are next to the start of a
redox gene. These results confirm that redox metabolism plays a
clinically relevant role in the evolution of isoniazid resistance.

We confirmed that the resistance phenotype inferred from the
TnSeq assay was associated with the expected change in sensitivity by
determining the minimum inhibitory concentrations (MICs) for a
representative sample of the candidate genes using the resazurin
microdilution assay. For this experiment, we used Bacillus Calmette-
Guérin (BCG) Danish insertion mutants from the BCCM/ITM

Mycobacteria Collection. Our results showed that mutants with
insertions in resistance-increasing features had higher MICs than
mutants with insertions in either sensitivity-increasing (Wilcoxon
test, p=10.0346) or nonsignificant (Wilcoxon test, p =0.0202)
features (Supplementary Fig. 4 and Supplementary Data 6). The
result remained significant even when IC50s were used (Wilcoxon
test, p = 0.0036 and p = 0.0202, respectively).

Novel isoniazid resistance determinants explain resistance in
phenotypically resistant strains with no known associated
mutation. Finally, we confirmed that mutations in candidate
genes are relevant to clinical resistance. We reasoned that if our
list of candidate genes plays a role in clinical resistance, we should
detect an increment in the sensitivity values to predict isoniazid
resistance not explained by available databases. We looked at a
selected data set of strains obtained from the CRyPTIC
consortium®, enriched in isoniazid-resistant strains with no
known resistance mutation (362 strains with known mutations,
82 with no known mutation). We found that the sensitivity of
candidate genes was significantly greater than a random set of
genes both for strains with no known mutations (sensitivity =
0.59, p=10.019; Fig. 4a) and for strains harboring well-known
resistance mutations (sensitivity = 0.46, p = 0.027; Fig. 4b and
Supplementary Data 7). The result suggests that our list of genes
is indeed involved in isoniazid resistance in one way or another.
In both cases, any non-synonymous mutations in known resis-
tance genes were also included as candidates, but they only
contributed a small amount to the total sensitivity (Fig. 4a, b). By
including rare mutations in our candidate genes list, we could
increase global sensitivity from 93.1% to 94.6%, or from 97.1% to
98.9% if we omit genotypes with no clear prediction, further
confirming that candidate genes in our analysis are relevant to
isoniazid clinical resistance and could help explain uncommon
resistant phenotypes.

The resistance mechanisms involved seem to be multiple and
diverse. For instance, two of the genes with the most mutations in
resistant strains are dnaA and mutT4, which are involved in DNA
replication and may affect the acquisition of resistance by
increasing mutation rate or indirect mechanisms such as
decreasing expression levels of katG2%. Other interesting genes
in the candidate set are those encoding epoxide hydrolases (ephD
and ephF), which are involved in detoxification following
oxidative damage to lipids. Also, we find many putative candidate
mutations in genes involved in transport such as mmpL4 and stp,
which can sometimes confer resistance to some antibiotics®>.
Finally, we find several genes with no known function that are
accumulating many non-synonymous mutations in resistant
strains. These results confirm that there are still many unknown
factors affecting the evolution of antibiotic resistance in
tuberculosis, even for a very well-characterized drug such as
isoniazid, and highlight the need for systematic studies to
uncover them.

Discussion
In this work we show how functional genomics experiments have
proven to be a very potent technique for finding resistance
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Fig. 4 Novel isoniazid resistance determinants explain resistance in clinical strains. a ROC curve for the data set of strains without known resistance
mutations. b ROC curve for the data set of strains with known resistance mutations. The red portion of the curve corresponds to candidate mutations in
known resistance genes. The black portion corresponds to candidate mutations in novel drug resistance-associated genes found in this study.

