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Mammalian body size is determined by
interactions between climate, urbanization, and
ecological traits

Maggie M. Hantak® '™, Bryan S. McLean® 2, Daijiang Li® 3% & Robert P. Guralnick® '™

Anthropogenically-driven climate warming is a hypothesized driver of animal body size
reductions. Less understood are effects of other human-caused disturbances on body size,
such as urbanization. We compiled 140,499 body size records of over 100 North American
mammals to test how climate and human population density, a proxy for urbanization, and
their interactions with species traits, impact body size. We tested three hypotheses of body
size variation across urbanization gradients: urban heat island effects, habitat fragmentation,
and resource availability. Our results demonstrate that both urbanization and temperature
influence mammalian body size variation, most often leading to larger individuals, thus
supporting the resource availability hypothesis. In addition, life history and other ecological
factors play a critical role in mediating the effects of climate and urbanization on body size.
Larger mammals and species that utilize thermal buffering are more sensitive to warmer
temperatures, while flexibility in activity time appears to be advantageous in urbanized areas.
This work highlights the value of using digitized, natural history data to track how human
disturbance drives morphological variation.
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with many ecological characteristics of organisms!=3.

Because of this, understanding drivers of body size varia-
tion has been a central goal of ecology over the last half
century?-%, Macroscale studies of body size across broad envir-
onmental gradients date back to the seminal work of Carl
Bergmann’ (ie., Bergmann’s Rule—the tendency for larger
organisms to be found in cooler climates), although with much
subsequent debate about the generality of patterns and underlying
mechanisms®-10, Some species—but not all—follow responses to
temperature predicted by Bergmann, with smaller average body
sizes in warmer climates. Food availability can also strongly
determine species’ body size differences!!>12.

Much less attention has been paid to anthropogenic influences
on body size that play out at the local or regional scale (but see!3),
which provides a distinct set of challenges and opportunities for
organisms. For example, while urbanization may increase
potential for novel human-caused conflict and predation, these
novel environments can also lead to decreased predation rate!*
and increased food resources. The complexity of urban envir-
onments provides an opportunity to examine species responses to
a variety of major ecological gradients in real time, and to test the
applicability of longstanding ecogeographic rules within the
human-built environment. For example, Ives et al.!”> found
Australian cities harbor a large number of threatened plants and
animals, which may be due to a high amount of landscape het-
erogeneity (e.g., plant cultivation) in urban areas.

Body size variation due to human alteration of landscapes may
be driven by multiple possible, non-mutually exclusive drivers.
First, due to human activity and built infrastructure, cities are
generally warmer than surrounding areas, a phenomenon known
as the urban heat island effect!®. Animals inhabiting warmer
urban heat islands are predicted to be smaller in body size based
on the general tendency for species to decrease in size with
increasing temperature!”-20. There is empirical support for urban
heat island effects driving decreases in body size in various animal
taxa, namely insects?!22, but limited support in endotherms?3.
Second, heterogeneity in urban areas can contribute to increased
food resources and water availability compared to rural areas?4,
which could further mediate body sizes in urban areas (i.e., a
resource rule?). Finally, Schmidt and Jensen?%27 suggested that
species that experience landscape fragmentation driven by urba-
nization and an increased human footprint should either go

B ody size is an easily measured, integrator trait that scales

extinct or adapt through changes in traits, namely increasing
body size for smaller species and decreases for larger species. Each
of these hypotheses have clear, alternate predictions about the
overall effects of urbanization, and can be emplaced in the
broader context of overall climatic gradients.

