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The enzyme turnover number (kcat), which defines the maxi-
mum chemical conversion rate of a reaction, is a critical 
parameter for understanding the metabolism, proteome 

allocation, growth and physiology of a certain organism1–3. There 
are large collections of kcat values available in the enzyme databases 
BRENDA4 and SABIO-RK5, which are, however, still sparse com-
pared to the variety of existing organisms and metabolic enzymes, 
largely due to the lack of high-throughput methods for kcat mea-
surement. Additionally, experimentally measured kcat values have 
considerable variability due to varying assay conditions such as pH, 
cofactor availability and experimental methods6. Altogether, the 
sparse collection and considerable noise limit the use of kcat data for 
global analysis and may mask enzyme evolution trends.

In particular, enzyme-constrained genome-scale metabolic 
models (ecGEMs), where the whole-cell metabolic network is con-
strained by enzyme catalytic capacities and thereby able to accu-
rately simulate the maximum growth abilities, metabolic shifts and 
proteome allocations, rely heavily on genome-scale kcat values2,7. 
Over the past decade, ecGEMs (or models following the concept 
of enzyme constraints) have been separately developed for several 
well-studied organisms7 including Escherichia coli8,9, Saccharomyces 
cerevisiae2,10, Chinese hamster ovary cells11 and Homo sapiens12. Due 
to the limitations of kcat measurements13 and the reliance on enzyme 
commission (EC) number annotations to search for kcat values in 
those developed pipelines2,8,10, the reconstruction of ecGEMs for 
lesser-studied organisms or large-scale reconstruction for multiple 
organisms has remained a challenge7,14. Moreover, even for those 
well-studied organisms, the kcat coverage is far from complete13,15,16. 
In a S. cerevisiae ecGEM, only 5% of all enzymatic reactions have 
fully matched kcat values in BRENDA2. When data are missing, pre-
vious ecGEM reconstruction pipelines typically assume kcat values 
from similar substrates, reactions or other organisms, which can 

result in model predictions deviating from experimental observa-
tions7. There is a clear requirement for obtaining large-scale kcat val-
ues to improve model accuracy and yield more reliable phenotype 
simulations17.

Deep learning has been applied and shown great performance 
in modelling chemical spaces18, gene expression19, enzyme-related 
parameters such as enzyme affinity20 and EC numbers21. Previously, 
Heckmann and colleagues employed machine learning approaches 
to predict E. coli kcat values based on features such as average meta-
bolic fluxes and catalytic sites obtained from protein structures16. 
However, such features are typically hard to obtain, which allows the 
application of this approach only to the most well-studied organ-
isms such as E. coli.

To this end, we developed a deep learning approach (DLKcat) 
that uses substrate structures and protein sequences as inputs, and 
demonstrated its capability for the large-scale prediction of kcat val-
ues for various organisms, as well as for identifying key amino acid 
residues that affect these predictions. We showcased the predic-
tive power of the deep learning model by predicting genome-scale 
kcat profiles for 343 yeast/fungi species, accounting for more than 
300,000 enzymes and 3,000 substrates. The predicted kcat profiles 
enabled reconstruction of 343 ecGEMs for the yeast/fungi species 
through an automatic Bayesian-based pipeline, which can accu-
rately simulate growth phenotypes among yeast species and identify 
the phenotype-related key enzymes.

Results
Construction of a deep learning approach for kcat prediction. 
The deep learning approach DLKcat was developed by combin-
ing a graph neural network (GNN) for substrates and a convolu-
tional neural network (CNN) for proteins (Fig. 1). Substrates were 
represented as molecular graphs converted from the simplified 
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molecular-input line-entry system (SMILES), and protein sequences 
were split into overlapping n-gram amino acids (the string of con-
tiguous sequences consisting of n items). We generated a compre-
hensive dataset from the BRENDA4 and SABIO-RK5 databases to 
train the neural network. Incomplete database entries with miss-
ing information and redundant entries were filtered out to ensure 
a dataset of unique entries with substrate name, substrate SMILES 
information, EC number, protein sequence, organism name and 
kcat value. The final dataset contained 16,838 unique entries cata-
lysed by 7,822 unique protein sequences from 851 organisms and 
converting 2,672 unique substrates (Supplementary Figs. 1 and 2). 
This dataset was randomly split into training, validation and test 
datasets by 80%, 10% and 10%, respectively, while five times of ran-
dom splitting indicated the robustness of the deep learning model 
(Supplementary Fig. 3).

Deep learning model performance for kcat prediction. The effects 
of hyperparameters on deep learning performance were evaluated 
by learning curves (Supplementary Fig. 4). With the selected optimal 
parameters (r-radius substrate subgraphs, in which r is the number 
of hops from a vertex of substrate structure, 2; n-gram amino acids, 
3; vector dimensionality, 20; time steps in GNN, 3; number of layers 
in CNN, 3), the deep learning model was trained. The root mean 
square error (r.m.s.e.) of kcat predictions gradually decreased with 

increasing epoch (Fig. 2a), where one epoch is one iteration of the 
dataset passing through the neural network. A final deep learning 
model trained and stored for further use had a r.m.s.e. of 1.06 for 
the test dataset, signifying that predicted and measured kcat values 
were overall within one order of magnitude (Fig. 2a). A high predic-
tive accuracy could be observed on both the whole dataset (training, 
validation and test datasets) (Fig. 2b; Pearson’s r = 0.88) and the test 
dataset (Supplementary Fig. 5a; Pearson’s r = 0.71; Supplementary 
Fig. 5b for test dataset where at least either the substrate or enzyme 
was not present in the training dataset; Pearson’s r = 0.70). The pre-
dicted kcat values were categorized according to the metabolic con-
text of the enzymes (Supplementary Table 1), and enzymes involved 
in primary central and energy metabolism yielded significantly 
higher kcat values than enzymes involved in intermediary and sec-
ondary metabolism (Supplementary Fig. 5c), in agreement with 
previous observations6.