determinants in M. tuberculosis, as they allowed us to correctly
identify five known isoniazid resistance regions as well as discover
many other candidate resistance genes. Interestingly, out of these
five previously known regions, only katG insertion mutants
showed increased isoniazid resistance, whereas mutants for the
other four regions had higher sensitivity instead. Thus,
sensitivity-increasing genes can also act as resistance determi-
nants depending on how mutations affect the protein or its
expression levels. One example would be the Rv2170 gene, which
in our study increases sensitivity to isoniazid and has been shown
to confer resistance when its expression is increased, because it
encodes an acetyl-transferase that inactivates isoniazid2®.
Although we could not find insertion mutants for target isoniazid
gene inhA due to its essentiality, non-essential genes in the
mycolic acids biosynthesis pathway were functionally more
associated with resistance than the rest of the genome, showing
that the target pathway can be identified even when the target
gene itself is essential. Functional genomics also pointed to redox
metabolism as a resistance mechanism for isoniazid, confirming
the usefulness of this technique in highlighting resistance deter-
minants not directly tied to the drug’s mode of action and in
helping complete the resistance mutations catalog. Finally, com-
bining functional genomics with phylogenetic data allowed us to
pinpoint which regions and pathways were most important for
resistance in clinical settings and to obtain a series of candidate
novel resistance determinants. This last step is very important, it
has been shown before that even the most common clinical
mutations to isoniazid are difficult to recover in vitro?”. Likewise,
we find regions that have been shown to affect resistance in vitro
but are irrelevant in vivo. For instance, the aforementioned
Rv2170 has no phylogenetic association with resistance according
to our results.

Many genes involved in cell wall biosynthesis, including the
mycolic acids biosynthesis pathway, have been highlighted by
both the functional and the phylogenetic approaches, even
though many of them are not used to predict resistance (Fig. 3d).
This fits in with the idea that resistance depends on more than the
well-characterized diagnostic mutations, and that bacteria can
also acquire low-effect resistance mutations or compensatory
mutations. Given that isoniazid specifically targets this pathway, it
is plausible that insertions in several genes in the pathway affect
isoniazid sensitivity. However, as the cell wall is the first barrier of
defense of the bacteria, it is difficult to determine whether these
genes are important for isoniazid resistance exclusively or also for
resistance to other antibiotics as well. For instance, our data show
that inserting genes in the mcel operon increases isoniazid
resistance. This operon is proposed to be involved in the trans-
port of cell wall components and disrupting the operon is asso-
ciated with the accumulation of free mycolic acids*®-30. This

points to a role in cell wall remodeling and recycling and suggests
that the operon can be involved in resistance to other antibiotics
as well. Other genes such as those in the mycolic acid modifica-
tion pathways are better candidates to affect isoniazid resistance
exclusively. In any case, we expect many of the mutations in these
genes to have low diagnostic value even if they actually contribute
to resistance, which underlines the importance of systematic
studies to understand antibiotic resistance.

Our analysis also highlighted genes involved in redox meta-
bolism, which has previously been associated with isoniazid
resistance3l. This is in accordance with what is already known
about the action of the antibiotic, as NADH is required for the
formation of the isoniazid-NAD adduct. In addition, NADH and
NADPH are necessary for the activity of two genes in the FAS
system, inhA and fabGl, which we know to be isoniazid resis-
tance genes. However, as most of the oxidative metabolism genes
we found to be associated with resistance were not directly
involved in any of these pathways we concluded that this asso-
ciation depends on NADH homeostasis. Previous findings have
suggested that NADH dehydrogenase gene ndh harbors putative
resistance mutations'# and our results showed that many similar
genes could have such mutations as well. For instance, we found
that genes encoding NADH dehydrogenases present in the elec-
tron transport chain, such as several genes in the nuo operon and
ndhA, increased isoniazid resistance when mutated. It has already
been shown that inhibiting the action of these genes increases
intracellular levels of NADH32, and that mutations in the NADH
dehydrogenase Ndh (isoform to NdhA) lead to higher NADH
levels and confer isoniazid resistance, maybe by preventing
inhibition of the InhA enzyme3!. Indeed, we found that muta-
tions in nuoj, ndhA, and ndh have phylogenetic association with
resistance, further confirming that NADH homeostasis plays a
clinically relevant role in the evolution of isoniazid resistance.
NADH can also affect resistance indirectly, as several stress
responses specifically use the NADH : NAD+ ratio as a trigger33.
In many cases, these responses provide protection against anti-
biotic stress as well and are triggered as a result of exposure to the
antibiotic32. We identified several NADH sensors such as regX3,
dosT, and pknG, which were functionally associated with iso-
niazid resistance. In addition to redox sensors, we also found
other genes related to detoxification that were associated with
resistance. For instance, insertions in genes involved in mycothiol
biosynthesis produced a more resistant phenotype.