Mammals represent a good study system for examining the
potentially multifaceted effects of climate and urbanization on
body size because they are ecologically diverse, exhibit a wide
range of body sizes, have diverse life history strategies, and are
well-represented in biodiversity datasets. Mammals have evolved
to fill a large variety of niches including aquatic, terrestrial, and
even subterranean habitats, often facilitated by the evolution of
key functional, morphological, or behavioral traits?8. We expect
that these traits strongly mediate current and future responses of
organisms to climate variation inside and outside of urban areas;
however, few studies have directly examined how these factors
may influence spatiotemporal trends in recent global responses of
mammals (but see2°-31). Hibernation, a suite of behaviors such as
nocturnality, or spending portions of the life cycle underground
(i.e., habitat buffering), may be critical for coping with unsuitable
climatic conditions especially in the short term3>33. Finally,
mammals are well-sampled in many biodiversity datasets, with
body size measurements often taken in the field as part of long-
standing collection practices. This creates an opportunity to
analyze body size across an entire vertebrate clade, and to
establish robust workflows for dealing with spatiotemporal col-
lecting biases which need to be carefully considered in down-
stream modeling.

In this study, we compiled multiple datasets containing 140,499
mass and body length records spanning more than 100 mammal
species to address broad-scale spatial trends of mammalian body
size (Fig. 1, S1, Supplemental Data 1). Our overarching question
is how climate and human population density, a proxy for the
human built environment (ie., urbanization; e.g.,3%), impact
mammal body size. We first addressed the relationship between
body mass and head-body length, as each is commonly used as a
body size metric but the former can vary seasonally due to age,
reproductive status, or food availability?”, potentially weakening
mass-length allometries at range-wide scales’®. We then use a
hierarchical modeling framework to identify the main drivers of
body size variation, accounting not only for climate and urba-
nization but also broad differences in habitat and species-specific
trends. Drawing on Bergmann’s Rule, we predicted that

Ecoregion Body Mass (N)

25,102

HB Length (N)

9,681

o

D Eastern Temperate Forests

[ ] Marine West Goast Forests 8,945 9,219

D Mediterranean California 7,765 6,639

D Northern Cordilleras 15,167 12,647

D Northern Deserts

2,541 3,325

D Northern Great Plains 4,812 1,034
D Northern Forests 12,098 3,604
D Southern Cordilleras 12,013 9,328
D Southern Deserts 24,981 21,294
. Southern Great Plains 18,603 9,315
D Southern Semiarid Highlands 5,118 2,881
. Temperate Sierras 3,354 3,757
D Tropical Wet Forests NA NA

Fig. 1 Body mass and head-body (HB) length record localities. Designated spatial ecoregions are colored and the key shows the total number of body
mass and head-body (HB) length records from each ecoregion. This map was created with R version 3.6.2 (https://www.r-project.org/).
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temperature would negatively impact both metrics of body size
(i.e., smaller size in warmer temperatures). We also expected that
increasing human population density would drive smaller body
size due to heat island effects, thereby amplifying Bergmann’s-like
patterns. Alternatively, and given recent results from single spe-
cies studies (e.g.,>®), it may also be that body mass increases while
body length decreases in urban areas as increased anthropogenic
food availability (e.g., garbage or human provisioning of food)
allows for more weight®37-38 but need for crypsis or heat island
effects drive decreasing length. Further, urbanized areas may
mimic islands given their fragmented habitats, driving larger
species to decrease in size and smaller species to increase in size.

To develop a more integrative framework for understanding
body size variation in mammals, we extended our work to
incorporate ecological traits that are related to species thermal
biology, which are likely to modify and interact with both of these
drivers, especially ability to buffer thermal environments.
Therefore, we predicted weaker body size responses from species
that hibernate or use torpor and species that utilize habitat buf-
fering (i.e., use of underground or cave habitats) as they are able
to avoid extreme climates (e.g.,39; but see®). We also considered
traits such as activity time and expected that nocturnal mammals
should increase in size more than diurnal species in urban areas
since they can more easily avoid humans but still benefit from
food resources. Lastly, based on the hypothesis of more frag-
mented, island-like habitats in human built environments, we
predicted that larger species may decrease in body size and
smaller species increase in size in areas of higher human popu-
lation density. Small size is also predicted to be favored as a
greater number of microhabitats are available to escape unfa-
vorable temperatures and avoid human detection*!-43,