The deep learning model was able to show enzyme promiscu-
ity. Understanding enzyme promiscuity and the related under-
ground metabolism is a key topic in evolutionary biology22,23. 
DLKcat-predicted kcat values (Fig. 2c) were higher for preferred 
substrates (median kcat = 11.07 s–1) compared to alternative sub-
strates (median kcat = 6.01 s–1; P = 1.3 × 10–12) and random substrates 
(median kcat = 3.51 s–1; P = 9.3 × 10–6) for promiscuous enzymes in 
the whole dataset, while the same trend was identified in the test 
dataset (Supplementary Fig. 5d; P < 0.05). The concept of native 
and underground metabolism24 could be exemplified with the rich 
experimental kcat data that are available for human aldo–keto reduc-
tase and 61 substrates, where DLKcat could differentiate (Fig. 2d;  
P = 0.0039) between native (top 10% experimental kcat values, 
median = 2.22 s–1) and underground (last 10%, median = 0.04 s–1) 
substrates.

Prediction and interpretation of kcat of mutated enzymes. Beyond 
good overall performance (Fig. 2b), DLKcat was able to capture 
the effects of amino acid substitutions on the kcat values of indi-
vidual enzymes. The annotated dataset was divided into wild-type 
enzymes and mutated enzymes with amino acid substitutions. As 
the median kcat of mutant enzymes was lower than that of wild-type 
enzymes (Supplementary Fig. 6a), the deep learning model was a 
good kcat predictor for both wild-type enzymes (Fig. 3a for the whole 
dataset; Pearson’s r = 0.87; Supplementary Fig. 6b for the test data-
set; Pearson’s r = 0.65) and mutated enzymes (Fig. 3b for the whole 
dataset; Pearson’s r = 0.90; Supplementary Fig. 6c for the test data-
set; Pearson’s r = 0.78). Several well-studied enzyme–substrate pairs 
were collected from the literature, where each pair had kcat values 
reported for at least 25 unique single or multiple amino acid substi-
tutions (Supplementary Table 2). The predicted and experimentally 
measured kcat values correlated very well (Pearson’s r = 0.94; Fig. 3c). 
The experimentally measured kcat values were further grouped as 
within a 0.5-fold to 2.0-fold change of wild-type kcat (‘wild-type-like 
kcat’) or less than a 0.5-fold change of wild-type kcat (‘decreased kcat’). 
The scarcity of mutated enzymes with kcat values over twofold of the 
wild-type kcat values precluded defining the ‘increased kcat’ group25,26. 
DLKcat was able to capture the effects of small changes in protein 
sequences on the activities of individual enzymes, as the decreased 
kcat group contained significantly lower predicted kcat values com-
pared to the wild-type-like kcat group, for all enzyme–substrate pairs 
(Fig. 3d).

To investigate which amino acid residues dominate enzyme activ-
ity, we applied a neural attention mechanism to back-trace impor-
tant signals from the neural network output towards its input27. 
This approach assigns attention weights to each amino acid residue, 
quantitatively describing its importance for the predicted enzyme 
activity. Attention weights were calculated for the wild-type H. sapi-
ens purine nucleoside phosphorylase (PNP) with inosine as sub-
strate, as rich mutation data are available for this enzyme–substrate  
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pair28 (Fig. 3e and Supplementary Table 3). Situating the mutations 
from the wild-type-like kcat and decreased kcat groups (Fig. 3e) to the 
wild-type PNP sequence exhibited that residues that were mutated 
in the decreased kcat group had significantly higher attention weights 
(Fig. 3f; P = 0.0014; Supplementary Table 4). The calculation of 
attention weights from the deep learning model can thereby iden-
tify amino acid residues whose mutation would likely have a more 
substantial effect on enzyme activity.

The kcat prediction for 343 yeast/fungi species. We previously 
reconstructed GEMs for 332 yeast species plus 11 out-group fungi, 
but only expanded 14 of them to ecGEMs using the original pipe-
line10 due to the limited available kcat data14. As DLKcat allows pre-
diction of almost all kcat values for metabolic enzymes against any 
substrates for any species, this enabled the generation of ecGEMs 
for all 343 yeast/fungi species, predicting kcat values for around 
three million enzyme–substrate pairs (Supplementary Fig. 7). Yeast 
and fungal specialist enzymes (with narrow substrate specific-
ity) had higher kcat values compared with generalist (that is, pro-
miscuous) enzymes that catalyse more than one reaction in the 
model (Supplementary Fig. 8a). This is aligned with the hypoth-
esis that ancestral enzymes with broad substrate specificity and low 
catalytic efficiency improve their kcat value when they evolve into 
specialists through mutation, gene duplication or horizontal gene 
transfer29. Sequence conservation also trended with predicted kcat 
values, where the ratio of non-synonymous over synonymous sub-
stitutions (dN/dS) is commonly used to detect proteins undergoing 
adaptation30. Conserved enzymes with lower dN/dS have signifi-
cantly higher kcat values compared with relatively lesser conserved 
enzymes (with high dN/dS), implying that conserved yeast/fungi 
enzymes under evolutionary pressure are adapted to have higher kcat 
values (Supplementary Fig. 8b).

Bayesian approach for 343 ecGEM reconstructions. Using the 
predicted kcat values for 343 yeast/fungi species, we generated 
343 ‘DL-ecGEMs’ (ecGEMs parameterized with kcat values from 
DLKcat). The training data for the deep learning model were pri-
marily measured in vitro, which implies that DLKcat also predicts 

in vitro kcat values, which is undesired as in vitro kcat values can be 
considerably different from in vivo31. To resolve these uncertain-
ties, we adopted a Bayesian genome-scale modelling approach32. 
Here, we used predicted kcat values as mean values for prior distri-
butions and experimentally measured phenotypes to update these 
to obtain posterior kcat distributions. For this, experimental growth 
data on yeast/fungi species were collected, collating 371 entries 
for 53 species with 16 carbon sources (Supplementary Table 5 and 
Supplementary Fig. 9). A sequential Monte-Carlo-based approxi-
mate Bayesian computation (SMC-ABC) approach32 was imple-
mented to sample the kcat values, after validating its generality with 
the ecGEM of S. cerevisiae, which had the most abundant experi-
mental data (Supplementary Fig. 10). The ecGEMs parameterized 
with the mean values of sampled posterior kcat values are hereafter 
represented as posterior-mean-DL-ecGEMs.