Once we understand which pathways are involved in isoniazid
resistance, we can start exploring them as targets for future
regimens. Many sensitivity-increasing features in the cell wall
biosynthesis pathway show increased expression after exposure to
isoniazid34. The insertion probably compromises the strength and
integrity of the cell wall and makes those genes ideal targets for

8 COMMUNICATIONS BIOLOGY | (2021)4:1322 | https://doi.org/10.1038/s42003-021-02846-z | www.nature.com/commsbio


www.nature.com/commsbio

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02846-z

ARTICLE

adjuvants that help potentiate the action of the antibiotics or even
for new or repurposed therapies. For instance, peptidoglycan
biosynthesis gene ponAl appears to be the target of the repur-
posed ceftazidime-avibactam combination3®>. We can also take
advantage of the role of redox homeostasis in the action of iso-
niazid to design treatments and strategies to enhance the per-
formance of the antibiotic. In a recent paper, Flentie et al.”
reported a new compound, C10, which appears to revert the
resistant phenotype of katG mutants and thus prevents the
selection of isoniazid-resistant variants. The compound had been
specifically selected to block tolerance to oxidative stress and it
was shown to both increase sensitivity to isoniazid and promote
the expression of energy metabolism-related genes. Here we have
provided experimental evidence of which specific genes can
produce a particular resistance phenotype and which of those are
relevant in clinical environments. We can now use this experi-
mental framework and extrapolate it to other antibiotics,
including newly licensed drugs such as bedaquiline and delama-
nid to design better treatments with them.

A very powerful feature of functional genomics is that it can be
applied comparatively across strains and antibiotics. For instance,
functional genomics showed that small genetic differences
between characterized strains could be linked to differences in
relative importance or essentiality of particular genes and in the
way a strain acquires antibiotic resistance3®. When we use func-
tional genomics with different antibiotics, we can find common
patterns of resistance across drugs, such as the existence of an
intrinsic resistome!>37 and instances of cross-resistance. In our
data, we found that the F420 biosynthesis gene fbiA-C, which are
associated with delamanid resistance3®, also confers isoniazid
resistance when insertionally inactivated. These cross-resistance
patterns are important, as they inform us of the likelihood that
the bacteria can develop resistance to two antibiotics that are
administered in combination or sequentially, which will ulti-
mately impact treatment success.

By combining a functional and phylogenetic approach, we have
shown that our candidate resistance determinants could increase
sensitivity up to 2%. Although the impact at the population level
seems minimal, the impact for the patient is important as iso-
niazid resistance is a major determinant for adverse clinical
outcomes>?, Furthermore, genome-wide association studies were
unable to reveal any of these targets when thousand of
genotypes—phenotypes® or detailed MIC measurements*0 were
implemented. In our approach, we are able to identify novel
regions that are involved in isoniazid resistance, as they increase
sensitivity in sets of phenotypically resistant strains with no
known causing mutation. Nevertheless, the use of those regions to
diagnose isoniazid resistance leads to a decline in specificity,
suggesting that not all mutations in the target genes are involved
in resistance. Furthermore, mutations in some of the regions are
predictive of resistance in strains with very well-characterized
isoniazid resistance mutations, suggesting that in some cases they
can act either as compensatory mutations or early low level,
facilitating resistance mutations that preceded the well-
characterized isoniazid resistance mutations.

In conclusion, functional genomics is a powerful tool for
detecting hundreds of genomic determinants that can modify
antibiotic resistance, but we need a clinical readout to determine
which of the genes have real relevance to the evolution of anti-
biotic resistance and the emergence of clinical resistance. Here we
have shown how a systematic approach combining insertion
mutants on a genomic scale with phylogenetic association of
clinical mutations can reliably detect important resistance fea-
tures, uncover new resistance candidates, and highlight relevant
pathways and potential cross-resistances, in this case those most
related to the mode of action for the first-line antibiotic isoniazid.