Results
Aggregation of data across multiple sources (VertNet, NEON,
NACSM) generated a significant dataset to examine spatially-
structured changes in mammal body mass and head-body length
in relation to climate, human population density, and key eco-
logical traits. The best model of body mass variation included the
following covariates: Mean Annual Temperature (MAT), Mean
Annual Precipitation (MAP), season, sex, human population
density, all traits, and all interactions besides population den-
sity x small/large mammals (partial R2 = 0.97). Significant main
effects include MAT, MAP, season, sex, human population den-
sity, traits of hibernation, activity time, and small/large mean
binned body mass (Table 1). This model also included strong
interactive effects between MAT, population density, and traits.
The negative interaction between MAT and population density
implies that while mammal body mass increases with decreasing
MAT in general, this trend is stronger in areas with higher
densities of humans (Estimate = —0.003, 95% Bayesian credible
intervals (CI) = —0.003 - —0.002; Table 1, Fig. 2a). Ecological
traits also strongly mediated responses of body mass to climate
and urbanization. With increasing MAT, species with any
hibernation ability and non-hibernators decrease in body mass,
but the strength of the decrease is stronger for species that use
torpor compared to species that hibernate (Estimate = 0.008, 95%
CI=0.004 - 0.011) and that do not hibernate (Estimate = 0.019,
95% CI=0.017 - 0.021; Table 1, Fig. 2b). Species that use habitat
buffering (obligate and facultative) and non-buffered species
decrease in body mass with increasing MAT, but the strength of
the decrease is stronger for species that facultatively use habitat
buffers compared to species that do not use habitat buffers
(Estimate = 0.026, 95% CI =0.021 - 0.030) and species that are
obligated to use buffers (Estimate=0.016, 95% CI=0.012 -
0.021; Table 1, Fig. 2c). Diurnal species are larger in body mass

and decrease in mass with increasing population density (Esti-
mate = —0.014, 95% CI= —0.017 to —0.012; Table 1, Fig. 2d),
compared to nocturnal species or those scored as “both” (Table 1,
Fig. 2D). Both large and small mammals (binned mean size)
decrease in body mass with increasing MAT, but the strength of
the decrease is stronger for larger species (Estimate =0.024,
CI=0.019 - 0.030; Table 1, Fig. 2e).

When examining head-body length as a body size metric, the
best-fit model consisted of MAT, MAP, season, population den-
sity, all traits, and all interactions except MATxhuman popula-
tion density (partial R? = 0.97). Significant single predictors are
MAT, MAP, season, human population density, hibernation,
activity time, and small/large mean binned head-body length
(Table 1).

Similar to body mass, we find strong interactive effects between
MAT and population density with traits. Head-body length is
negatively correlated with MAT for species with any hibernation
ability and non-hibernators, but the strength of the decrease is
stronger for species that use torpor compared to species that
hibernate (Estimate = 0.007, 95% CI = 0.005-0.008) and that do
not hibernate (Estimate = 0.009, 95% CI = 0.008-0.010; Table 1,
Fig. 3a). Species that utilize habitat buffering (obligate and
facultative) and non-buffered species decrease in body mass with
increasing MAT, but the strength of the decrease is stronger for
species that facultatively use habitat buffers compared to species
that do not use habitat buffers (Estimate=0.007, 95%
CI =0.005-0.009) and species that are obligated to use habitat
buffers (Estimate =0.003, 95% CI=0.001-0.005; Table 1,
Fig. 3b). Nocturnal species decrease slightly in head-body length
with increasing population density (Estimate =—0.007, 95%
CI = —0.007 to —0.006), whereas diurnal species and species that
display both tendencies increase in head-body length with
increasing population density, but the strength of the increase is
weaker for diurnal species (Estimate = —0.006, 95% CI = —0.007
to —0.004; Table 1, Fig. 3c). The effect of the decrease in head-
body length with increasing MAT is stronger for larger mammals
compared to smaller species (Estimate =0.005, 95%
CI=0.003-0.007; Table 1, Fig. 3d). Large and small mammals
increase in head-body length with increasing population density,
but the strength of the increase is stronger for larger mammals
(Estimate = —0.003, 95% CI=—0.004 to —0.002; Table 1,
Fig. 3e).