The Bayesian learning processes for S. cerevisiae and non- 
conventional yeast Yarrowia lipolytica are shown as examples (Fig. 4 
and Supplementary Fig. 11). We calculated r.m.s.e. values between 
measurements and predictions for batch and chemostat growth of 
S. cerevisiae and Y. lipolytica under different carbon sources. After 
several generations, the ecGEMs parameterized with sampled pos-
terior kcat values achieved a r.m.s.e. lower than one (Fig. 4a and 
Supplementary Fig. 11a), which showed they could accurately 
describe the experimental observations. For instance, the S. cerevisiae  
ecGEM captured the metabolic shift at increasing growth rate 
(Fig. 4b)—known as the Crabtree effect33—while Y. lipolytica 
respired at its maximum growth rate (Supplementary Fig. 11b). 
Principal component analysis for all generated kcat sets (9,800 sets 
for S. cerevisiae and 4,900 sets for Y. lipolytica) showed a gradual 
move from the prior distribution to the distinct posterior distri-
bution (Fig. 4c and Supplementary Fig. 11c). The Bayesian learn-
ing process affected more variance than mean predicted kcat values 
(Fig. 4d,e). For S. cerevisiae, 1,057 enzyme–substrate pairs reduced 
their kcat variance (Šidák-adjusted one-tailed F-test, P < 0.01), while 
only 532 pairs changed their mean predicted kcat (Šidák-adjusted 
Welch’s t-test, P < 0.01), which were randomly distributed across 
metabolic subsystems (Supplementary Table 6; two-sided Fisher’s 
exact test, P > 0.25). For Y. lipolytica, the values were 1,224 and 646 
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(Supplementary Fig. 11d,e). Consequentially, the sampled posterior 
kcat values had a strong correlation with the deep learning-predicted 
kcat values (Pearson’s r = 0.86 for S. cerevisiae; Fig. 4f; Pearson’s 
r = 0.83 for Y. lipolytica; Supplementary Fig. 11f).

Deep learning and Bayesian approaches improve ecGEM quality. 
We subsequently generated posterior-mean-ecGEMs from corre-
sponding DL-ecGEMs for all the 343 yeast/fungi species. For com-
parison, we also built ‘original-ecGEMs’ for the same species with a 
kcat parameterization strategy that assigns measured kcat values from 
BRENDA4 and SABIO-RK5 to enzyme/reaction pairs as was done in 
previous pipelines2,8. We were able to reconstruct original-ecGEMs 
for all 343 yeast/fungi species only after assuming that orthologs 
across yeast species had the same EC number annotation as in S. 
cerevisiae. In case of missing data, certain flexibility was introduced 
by matching the kcat value to other substrates or organisms, or even 
introducing wild cards in the EC number. The original-ecGEMs 
yielded kcat values for ~40% of enzymes and generated enzy-
matic constraints for ~60% of enzyme-annotated reactions, while 
DL-ecGEMs and their derived posterior-mean-ecGEMs covered kcat 
values for ~80% of enzymes and defined enzymatic constraints for 
~90% of enzymatic reactions (Fig. 5a,b for 343 yeast/fungi species; 
Supplementary Fig. 12a,b for S. cerevisiae). While original-ecGEMs 
had fewer assigned kcat values, their reconstruction pipeline also 
relied heavily on correct enzyme EC number annotations and avail-
able measured kcat values in the databases, contrasting with the 
DL-ecGEM reconstruction, which relied only on protein sequences 
and substrate SMILES information while resulting in a higher cov-
erage. In DL-ecGEMs and posterior-mean-ecGEMs the only miss-
ing kcat values were for generic substrates without defined SMILES 
information (such as generic compounds phosphatidate and 
thioredoxin).

Besides the improved kcat coverage, the posterior-mean-ecGEMs 
and DL-ecGEMs also outperformed original-ecGEMs in the pre-
diction of exchange rates (Fig. 5c for 53 species with reported phe-
notype; Supplementary Fig. 12c for S. cerevisiae) and maximum 
growth rates under various carbon sources and oxygen availabilities  
(Fig. 5d and Supplementary Fig. 13 for 53 species with reported 
growth phenotype; Supplementary Fig. 12d for S. cerevisiae). 
Moreover, we used these three types of ecGEMs to predict required 
protein abundances and compared this with published quantitative 
proteomics data from four species with different carbon sources, cul-
ture modes and medium set-ups (Supplementary Table 7). Proteome 
predictions from DL-ecGEMs and posterior-mean-ecGEMs had 
the lowest r.m.s.e. values, while DL-ecGEMs had already reduced 
the r.m.s.e. by 30% when compared to original-ecGEMs (Fig. 5e 
for four species with absolute proteome data). Combined, the cur-
rent pipeline not only increases kcat coverage but also contributes to 
ecGEMs better representing the 343 fungi/yeast species.