We also provide an example of how a thorough understanding of
the genetic architecture of isoniazid resistance can help us to
prevent its emergence. The approach we describe can be used as a
blueprint for studying the genetics of resistance to other anti-
biotics or describing lineage-specific differences, particularly to
provide much-needed knowledge regarding resistance to new
antibiotics.

Methods

Strains, media, and culture conditions. We used M. tuberculosis strain H37Rv
kindly supplied by Dario Garcia de Viedma. Bacteria were cultured at 37 °C in
Middlebrook 7H9 supplemented with 10% ADC (both from BD) and 0.05% Tween
80 (Difco) for liquid cultures and in Middlebrook 7H10 supplemented with 10%
OADC (both from BD) for solid cultures. All experiments were conducted in a
BSL3 laboratory using a biosafety cabinet.

Mutant pool generation and selection experiment. We generated a mutant pool
using the protocol by Long et al.8. Briefly, we collected 100 mL M. tuberculosis
H37Rv culture and washed twice with mycobacteriophage (MP) buffer to remove
the Tween. We then transduced the bacteria with 10!! pfu phiMycomarT7 for 20 h
in a total volume of 10 mL. Afterwards, we pelleted the cells and washed away
excess phage twice with PBS-Tween 80. Finally, we plated the transduced bacteria
in three 25 x 25 square plates (Corning) containing Middlebrook 7H10 media
supplemented with OADC, 0.05% Tween 80, and 20 pug/mL kanamycin (Panreac).
After 3 weeks, mutant bacteria were scraped from the agar, homogenized in liquid
media, and stored at —80 °C.

For each experiment, we used a starter culture of the pool at OD 0.8-1.0 to
inoculate two 100 mL roller bottles in parallel with ~107 bacteria each. One of the
bottles contained either 0.18 or 0.20 pg/mL isoniazid (Panreac), whereas the other
contained just plain media and served as a control. We allowed the bacteria to grow
for about 13 generations and stored the final populations at —80 °C.

DNA extraction. Mycobacterial cultures were pelleted by centrifugation and
resuspended in 500 pL TE buffer. Following inactivation by heat at 80 °C for 1h,
lysozyme (50 uL of a 10 mg/mL stock) was added and samples were incubated
overnight at 37 °C. Then, 50 uL of proteinase K (10 mg/mL stock solution) were
added, incubating for 1 h at 60 °C with shaking in a thermomixer. After this, 100 pL
5M NaCl and 100 uL 10% CTAB were mixed by inverting, samples were frozen for
15 min at —80 °C, and re-incubated at 60 °C for 15 min with shaking. Once cooled,
700 pL chloroform-isoamyl alcohol (24 : 1) were mixed in, yielding a white,
homogenous solution. Samples were centrifuged, transferred into 700 uL cold
isopropanol, and left at —20 °C overnight. Then, they were pelleted and washed
with 70% ethanol and dried in a speed vacuum concentrator for 10 min. Finally,
DNA was resuspended in 50 pL TE and its concentration was determined with a
QuBit 3.0 Fluorometer (Thermo Fisher Scientific). Also, the amount of con-
taminating phage DNA was estimated by PCR, to ensure it was low and would not
affect sequencing results.

Library preparation and sequencing. We followed the protocol described by Long
et al.® with some modifications. After extraction, samples were quantified using a
QuaBit 3.0 Fluorometer (Thermo Fisher Scientific). Then, 50 pl of each DNA sample
were transferred to Covaris tubes, centrifuged, and fragmented to an approximate
size of 550 bp using standard settings (Illumina TruSeq Library Prep Reference
Guide). Samples were size-selected using NucleoMag NGS Clean-up and Size Select
(Macherey-Nagel) to 50 pL final volume. The DNA end-repair was performed
using NEBNext End Repair Module (New England BioLabs) and dA-tailing was
achieved with NEBNext dA-tailing Module (New England BioLabs), both as per
the manufacturer’s instructions. Next, a stock of barcoded adapters was prepared
by mixing 20 pl of 50 uM oligonucleotides (detailed in Supplementary Table 1) in a
final concentration of 2 uM MgCl,, heating to 93 °C for 10 min, and reducing the
temperature by 3 °C/cycle over 2 h until reaching 20 °C. These double-stranded
adapters were then ligated to the purified dA-tailed DNA using T4 DNA ligase
from NEBNext Quick Ligation Module (New England BioLabs).