Discussion

Climate as a driver of animal body size variation has been well
documented across both space and time!84445, However, a
myriad of anthropogenic global effects (e.g., habitat degradation
and fragmentation, pollution) are known to impact organisms at
both local and regional scales, promoting complex responses that
may be difficult to contextualize with regard to longstanding
ecogeographic rules. Further, these responses likely vary among
species and clades because ecological traits mediate exposure and
thus the intensity of changes experienced. Here, we investigate
how climate (a more constant driver over earth history) and
urbanization (a novel disturbance) influence mammalian body
size, and how life history and other ecological traits mediate those
effects. We test these ideas by utilizing hundreds of thousands of
compiled mammal body size records from natural history col-
lections and field censuses, spanning 80 years and over 100 North
American species.

Despite nearly two centuries of work examining the links
between climate and body size, we found that both human
population density (a proxy for urbanization) and temperature
are important predictors of mammalian body size variation.
Finding weak support for interspecific Bergmann’s Rule, Gohli
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Table 1 Fixed effect coefficients for the top body mass and head-body length phylogenetic generalized linear mixed models

(PGLMMs).

Term

Body mass

Head-body length

(Intercept)

MAT

MAP

season:spring
Season:summer
Season:winter

Sex:male

Population density
Hibernation:hibernator
Hibernation:none

Habitat buffering:none
Habitat buffering:obligate
Activity time:diurnal
Activity time:nocturnal
Small/large body size:small

MAT x small/large body size:small
Population densityxsmall/large body size:small

MAT x population density
MAT x hibernation:hibernator
MAT x hibernation:none
MAT x habitat buffering:none

MAT x habitat buffering:obligate
Population density x activity time:diurnal
Population density x diurnal/nocturnal:nocturnal

2.477 (2.107, 2.848)
—0.061 (—0.069, —0.054)
—0.001 (—0.002, —0.001)

0.025 (0.024, 0.027)

0.013 (0.012, 0.014)
—0.007 (-0.009, —0.005)

0.002 (0.002, 0.003)

0.008 (0.006, 0.009)

0.302 (-0.002, 0.605)

0.539 (0.169, 0.908)

0.013 (—0.220, 0.246)

0.116 (—0.182, 0.415)

0.136 (—-0.119, 0.392)
—0.185 (-0.327, —0.044)
—1.157 (-1.383, —0.931)

0.024 (0.019, 0.030)

—0.003 (-0.003, —0.002)
0.008 (0.004, 0.011)
0.019 (0.017, 0.021)
0.026 (0.021, 0.030)
0.016 (0.012, 0.021)

—0.014 (-0.017, —0.012)

—0.002 (-0.003, —0.001)

2.317 (2.181, 2.452)
—0.018 (-0.021, —0.015)
—0.001 (-0.001, 0.000)

0.008 (0.007, 0.009)
0.002 (0.002, 0.003)
0.000 (-0.001, 0.001)

0.007 (0.005, 0.008)
0.033 (-0.072, 0.139)
0.164 (0.035, 0.293)
0.015 (—0.067, 0.097)
0.033 (-0.072, 0.138)
0.037 (—0.053, 0.128)
—0.067 (—0.118, —0.015)
—0.345 (—0.439, —0.251)
0.005 (0.003, 0.007)
—0.003 (—0.004, —0.002)

0.007 (0.005, 0.008)
0.009 (0.008, 0.010)
0.007 (0.005, 0.009)
0.003 (0.001, 0.005)
—0.006 (—0.007, —0.004)
—0.007 (—0.007, —0.006)

Bold indicates significant effects; coefficients where the 95% Bayesian credible interval (in parentheses) does not overlap zero.