The kcat comparison identifies phenotype-related enzymes. The 
predicted kcat values were furthermore able to distinguish between 
Crabtree positive and negative yeast species. There is much interest 
in understanding the presence of the Crabtree phenotype among 
yeast species34,35, and a model of S. cerevisiae energy metabolism 
has previously been used to interpret this phenotype by compar-
ing protein efficiency (that is, ATP produced per protein mass per 
time) in its two energy-producing pathways1. It was postulated 
that the Crabtree effect is related to the high-yield (HY) pathway 
(containing the Embden–Meyerhof–Parnas pathway, the tricarbox-
ylic acid (TCA) cycle and the electron transport chain), having a 
lower protein efficiency than the low-yield (LY) pathway (contain-
ing Embden–Meyerhof–Parnas plus ethanol formation; Fig. 6a)1.  
We here used the posterior-mean-ecGEMs of 102 yeast species with 
experimental reported Crabtree phenotype (25 positive; 77 nega-
tive) to similarly calculate the protein efficiencies of the HY and LY 
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interquartile range beyond the box range.
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pathways. Of the 102 species, 89% followed the trend that Crabtree 
positive species have a higher LY efficiency, suggesting that Crabtree 
positive yeasts’ LY pathways are more protein efficient than their HY 
pathways for producing the same amount of ATP (Supplementary 
Table 8). For five commonly studied species, the results are shown 
in Fig. 6b, and even though ATP yields in their HY pathways may 
vary across species, primarily due to the presence of respiratory 
complex I, they still followed the same trend (Supplementary Table 
8). Inconsistencies in strains where the HY/LY protein efficiency 
ratio did not trend with the Crabtree effect might be due to addi-
tional regulation not considered in ecGEMs36.

With the predicted kcat profiles for yeast species, we could inves-
tigate whether key enzymes show different kcat values among 25 
Crabtree positive and 77 negative species. Of the enzymes in the 
energy-producing pathways, only pyruvate kinase, citrate synthase, 
fumarase and phosphoglucose isomerase had significantly differ-
ent kcat values (Fig. 6c). Since fumarase and phosphoglucose isom-
erase can operate in reversible directions, it is unclear how the kcat 
difference relates to the Crabtree effect. The kcat values of pyruvate 
kinase were higher in Crabtree positive species (P = 0.006; Fig. 6c). 
This aligns with the fact that increasing pyruvate kinase activity in 
the Crabtree positive Schizosaccharomyces pombe increases its fer-
mentation ratio, decreases the growth dependence on respiration 
and provides resistance to growth-inhibiting effects of antimycin 
A, which inhibits respiratory complex III (ref. 37). Citrate synthase 
catalyses the first and rate-limiting step of the TCA cycle38, condens-
ing acetyl-coenzyme A and oxaloacetate to citrate. The kcat values of 
citrate synthase of Crabtree negative species are higher (P = 0.008), 
which would benefit metabolic flux from entering the TCA cycle 

(Fig. 6a,c). This is consistent with 13C-metabolic flux analysis that 
showed that Crabtree negative species have higher TCA flux39,40.

Discussion
The diversity of biochemical reactions and organisms makes it dif-
ficult to generate genome-scale kcat profiles. Here we presented the 
deep learning approach DLKcat to predict kcat values of all meta-
bolic enzymes against their substrates, requiring only the substrate 
SMILES information and protein sequences of the enzymes as 
input, yielding a versatile kcat prediction tool for any species.

DLKcat can capture kcat changes towards precise single amino 
acid substitutions, enabling attention weight calculations that 
identify the amino acid residues majorly impacting enzyme activ-
ity. Amino acid substitution is a powerful technique in the enzyme 
evolution field and routinely used to probe enzyme catalytic mech-
anisms41,42. Particularly, most substitution experiments perform 
mutagenesis in the substrate binding site region, since it is hypoth-
esized that the binding region would have a high impact towards 
catalytic activity. However, it has been reported that remote regions 
can have a profound impact on catalytic activity43,44. Here, we identi-
fied not only high attention weights for amino acid residues in the 
inosine binding region of human PNP enzyme, but also various 
non-binding residue sites with high attention weights, suggesting 
that those residues may also majorly impact catalytic activity and 
deserve further validation. DLKcat can thereby serve as a valuable 
part of the protein engineering toolbox45,46.

Predicted genome-scale kcat profiles can facilitate the recon-
struction of enzyme-constrained models of metabolism, from both 
curated and automatically generated basic (non-ec) GEMs. The 
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prior datasets; in red are 100 sampled posterior datasets; in grey are all other intermediate datasets. PC, principal component. d, The number of enzymes 
with a significantly changed mean value (Šidák-adjusted Welch’s t-test, P < 0.01, two-sided) and variance (Šidák-adjusted one-tailed F-test, P < 0.01) 
between the sampled prior and posterior kcat datasets. Parameters from 126 prior and 100 posterior ecGEMs were used for statistical tests. e, Variance 
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deep learning-predicted kcat process proved to be a more compre-
hensive but still practical alternative to matching in vitro kcat values 
from the BRENDA4 and SABIO-RK5 databases, as is common in 
original-ecGEM reconstruction pipelines such as the GECKO and 
MOMENT2,8,47. By not depending on EC number annotation, DLKcat 
is furthermore able to predict isozyme-specific kcat values, while the 
use of SMILES (matching via the PubChem48 or MetaNetX49 data-
bases) avoids the issues of ununified substrate naming between the 
GEM and BRENDA that original-ecGEM reconstruction pipelines 

can experience. The DL-ecGEMs can subsequently be adjusted to 
existing experimental growth data through a Bayesian approach 
that yields posterior-mean-ecGEMs with physiologically relevant 
solution spaces. Combined, the current DLKcat-based pipeline 
is therefore applicable to ecGEM reconstruction for virtually any 
organism for which a protein sequence FASTA file and a basic GEM 
is available. Our pipeline hereby improves applicability, and it even 
improves the number of reactions with enzymatic constraints in 
comparison with original-ecGEMs that have previously been constr
ucted2,8–12,50.