After another purification step, we performed a PCR to selectively amplify the
transposon-chromosomal junctions using a pair of primers specific to the end of
the transposon and ligated adapter (Supplementary Table 1) with the following
parameters: initial denaturation at 98 °C for 5 min, 20 cycles of denaturation at
98 °C for 20's, annealing at 65 °C for 155, and extension at 72 °C for 30s, with a
final extension at 72 °C for 3 min. We size-selected ~500 bp products using
magnetics beads and a standard eight-cycle indexing PCR introduced the Illumina
indexes required for sequencing. Final libraries were validated on a Bioanalyzer
DNA chip (Agilent Technologies) to verify size and then quantified again
using Qubit.

Libraries were sequenced on the Illumina NextSeq 550 platform using the High
Output v2 kit (150 cycles), producing an average of 35 million raw paired reads per
sample with a good quality distribution.
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Bioinformatic analysis. Quality control of sequencing files was performed using
FASTQC, after which they underwent quality trimming by PRINSEQ. The selected
criteria for keeping sequences was a mean Phred quality score of 20 in a 20 bp
sliding window. Next we processed the cleaned sequences by means of a custom
Python script that served two purposes: for every read pair, it first scanned the
beginning of the forward read looking for a “TGTTA” motif that marked the start
of the transposon insertion and cut the sequence at the TA site; second, it looked
for the random barcode in the reverse read, cut it from the sequence, and appended
it to the header as a comment if it passed a structure check.

We then mapped the reads to the M. tuberculosis H37Rv reference genome
(NC_000962.3) using the Burrows-Wheeler Aligner (BWA) with default
parameters but keeping header comments in the resulting SAM files. It was
important to detect PCR duplicates and remove them to correctly estimate the
proportion of each mutant in the original pool. This step was again performed by a
custom Python script that used the barcode, strand, mapping coordinate, and
fragment length information to define unique reads. After removing PCR
duplicates, the insertion count final list for each sample was generated, with
coordinates determined by the mapping point of the “TA” site. At this point, we
were able to determine a ~78% insertion density and thus the high quality of our
mutant pool.

We developed our own pipeline to analyze the TnSeq data. Our idea was to
determine which genes consistently alter isoniazid resistance and current
approaches work better when the size of the effect is large. First, we normalized
insertion counts by 40% trimmed mean and generated a TO library that was
sampled 1000 times to obtain z-scores that represented the standardized deviation
of each site from its expected insertion count. We also generated two new libraries,
R1 and R2, by subtracting z-scores from controls to their treatment’s counterparts.
A sliding window analysis was designed to evaluate the significance of inserted
genomic features with the aim of detecting zones with equally consistent insertion
changes. Each window containing between six and ten “TA” sites underwent a
Wilcoxon test that deemed whether the region was inserted more or less than
expected. We only considered windows that fell within the limits of annotated
genomic features and eliminated the ones that spanned more than one. In terms of
fitness, a window above the expected insertion level was defined as an increased
resistance window and one below the expected insertion level was considered an
increased sensitivity window. A multitest correction was applied to all p-values
after the analysis, obtaining a final g-value for each window. Then we established a
call for each “TA” site by judging the windows in which it appeared. If half of its
windows got a significant call, that call was applied to the “TA” site, otherwise it
was left as nonsignificant. Uninserted “TA” sites in the TO libraries were not called
and were annotated as “not evaluated.” Finally, “TA” sites were assigned to
genomic features to give these a call. Features containing at least 70% of a certain
significant call were given that same call if their median z-score was either positive
or negative and their ranking among all features was above or below 50%,
respectively. We selected all significant calls from either of the two concentrations
tested and a final call for each gene and intergenic region was obtained following
this pipeline. Scripts necessary to perform the analyses are available at https://
gitlab.com/tbgenomicsunit.