and Voje® suggested that other variables, besides temperature
and latitude, are more important drivers of mammalian body
mass. However, few studies have tested broad-scale effects of
urbanization on body size across mammal species. Here, in all
cases, the main effect of increased urbanization was larger body
size, consistent with mammals benefiting from increased food
resources, higher calorie diets, ecological release (i.e., from pre-
dators and competitors), or all three!347-49 (but see?). We found
no clear evidence for urban heat island effects on body size. We
had considered that interactions between climate and urbaniza-
tion could mean that heat island effects might only be present in
the coldest areas. But here as well, we found the opposite—
mammals in urbanized, cold areas have larger, not smaller, body
masses than their rural counterparts, a result that likely speaks to
more available food in urban areas. While a few studies have
found support for urban heat island effects leading to reductions
in body size in ectotherms?!>1, there is currently no evidence of
mammals following this trend. The overall result across all
mammals examined is that head-body lengths are greater in
urban areas regardless of temperature. Our study does not
account for intra-urban variation in land use that can influence
heat island pockets (e.g.,>2); as such, finer-scale investigations of
the relationship between surface characteristics with temperature
and body size may more precisely demonstrate the role of heat
islands in impacting body size.

Our results suggest that one key outcome of urbanization is
provisioning of novel, reliable food resources. Yom-Tov>3 found a
similar result for carnivoran body size; increased body size was
related to increased anthropogenic food sources and not tem-
perature. In addition to increased food, cities provide reliable
water resources and shelter by use of built structures, which
might decrease energetic costs and enhance growth rate and body
condition®*, Based on our results, the one exception to this pat-
tern is that body mass was nearly equivalent among levels of
urbanization in the warmest areas. It is possible that a

temperature threshold exists above which increased body size
becomes less energetically advantageous (regardless of available
food). This pattern may also emerge if constant food availability
permits survival in milder winters where fat reserves are less
critical, potentially also aiding quicker locomotor movements to
escape predation or reductions in foraging time>>~>8. Future
studies quantifying food availability between spatially distinct
regions are warranted as some mammals appear to be adapting to
novel food resources in urbanized areas®®. In addition, as agri-
cultural or other non-urbanized areas can also reliably provide
substantial food resources to mammals®, future work should
examine variation in body size across different land use classes.

We acknowledge that several mammal species may be urba-
nophobic or unable to exploit resources provided in urban areas.
Our strict filtering criteria limited analyses to abundant and well-
collected mammal species, but these species are likely to be
urbanophilic or urban-neutral given that many collections are
near human-populated areas. Thus, our combined results do not
necessarily apply to all North American mammal species, and it is
known that the percentage of urbanized area plays a role in
determining which species occupy those areas®0. Ultimately, life
history strategies, as well as morphological traits, facilitate the
ability to occupy urban environments, and filter out species
lacking suitable characteristics®!~3, Thus, species inhabiting the
most urbanized areas are likely those with suites of traits that
allow utilization of the novel resources in cities. Even so, Parsons
et al.% found no difference in species diversity or richness along
an urban-wildland gradient, and suggested mammals likely
adapted to developed areas over the last few decades. Further
studies investigating species occupancy across developed gra-
dients will help elucidate adaptive trait responses to human-
dominated landscapes.

Species traits directly related to thermoregulation and ener-
getics appear to play an integral role in mediating the effects of
climate and urbanization on body size, but not in the directions
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we predicted from theory. We predicted species that utilize
thermal buffering (habitat buffering or hibernation ability) would
show weaker responses of body size change in warmer regions as
these traits allow for avoidance of unfavorable climatic
conditions®. In contrast, we found species that use these beha-
viors are more sensitive to warmer temperatures than non-
thermally buffered species, and respond to warmer temperatures
with stronger decreases in body size. Thus, for species that
hibernate or undergo torpor, exposure to temperatures during the
active periods alone may still be a sufficiently strong selective
pressure. Further, species that experience torpor were the most
sensitive to variation in temperature. This sensitivity may be due
to differences in the circadian clock or metabolic rate in species
that use torpor compared to hibernators®®. For species that use
habitat buffering (facultatively or obligates), lack of sufficient

microhabitat heterogeneity due to extreme climates, clearcutting
of forests, or increases in forest fires can result in decreased
variation in ambient temperatures between exposed and buffered
areas and ultimately reduce the effectiveness of that behavior42:67,
Further work to better understand physiological tolerances of
species that use thermal buffering in relation to patterns of global
environmental gradients are necessary, as these relationships are
complex and likely involve multiway interactions between land-
scape change, climate change, and ecological traits#0-8,