Even though the DLKcat-based pipeline yields ecGEMs with 
superior performance over original-ecGEMs, various challenges 
remain. For example, while our deep learning model can distin-
guish alternative from randomly chosen substrates for promiscuous 
enzymes (Fig. 2c), it still predicts a level of kinetic activity towards 
random substrates that is likely too high. This behaviour can be 
explained by the limited availability of negative data: cases where an 
enzyme–substrate pair did not result in catalysis. Increased report-
ing of negative datasets, where non-detected activity for enzyme–
substrate pairs are reported and collected by enzyme databases, 
could enhance future deep learning models in terms of defining 
true negatives46. In addition, DLKcat did not consider the effect of 
environmental factors such as pH and temperature, but combining 
DLKcat with other emerging machine learning tools, such as for 
enzyme optimal temperature prediction, would enable future inves-
tigation on the impact of environmental parameters on enzyme 
activities32.

Another challenge relates to reactions involving multiple sub-
strates and those catalysed by heteromeric enzyme complexes. 
The multiple substrate SMILES and protein sequences that can be 
defined for such reactions can all function with DLKcat, thereby 
yielding multiple predicted kcat values for one reaction. We cur-
rently select the maximum kcat values in those cases, but it would be 
favourable to devise an approach that can predict one kcat value for 
each multi-substrate and/or heteromeric enzyme.

In addition, DLKcat-derived DL-ecGEMs and posterior-mean- 
ecGEMs inherit limitations from basic (non-ec) GEMs, where 
the steady-state assumption that is central to constraint-based 
modelling allows one to determine metabolic fluxes but does not 
readily consider regulatory behaviours. While ecGEMs drasti-
cally reduce the solution space of constraint-based models to 
cellular feasible capacities, kcat is not the only kinetic parameter 
that determines reaction rate, as for example, affinity constants 
play influential roles. However, as constraint-based models can-
not predict internal metabolite concentrations, it is currently not 
feasible to readily consider the influence of those parameters. 
Nonetheless, kcat values are also important parameters in other 
resource allocation models such as proteome-constrained GEMs51–53  
and metabolism/macromolecular-expression models7,54,55. Despite 
improved predictions and more applications, how to define kcat val-
ues has also remained a challenge in the reconstruction of those 
models. Such resource allocation models and ecGEMs share the 
assertion that cells need to allocate their limited proteome to dif-
ferent pathways to achieve faster growth or better fitness, while the 
proteome cost for each reaction is similarly defined by the flux and 
the kinetic rate of the enzyme. Deep learning-predicted kcat val-
ues for the metabolic parts of those models can therefore improve 
their quality and performance, although other challenging kinetic 
parameters, for example, ribosomal catalytic rates, to be determined 
in those model formulations cannot be obtained from DLKcat. In 
addition, model formulations that particularly focus on describing 
enzyme kinetics56 could benefit from deep learning-predicted kcat 
values, so that our DLKcat approach can find a broad application in 
the modelling field.

In conclusion, we showed that DLKcat yields realistic kcat values 
that can be used to direct future genetic engineering, understand 
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enzyme evolution and reconstruct ecGEMs to predict metabolic 
fluxes and phenotypes. Besides that, we envision many other pos-
sible uses of this deep learning-based kcat prediction tool, such as 
a tool in genome mining and Genome-Wide Association Studies 
analysis. The developed automatic Bayesian ecGEM reconstruction 
pipeline will be instrumental for further use in ecGEM reconstruc-
tion, for omics data incorporation and analysis.

Methods
Dataset preparation for deep learning model development. The dataset used 
for deep learning model construction was extracted from the BRENDA4 and 
SABIO-RK databases5 on 10 July 2020 by customized scripts via application 
programming interface. We generated a comprehensive dataset including the 
substrate name, organism information, EC number, protein identifier (UniProt 
ID), enzyme type and kcat values. As the overall majority of kcat values reported 
in BRENDA and SABIO-RK do not specify their assay conditions, such as pH 
and temperature, we decided not to include the features in order to maintain the 
training dataset size and variety. In addition, substrate SMILES, a string notation 
to represent the substrate structure, was extracted using substrate name to query 
the PubChem compound database48, which is the largest database of chemical 
compound information and is easy to access57. As different substrates usually 
have various synonyms in different databases and GEMs, we used a customized 
Python-based script to ensure that the same canonical SMILES information could 
be output for the same substrates with various synonyms, which is essential to 
help filter redundant entries obtained from different databases. Several rounds 
of data cleaning were performed to ensure quality (Supplementary Fig. 2). 
Protein sequences were queried with two methods: for entries with UniProt ID 
information, the amino acid sequences could be obtained via the application 
programming interface of the UniProt58 with the help of Biopython v.1.78 (https://
biopython.org/); and for entries without UniProt ID, the amino acid sequences 
were acquired from the UniProt58 and the BRENDA4 databases based on their 
EC number and organism information. After that, the sequences of those entries 
with wild-type enzymes were mapped directly, and the sequences of those 
entries with mutated enzymes were changed according to the mutated sites. 
Finally, the remaining entries formed the high-quality dataset for deep learning 
model construction. Detailed numbers for the data cleaning can be found in 
Supplementary Fig. 2.

Construction of the deep learning pipeline. In this work, we developed an 
end-to-end learning approach for in vitro kcat value prediction by combining a GNN 
for substrates and a CNN for proteins. The integration of GNN and CNN can be 
naturally used to handle pairs of data with different structures, that is, molecular 
graphs and protein sequences. In this approach, substrates are represented as 
molecular graphs where the vertices are atoms and the edges are chemical bonds, 
while proteins are represented as sequences in which the characters are amino acids.

For substrates, there are just a few types of chemical atoms (for example, carbon 
and hydrogen) and chemical bonds (for example, single bond and double bond). 
To obtain more learning parameters, we employed r-radius subgraphs to get the 
vector representations, which are induced by the neighbouring vertices and edges 
within radius r from a vertex59. First, substrate SMILES information was converted 
to a molecular graph using RDKit v.2020.09.1 (https://www.rdkit.org). Given a 
substrate graph, the GNN can update each atom vector and its neighbouring atom 
vectors transformed by the neural network via a nonlinear function, for example, 
ReLU (ref. 60). In addition, two transitions were developed in the GNN, including 
vertex transitions and edge transitions. The aim of transitions is to ensure that the 
local information of vertices and edges is propagated in the graph by iterating the 
process and summing neighbouring embeddings. The final output of the GNN is a 
set of real-valued molecular vector representations for substrates.