To determine how reproducible our results were, we compared them with
published data from Xu et al.!>. We found approximately five times more
resistance-altering features than they did, suggesting that our results might provide
a more detailed picture of the genetic architecture of isoniazid resistance. This is
probably due to a combination of stronger selective conditions, an increased
number of inserted sites and the fact that our analytical method tests for
consistency independently of the size of the effect. Coincidence between our and
their sets of resistance-altering genes was significantly higher than expected (y-
test, y =297.28, p < 0.0001), with particularly strong association in the direction of
the effect (Supplementary Fig. 3a). Finally, we checked whether an effect in the
same direction was found for all our resistance-altering regions even if it was not
significant. Indeed, our resistance-increasing features had significantly higher
resistance than nonsignificant ones (Wilcoxon test, z=8.93, p <0.0001), whereas
sensitivity-increasing features showed lower resistance (Wilcoxon test, z=11.54,
P <0.0001; Supplementary Fig. 3b).

Clinical data set phylogeny and ancestral state reconstruction. A 4763-strain
data set consisting of different worldwide clinical isolates was constructed from
publicly available databases. We downloaded all FASTQ files from NCBI using
their fastq-dump tool, mapped them to a predicted M. tuberculosis ancestor
reference and called SNPs using VarScan 2. An alignment of all homozygous
variable positions among isolates was generated and a phylogenetic tree was
constructed using FastTree 2.1.

We then proceeded to reconstruct the ancestral state of every polymorphism
using PAUP 4.0a158 with a custom weight matrix that punished reversions with a
10x multiplier (see Supplementary Note 1 for the assumptions block including this
matrix). As we had more positions than the program could compute at a time, we
had to split the alignment into four 60K-SNP pieces before building the NEXUS
files as input for the program. We obtained a list of changes associated with the
tree’s nodes and this output was parsed using a custom Python script, yielding a
summary table of changes that was further processed to add more information
about each change. The final table contains for each SNP event the tree node in

which it occurs, associated genomic feature, translational impact, homoplasy, and
antibiotic resistance details (Supplementary Data 4).

Phylogenetic association test. We used R to perform an association test linking
particular SNPs occurring in clinical settings to antibiotic resistance. We began by
defining susceptible and resistant tree branches according to the absence or pre-
sence, respectively, of an antibiotic-resistance-associated mutation from a high-
confidence resistance mutations list based on PhyResSE?2 and ReSeqTB (Supple-
mentary Data 5). Along with isoniazid we considered all first-line antibiotics,
because although isoniazid resistance tends to appear first4l, resistance mutations
are not always detected. Furthermore, resistant strains can accumulate non-specific
or low-level rare mutations and we are also interested in those mutations. In any
case, we repeated the analysis only with isoniazid resistance mutations and the
results were very similar. After we determined “resistant” and “sensitive” subtrees
of the phylogeny, we eliminated all diagnostic mutations and calculated the
number of all mutations, non-synonymous mutations and homoplasies for each
genomic feature in resistant subtrees. We then determined the expected number of
mutations in each category by resampling the assigned branch for each mutation
10,000 times and recalculating the numbers for each category. We determined that
one particular genomic feature was phylogenetically associated with resistance if it
ranked higher than 9500 of the 10,000 samplings in any of the three categories.
We used the entire list of mutations for all first and second-line antibiotics for
several reasons as follows: (i) we expect most strains resistant to other antibiotics to
be resistant to isoniazid as well, as not all isoniazid resistance mutations are known
and resistance mutations in tuberculosis tend to appear in a stepwise fashion with
isoniazid resistance mutations being one of the first; (ii) even in the cases where no
proper isoniazid resistance mutation has occurred, other low-level resistance
mutations may have been acquired and they are also relevant to the evolution of
resistance; and (iii) as mutations that confer resistance to different antibiotics are
highly correlated due to the nature of the treatment, it is very difficult to
disentangle one from the other and it is better to study resistance as a whole
independently of the specific antibiotic. All diagnostic mutations used to mark the
onset of resistance in the phylogeny were subsequently eliminated from analysis.