Daily activity pattern represents another important trait for
adaptation to variable environments. Flexibility in activity times
appears to be advantageous in more urbanized areas. McCain and
King®® found mammals that can switch between diurnality and
nocturnality were least likely to respond negatively or respond at
all to climate change, and postulated this was due to the ability of
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these species to select climatic conditions that are suitable for
activities. Relative to mammals that are flexible in their activity
times, we found diurnal species decrease in body mass, but
increase in head-body length with increasing urbanization. An
elongated body form may represent a locomotory adaptation,
allowing diurnal mammals to exploit more shelters (e.g.,
burrows®). With increasing urbanization, nocturnal mammals
demonstrate a minimal decrease in head-body length, but
increase in mass similar to species that are active anytime.
Decreases in head-body length could be suggestive of an adaptive
response to avoid detection (i.e., crypsis®©), while increasing mass
is indicative of nocturnal mammals benefiting from increased
food resources in urban areas. The same idea may hold for species
that are able to selectively avoid human detection by being flexible
in activity times.

Finally, our results provide new insight into average body size
itself as a trait that can modulate responses to changing envir-
onments. In areas with warmer temperatures, we found larger
mammals decrease in size more than smaller mammals. This
result is in contrast to the meta-analysis of Ashton et al.8, who
found no difference between small or large mammals. However, a
reanalysis of that dataset demonstrated no general tendency for
small mammals to increase or decrease in size, while larger
mammals tended to display a Bergmann’s-like response’?, con-
sistent with our results. In another meta-analysis of 73 North
American mammal species, McCain and King?? found the largest
mammals examined were 27 times more likely to respond to
climate change compared to the smallest mammals. These pre-
vious studies are all limited in that they are meta-analyses (also
see’l), vary in statistical approach, and do not leverage the dense
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intraspecific sampling we achieved here. Our work draws strength
from the use of a single hierarchical modeling framework for
separate measures of body mass and head-body length and
reveals a robust signal of larger mammals being more sensitive to
variation in temperature, and conforming to Bergmann’s Rule.
Lastly, small or large size does not mediate variation in body mass
with increasing urbanization. However, we did find large and
small mammals increase in head-body length, but large mammals
increase to a greater extent in more urbanized areas. These results
do not lend support to the Island Rule, from which we would
expect body size homogenization with increasing urbanization2®.
Instead, increasing length (especially for larger species) may aid
movement across fragmented landscapes’?.

In this work, we have focused primarily on the utility of digital
biodiversity datasets such as natural history collections and eco-
logical monitoring efforts to examine spatial trends in mammal
body size. However, we recognize that temporal changes may also
be inherent given well-known climate and urbanization changes
over the timescale of our dataset. We explicitly fit a decadal
random term to control for this variation, but the constituent
datasets themselves are also temporally structured, complicating
issues with controlling for methodological issues3. One future
possibility is to add a spatially controlled time-series, which
would provide a strong basis for examining temporal trends
across multiple sites. In addition, finer-scale regional or
community-level ecological studies would provide a more
detailed understanding of the drivers of temporal changes’3.

Our understanding of how human-mediated pressures impact
mammalian body size has remained limited for decades, and is
often tied to simplistic ecogeographic “rules”, whose validity
continues to be called into question!?. Our data-intensive work
showcases the importance of incorporating other human dis-
turbances beyond climate variation, and also reflects how multi-
ple pressures interact with species traits to influence differences in
body size. Beyond the finding that urbanization has a strong
impact on body size, it is surprising that species with thermal
buffering traits are more sensitive to temperature. This has major
implications for conservation management of native species and
suggests that these species are under increasingly intense selection
not just for parameters such as phenology, but also morphological
traits like body size. Further collection and digitization of trait
data at the individual level remains essential for improved
understanding of macro-scale spatiotemporal patterns of body
size variation, especially given accelerating climate warming and
urbanization”4-76.