Similarly, by using the CNN to scan protein sequences, we can obtain 
low-dimensional vector representations for protein sequences transformed by the 
neural network via a nonlinear function, for example, ReLU. To apply the CNN 
to proteins, we defined ‘words’ in protein sequence and split a protein sequence 
into an overlapping n-gram (n = 1, 2, 3) of amino acids61. In this work, to avoid 
low-frequency words in the learning representations, a relatively smaller n-gram 
number of 1, 2 or 3 was set. Then, we translated protein sequences into various 
word embeddings. Following this, the CNN used a filter function, shown in 
equation (1), to compute the hidden vectors from the input word embeddings 
and weight matrix. After that, we obtained a set of hidden vectors for these split 
subsequences based on n-gram amino acid splitting.

c
(t)

i = f(Wconvc(t−1)
i + bconv) (1)

where f is a nonlinear activation function (for example, ReLU); Wconv is the weight 
matrix and bconv is the bias vector; i and t are the serial numbers of a set of hidden 
vectors; and ci

(t) and ci
(t–1) are the hidden vectors for the protein sequence.

Also, other important parameters of the neural networks (CNN and GNN) 
were set as follows: number of convolutional layers in CNN, 2, 3 or 4; number of 
time steps in GNN, 2, 3 or 4; window size, 11 (fixed); r-radius, 0, 1 or 2; and vector 
dimensionality, 5, 10 or 20. These different settings were explored based on the 
coefficient of determination (R2) in equation (2) during the hyperparameter tuning 
to find which hyperparameter is better for improving the deep learning performance. 
The R2 was calculated by scikit-learn v.0.23.2 (https://scikit-learn.org/stable/). And 
finally, we used the optimal hyperparameters to train our deep learning model.

R2
= 1 −

∑n
i=1(yie − yip)2

∑n
i=1(yie − ȳ)2 (2)

where yip is the predicted kcat value, yie is the experimental kcat value, ȳ is the average 
of the experimental kcat values and n is the total number of items in the dataset 
(validation dataset or test dataset).

After the acquisition of the substrate molecular vector representations and the 
protein sequence vector representations, we concatenated them together along 
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with an output vector (kcat value) to train the deep learning model using the neural 
attention mechanism59. During the training process, all the datasets were shuffled 
at the first step, and then were randomly split into a training dataset, validation 
dataset and test dataset at the ratio of 80%:10%:10%. Given a set of substrate–
protein pairs and the kcat values in the training dataset, the aim of the training 
process is to minimize its loss function. The best model was chosen according 
to the minimal r.m.s.e., shown in equation (3), on the validation dataset with the 
least spread between the training dataset and validation dataset. For building and 
training models, the PyTorch v.1.4.0 software package was used and accessed using 
the Python package v.3.7.6 interface under CUDA/10.1.243. In addition, data 
processing was mainly implemented by NumPy v.1.20.2, SciPy v.1.5.2 and  
pandas v.1.1.3. Data visualization was implemented by Matplotlib v.3.3.2 and 
seaborn v.0.11.0.

r.m.s.e. =

√
√
√
√ 1

n

n∑

i=1
(yip − yie)2 (3)

where yip is the predicted kcat value, yie is the experimental kcat value and n is the total 
number of items in the dataset (validation dataset or test dataset).

Enzyme promiscuity analysis based on deep learning model. For enzyme 
promiscuity, we explored whether the deep learning model can identify substrate 
preference for promiscuous enzymes. For each promiscuous enzyme, we defined 
that the substrate with the highest kcat value was considered as the preferred 
substrate, while those with kcat values less than the maximum value were classified 
as alternative substrates. Random substrates were randomly chosen from the 
compound dataset in our training data, except for the documented substrates and 
products for the tested enzyme. By using the deep learning model, we further 
predicted and compared the kcat values for the preferred, alternative and random 
substrates on various promiscuous enzymes. In order to identify high-quality 
promiscuous enzymes, entries with an experimentally measured kcat value less than 
–2 (s–1) in a log10 scale were excluded in this analysis.

Validation of deep learning-based kcat values. According to the classification of 
metabolic pathways, metabolic contexts were mainly divided into four different 
subsystems: (1) primary metabolism (carbohydrate and energy), involving the 
main carbon and energy metabolism, for example, glycolysis/gluconeogenesis, 
TCA cycle, pentose phosphate pathway, and so on; (2) primary metabolism (amino 
acids, fatty acids and nucleotides); (3) intermediate metabolism, related to the 
biosynthesis and degradation of cellular components, such as coenzymes and 
cofactors; and (4) secondary metabolism6. To explore the metabolic subsystems for 
all of the wild-type enzymes in the experimental dataset, the module in the KEGG 
database62 was used to assign metabolic pathways for enzyme–substrate pairs by 
linking the detailed metabolic pathway in the KEGG application programming 
interface with the EC number annotated in each enzyme–substrate pair. Detailed 
classification can be found in Supplementary Table 1. Using the trained deep 
learning model, the predicted kcat values were generated for all the enzyme–
substrate pairs.

Interpretation of the reasoning of deep learning. To interpretate which 
subsequences or residue sites are more important for the substrate, the neural 
attention mechanism was employed by assigning attention weights to the 
subsequences27. A higher attention weight of one residue means that that residue 
is more important for the enzyme activity towards the specific substrate. Such 
attention weights were modelled based on the output of the neural network. The 
mathematical equations for the neural attention mechanism are shown as follows:

C =

{

c
(t)

1 , c(t)2 , c(t)3 , …, c(t)n

}

(4)

hsubstrate = f(Winterysubstrate + b) (5)

hi = f(Winterci + b) (6)

αi = σ
(
hTsubstratehi

)
(7)

where C is a set of hidden vectors for the protein sequence, c1
(t) to cn

(t) are the 
sub-hidden vectors for the split subsequences, ysubstrate is the substrate molecular 
vector, Winter and b are the weight matrix and the bias vector in the neural network, 
respectively, f is a nonlinear activation function (for example, ReLU), αi is the 
final attention weight value, σ is the element-wise sigmoid function, and T is the 
transpose function.