Resistance prediction in the clinical data set. We used 444 isoniazid-resistant
strains from the Cryptic data set® (Supplementary Data 8): 362 with typical iso-
niazid resistance mutations and 82 without any known isoniazid resistance
mutations. We analyzed the raw sequence data using our lab’s validated pipeline
(available at https://gitlab.com/tbgenomicsunit/ThePipeline) and determined all
the single-nucleotide mutations above a 10% frequency for each strain in the
sample. We centered our analysis on “rare” mutations (mutations appearing in
only one to three strains) and all diagnostic resistance mutations were excluded.
We first determined the number of strains in each group (resistant with typical
mutations or resistant with no clear mutations) that contained at least one
mutation in any of the candidate genes and then we compared this number to the
results we obtained using 1000 random subsets of genes with the same number of
features as our candidates list (PE/PPE protein families, phage, and repetitive
sequences excluded*?). The relative position of the sensitivity obtained with our
candidate list revealed how relevant those genes are to clinical resistance. To build
the receiver operating characteristic (ROC) curve, we similarly analyzed 188 ran-
domly sampled pan-susceptible strains from the CRypTIC consortium and added
each gene sequentially in descending order of specificity. When two genes had the
same specificity, the one with the highest sensitivity took precedence.

Candidates validation using BCG mutants. We selected 30 BCG Danish mutants
(24 candidate genes plus 6 controls) from the BCCM/ITM Mycobacteria Collec-
tion, which were regrown and shipped in 7H11 solid medium. Upon reception,
bacteria were collected and further amplified in 7H9 liquid medium to generate
stocks for MIC determination experiments. We set up 96-well microtitre plates
(using 7H9-OADC) with 2-fold serial dilutions of isoniazid, with concentrations
ranging from 0.015 to 8 pug/mL and leaving 2 wells without antibiotic to have a
growth control. BCG mutants were inoculated by rows, adding 10 bacteria per
well, along with a wild-type BCG Danish strain as internal control in each plate.
After a 7-day incubation at 37 °C, 20 pL of 0.02% resazurin were added to each well
and plates were allowed to incubate for 2 more days. At the 24 and 48 h time
points, resazurin color change was visually assessed and a 50 pL aliquot was
inactivated with 50 pL of 4% paraformaldehyde and placed in a black plate for
fluorescence reading. Resazurin reduction was assessed by measuring fluorescence
in a Tecan Infinite M Plex plate reader, allowing for a precise estimation of IC50
and IC90 values. Briefly, we subtracted the negative controls and re-calculated the
fluorescence values as relatives to their respective growth control. We determined
the slope of the steepest part of the inhibition curve and used that estimation to
determine the concentrations at which inhibition was exactly 50% and 90% relative
to the growth control.

Statistics and reproducibility. We performed all statistical analyses using R v3.3.3
and publicly available databases (cited in the main text). The specific test per-
formed in each case (Fisher’s exact test, Wilcoxon test, or custom) is indicated
throughout the text. The TnSeq selection experiment was performed twice and the
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same pool was tested in two independent blocks, in each block we seeded one
control and one experimental culture from the same starter culture. Depth of
sequencing for the TnSeq experiment was designed so that there would be around
50 reads per insertion, to ensure adequate coverage of all insertion sites. Experi-
mental cultures were inoculated with 10 million bacteria, ensuring that on average
each insertion mutant would have 100 copies. We allowed bacteria to grow for 13
generations, because that is enough to see differences in growth for the different
mutants. We compared with similar results from other groups and found good
agreement. We tested 24 insertion mutants for candidate genes for confirmation,
comparing them with 6 control mutants. Insertion mutants were tested in ran-
domized blocks and with a quality control strain.

All analyses can be reproduced using data sets and code available at https://
gitlab.com/tbgenomicsunit.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

TnSeq FASTQ files are available at the European Nucleotide Archive with project
number PRJEB38844. Strains available under request. Supplementary Data 1-4 are also
available at https://gitlab.com/tbgenomicsunit/tnseq-pipeline. Source data for the main
figures is available in Supplementary Data 9.

Code availability

Custom code used in this study in the form of Python scripts are available at https://
gitlab.com/tbgenomicsunit/tnseq-pipeline (https://doi.org/10.5281/zenodo.5575540)43.
The code is available under Creative Commons Attribution 4.0 International.
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