Methods

Data sources & aggregation. We obtained mammal body size data from three
repositories: VertNet”’, the National Ecological Observatory Network (NEON7$;
https://www.neonscience.org/), and the North American Census of Small Mam-
mals (NACSM”%-%7). Standard body mass and total body length measures were
extracted from the VertNet corpus following the approach of Guralnick et al.38.
NEON data were obtained using the neonUtilities R package®?, but only body mass
was used from NEON survey events because accurate length measures are difficult
to obtain on live, unanesthetized, mammals*®. We examined body mass variation
across sources and found no systematic biases of measures from NEON or other
sources. NACSM data were obtained via manual digitization from published
reports, and were extracted for a subset of species that had body size measurements
and which were also obtained from VertNet and NEON. We aggregated VertNet
data with corresponding species from NEON and NACSM and harmonized data
field names across the three sources. Any migratory species were removed as they
can experience a wide breadth of environmental conditions. Measures of head-
body length were then derived by subtracting tail length from total length for each
individual. As a preliminary step, we filtered the data to those species with a
minimum of 100 records for body mass or length.

Data filtering. Additional filtering included removal of records lacking; (1) latitude
and longitude; (2) sex, including those with ambiguous sex assignments (e.g.,
“female?”); (3) date information—we required month, day, and year for each

record. However, for some specimen records with missing locality, we first aimed
to manually georeference data when possible using the protocols of Chapman and
Wieczorek”, which uses a combination of Google Maps (https://www.google.com/
maps) and the MaNIS georeferencing calculator®® (http://manisnet.org/gci2.html).
Manual curation based on locality was also necessary in some instances. For
example, several records of Canis lupus came from zoos or sanctuaries; all zoo
records were removed by hand. We next created two additional fields from the
record dates, “season collected” and “decade”. Month of collection was used to bin
the records into spring (March-May), summer (June-August), fall (September-
November), and winter (December-February) seasons. In some species, tail length
is not reported due to very small or missing tails, and in those cases we relied on
total length. We also filtered juveniles from the dataset based on age assignments in
the Darwin Core field “lifeStage” (for VertNet) or based on body size measure-
ments below a lower threshold for each individual species based on literature
searches and reputable online databases (see Supplemental Data 1). To remove any
additional erroneous data values (e.g., digitization errors), we used a 95%
dispersion-based threshold using the OutlierDetection R%? package®3. Taxonomy
was updated for all records to ensure scientific names were synonymous across data
sources.

Relationship between body mass and head-body length. We ran simple uni-
variate linear regressions where log;o head-body length predicts log;o body mass
for each species. Correlations were generally weak among species as indicated by
the vast majority of the fits with 2 < 0.5 (Supplemental Data 1). As such, we
compiled two body size datasets: body mass and head-body length which were used
as response variables in separate downstream models.

Population density and climate. As a proxy for urbanization intensity, we used
high-resolution (1 x 1km) decadal human population density data for the con-
terminous USA (years 1940-2010) from Fang and Jawitz?4. We selected human
population density over impervious land cover or Human Footprint Index’ as our
measure of urbanization because it more directly accounts for anthropogenic
effects (e.g., food waste) and encompasses the range of mammalian species col-
lection dates used in this study. Our work follows others, e.g., Li et al.?%%7, who
make similar arguments as to the value of human population density as a proxy for
urbanization. We annotated each record with human population density data by
first aggregating density data to a resolution of 10 x10 km and indexing this value
by decade collected and record locality. We chose coarser human population
density spatial resolution given uncertainties in georeferencing and in order to
provide a reasonably broad human population context. Historical climate data were
obtained from the PRISM Climate Group®® at 4 km resolution for both historical
and contemporary body size observations. We extracted mean annual temperature
(MAT) and mean annual precipitation (MAP) from PRISM based on observation
year and geocoordinates.