A defined protein could be split into overlapping n-gram amino acids and 
calculated as a set of hidden vectors in equation (4). Given a substrate molecular 
vector ysubstrate and a set of protein hidden vectors, the substrate embeddings 
(hsubstrate) and subsequence embeddings (hi) could be output based on the neural 

network, as shown in equations (5) and (6). By considering the embeddings of 
ysubstrate, the attention weight value for each subsequence was accessible in  
equation (7), which represents the importance signals of the protein subsequence 
towards the enzyme activity for a certain substrate.

Prediction of kcat values for 343 yeast/fungi species. The GEMs of 343 yeast/fungi 
species were automatically reconstructed in our previous paper14 from a yeast/
fungi ‘pan-GEM’, which was derived from the well-curated Yeast8 of S. cerevisiae 
combined with the pan-genome annotation. For each model, all reversible 
enzymatic reactions were split into forward and backward reactions. Reactions 
catalysed by isoenzymes were also split into multiple reactions with one enzyme 
complex for each reaction. Substrates were extracted from the model and mapped 
to the MetaNetX database to get SMILES information using annotated MetaNet 
identifiers (IDs) for metabolites49. Protein IDs for the enzymes were from the 
model grRules. Protein sequences were queried by the protein ID in the protein 
FASTA file for each species. Reaction IDs, substrate names, substrate SMILES 
information and protein IDs were combined as the input file for the deep learning 
kcat prediction model.

Analysis of kcat values and dN/dS for yeast/fungi species. In a previous study, 
the genomes of 343 yeast/fungi species combined with comprehensive genome 
annotations were publicly available63. The gene-level dN/dS of gene sequences for 
pairs of orthologous genes from the 343 species were calculated with yn00 from 
PAML v.4.7 (ref. 64). For this computational framework, the input is the single-copy 
ortholog groups, and the output is the gene-level dN/dS values extracted from the 
PAML output files. By mapping the predicted kcat values with the gene-level dN/dS 
values via the bridge of protein ID, a global analysis was performed between the kcat 
values and the dN/dS values for 343 yeast/fungi species across the out-group (11 
fungal species) together with 12 major clades divided by the genus-level phylogeny 
for 332 yeast species.

ecGEM reconstruction. Besides the constraints in basic (non-ec) GEM, shown in 
equations (8) and (9), ecGEMs are reconstructed by adding enzymatic constraints, 
shown in equations (10) and (11).

Subject to S × v = 0 (8)

in which S is the stoichiometry matrix and v is the flux vector. This equation is the 
representative of the steady-state assumption of the metabolic model to constrain 
the mass balance.

lbj ≤ vj ≤ ubj (9)

in which lb and ub are the lower bound and upper bound of the rate for the 
reaction j.

vj ≤ ki,jcat × [Ei] (10)

where vj stands for the metabolic flux (mmol gDW–1 h–1; gDW, gram dry weight) 
of the reaction j; [Ei] stands for the enzyme concentration for the enzyme i that 
catalyses reaction j; and ki,jcat is the catalytic turnover number for the enzyme 
catalysing reaction j. This constraint is applied to all enzymatic reactions with 
available kcat values. Additionally, we added reactions to draw protein mass from 
the total protein pool to each enzyme, therefore, a mass balance constraint was 
proposed as:

∑
[Ei] ≤ θ × total protein abundance (11)

where θ is the fraction of metabolic protein in the total protein content of the cell. 
This equation means that the sum enzyme usage should be lower or equal to the 
total metabolic protein abundance.

To compare the different kcat value assignment approaches, we built ecGEMs 
parameterized with three types of kcat values: original-ecGEMs, DL-ecGEMs and 
posterior-mean-ecGEMs.

Original-ecGEM reconstruction queried kcat values from the BRENDA 
database by matching the EC number, a method that relies heavily on the database 
EC number annotation for the specific species2,8. Since more than 200 out of 343 
yeast/fungi species are not annotated in UniProt58 and KEGG62, EC numbers for 
orthologs annotated in S. cerevisiae were borrowed to facilitate the original-ecGEM 
reconstruction process for all these 343 species. The kcat extraction process used the 
criteria from process 13 in the reconstruction methods of the reference47.

DL-ecGEM reconstruction extracted all kcat values from the deep learning 
predicted file. To assign a kcat value for each metabolic reaction, we followed these 
criteria: If the in vitro kcat measurement with matched substrate and enzyme 
was available, then the measured in vitro kcat values were used rather than the 
kcat prediction. This pipeline also accepted the user’s input for the kcat values. 
For enzymes with no kcat measurement, predicted kcat values were used after the 
following steps: kcat values predicted for currency metabolites such as H2O and H+ 
were excluded; if there were multiple substrates in the reaction, maximum values 
among the substrates were kept; and if multiple subunits existed in the enzyme 
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complex, we used the maximum value among all subunits to represent the kcat for 
the complex. Subunit protein stoichiometry information was multiplied before 
comparison. We assumed the same enzyme complex stoichiometry information for 
yeast species as that of S. cerevisiae, which is collected from the Protein Data Bank 
in Europe database (https://www.ebi.ac.uk/pdbe/) as well as the Complex Portal 
(www.ebi.ac.uk/complexportal).