Spatial regions. To control for habitat differences across our region of interest,
and to account for sample distribution (Fig. 1, S1), we included ecoregional
membership as a random effect in each model. We used the United States
Environmental Protection Agency (EPA) Level 1 ecoregions (https://www.epa.gov/
eco-research/ecoregions), but further divided three ecoregions given the large cli-
mate and latitudinal range. We split the ‘Great Plains’, ‘Northwestern Forested
Mountains’, and ‘North American Deserts’ ecoregions at 42 degrees latitude and
renamed the ecoregions: ‘Northern and Southern Great Plains’, ‘Northern and
Southern Cordilleras’, and ‘Northern and Southern Desserts’, respectively (Fig. 1).

Phylogeny and mammal traits. We obtained a global mammal consensus phy-
logeny from Upham et al.%® (http://vertlife.org/data/mammals/) and pruned the
tree to match the species present in the two datasets (body mass, n = 101; head-
body length, n=99). We also compiled ecological traits for the final species sets
that likely influence body size response to environmental variation (Fig. S2, Sup-
plemental Data 1). These traits include hibernation ability (hibernation, torpor, or
neither), habitat buffering ability (obligate, facultative, or neither), daily activity
pattern (diurnal, nocturnal, or both), and average body size binned into small
(<500 g; <200 mm) and large (>500 g; >200 mm) categories (Fig. S2, sources pro-
vided in Supplemental Data 1). Sensitivity analyses of mean average body size
binned differently (e.g., ranging 450-550 g, 150-250 mm) yielded the same model
results. Additional detail and supporting references for species trait classifications
can be found in the supplementary materials (Supplemental Methods, Fig. S2,
Supplemental Data 1).

Statistics and reproducibility. To examine drivers of mammalian body size
variation, we initially used linear mixed-effects models (LMM), using the R package
Ime4'%0. We log;, transformed measures of body mass and head-body length as
mammal body size ranges vary by orders of magnitude!®l. In addition, we log;,
transformed human population density and log transformed MAP to normalize
data. We mean-centered and standardized all continuous predictors to have
standard deviations of 1, except decade, which we treated as a numeric variable that
starts at zero. No continuous model predictors were highly correlated (Fig. S3, S4).
All models were run separately for body mass and head-body length.
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We ran a set of global models that included fixed effects of MAT, MAP, sex,
season collected (spring, summer, fall, and winter), human population density, and
the traits listed above (‘Mammal traits’). Inclusion of traits as fixed effects allowed
us to directly model their impact on size across the mammalian body size
spectrum!02, as well as how these traits interact with climate and urbanization.
Specifically, we examined the interactions of MAT x human population density,
MAT x hibernation ability, MAT x habitat buffering, MAT x small/large mammals,
population density x activity time, and population density x small/large mammals.
We included three random intercepts of ecoregion, decade, and species. The decade
random effect was added to our models to account for temporal autocorrelation.
We also ran models without the decade random effects, and models with
temperature and precipitation averaged over two years and five years. Results were
consistent across models with these various combinations of annual temperature
averages (data not shown).

After running each global model, we used backward stepwise selection with the
step function in the R package ImerTest!?3 to find the best-fit model. We checked
residuals of the final models, with binary ecological traits of hibernation and
habitat buffering and minus the random effect of decade (due to matrix
complexity), and found no evidence of spatial autocorrelation (Fig. S5). In addition,
we checked model variance inflation factors of predictors to ensure there was no
multicollinearity. Marginal and conditional R2s were obtained for the best-fit
models using the R package MuMIn!%4,

To account for potential effects of evolutionary history in these models, we re-
ran the best-fit body mass and head-body length models using phylogenetic
generalized linear mixed models (PGLMMs) using the R package phyrl05. We used
the pruned global mammal consensus phylogeny®?, described above, to fit the body
mass and head-body length PGLMMs using a Bayesian framework. PGLMM and
LMM results were largely concordant (Table 1, S1), but differed slightly. We
present the PGLMM results in the main text and LMM model results in the
Supplemental Material (Table S1). We measured the goodness of fit for the top
body mass and head-body length PGLMM:s using the R package rr2106,

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data used in this study are available at Github (https://github.com/mhantak/
Mammal_spatial).

Code availability
Code used in this study are available at Github (https://github.com/mhantak/
Mammal_spatial).
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