Posterior-mean-ecGEM reconstruction was parameterized by mean kcat values 
from accepted posterior distribution. The kcat values in the DL-ecGEMs combined 
with the r.m.s.e. (which is 1 in the log10 scale) of the kcat prediction were used 
as mean values and variance to make the prior distribution. Each kcat value was 
described with a log normal distribution N(kcat

i, 1). This prior iteratively morphs 
into a posterior through multiple generations32. For each generation, we sampled 
126 kcat datasets within the distribution; 100 among those 126 datasets with a 
smaller distance (see next section for the SMC-ABC distance calculation) between 
the phenotype measurements and predictions, which can better represent the 
phenotype, were kept to make the distribution for the next generation. Until the 
distance was lower than the cut-off (r.m.s.e. for phenotype prediction of 1), we 
accepted the final distribution as the posterior distribution32.

SMC-ABC distance function. Experimental growth data and related exchange 
rates in batch and chemostat conditions were collected for the yeast/fungi species, 
which are available in Supplementary Table 5. The distance function was designed 
as the r.m.s.e. between the simulated and experimental phenotypes. To have a 
metric for the variance of phenotype prediction of both flux and maximum growth 
potential, r.m.s.e. was designed in two parts (each part may contain multiple 
measurement entries such as growth with a different medium). The first part 
addressed flux prediction. This part checks whether the model predicts similar 
fluxes when the carbon uptake rate is constrained, as experimentally measured. In 
this part, all data points for the species are used, and all measured exo-metabolite 
exchange fluxes are used for comparison. The second part addresses the prediction 
of the maximum growth rate potential. This part checks the maximum growth rate 
of the model prediction against the experimental measurement for one species 
on a certain experimentally tested medium. In this part, only the batch condition 
with maximum growth rate measurement was tested. No carbon uptake rate or 
other exchange rate was constrained in the model. Growth maximization was set 
as the objective function. After simulation, only the maximum growth rate and the 
carbon uptake rates were used for comparison with measurement.

After running the above two parts of the simulations, the r.m.s.e. for each 
part can be calculated. All measured and simulated rates were normalized 
by multiplying the carbon numbers of the corresponding metabolites before 
calculation of r.m.s.e. The carbon number for biomass is 41 (the mean value for the 
molecular weight of 1 carbon moles (Cmol) biomass of yeast is ~24.42 g (ref. 65); the 
biomass equals 1,000 mg). Note that if the substrate or by-product does not contain 
any carbon, such as O2, then the normalizing number is 1. Then the average r.m.s.e. 
of both simulations was used to represent the distance. The SMC-ABC search 
stopped once the r.m.s.e. reached the accepted value or reached the maximum 
generation. The accepted value for the distance was set to be lower than 1, and the 
maximum generation was set to be 100.

Simulations with ecGEMs. We performed different kinds of simulations using the 
ecGEMs, including simulations of growth and protein abundance. Different media 
and growth conditions were set to match the experiment measurement conditions, 
for example, using xylose as the carbon source or anaerobic conditions. Since there 
are no measured total protein abundances in the biomass for all yeast/fungi species, 
we used the protein content mass to serve as the default total protein abundance for 
each species and used a factor of 0.5 to serve as the ratio of the metabolic protein to 
the total protein.

As for the protein abundance simulation, the medium was set to match the 
experimental condition as mentioned above. For the chemostat condition, the 
growth rate was fixed as the dilution rate, and the carbon source uptake rate 
was minimized, which is a normal set-up for the simulation of the chemostat 
condition. For the batch condition, the growth rate maximization was used as 
the objective. Then, the simulated protein abundances, which can be extracted 
from the fluxes, were compared with those in collected proteome datasets. The 
MATLAB (2019b), COBRA (v.3.2)66, RAVEN (v.2.4)67 and libSBML (v.5.17.0) 
toolboxes were used in the process with solver IBM ILOG CPLEX optimizer. 
Violinplot-Matlab (https://github.com/bastibe/Violinplot-Matlab) was used for the 
visualization of violin plots.

Statistical tests for Bayesian approach. Sampled prior and posterior kcat datasets 
were compared for the difference in the mean values and the variance. Welch’s 
t-test was used to test the significance for the mean values, while a one-tailed F-test 
was used for the reduced variances. The cut-off for the significance was set to 0.01 
for the adjusted P value corrected by the Šidák method. PVAL_ADJUST (https://
github.com/nunofachada/pval_adjust) was used in the analysis.

Proteome data processing. We normalized the collected relative proteome datasets 
using the identical condition of the absolute proteome data from the literature 
following the same method as in ref. 68. The reference absolute datasets for those 

relative proteome datasets were documented in the collected file in the GitHub 
repository.

Calculation of protein cost and efficiency. To calculate the protein cost of the 
HY pathway, the glucose uptake rate was fixed at 1 mmol gDW–1 h–1, and the 
non-growth associated maintenance energy (NGAM) reaction was maximized. The 
total protein pool reaction was then minimized by fixing the NGAM reaction at 
the maximized value. The minimized flux through the total protein pool reaction 
is the protein cost of the HY pathway for converting one glucose to ATP. As for 
the protein cost calculation of the LY pathway, the glucose uptake rate was fixed 
at 1 mmol gDW–1 h–1, and ethanol production was maximized. Then the ethanol 
exchange rate was fixed at the maximized value, and NGAM was maximized. After 
that, NGAM was also fixed at the maximized value, and the total protein pool was 
minimized to calculate the protein cost for the LY pathway. We also examined 
the flux distribution to ensure that other energy-producing pathways were all 
inactive during this simulation. Protein efficiency is defined as the protein cost for 
producing one flux ATP in each pathway.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Protein sequence FASTA files, deep learning predicted kcat values, GEMs, 
original-ecGEMs, DL-ecGEMs and posterior-mean-ecGEMs for 343 yeast/
fungi species are available as a supplementary dataset on Zenodo: https://doi.
org/10.5281/zenodo.6438262. Collected proteome data are available in the 
GitHub repository: https://github.com/SysBioChalmers/DLKcat/tree/master/
BayesianApporach/Data/Proteome_ref.xlsx. All other collected datasets such 
as the training dataset and the deep learning model are available in the GitHub 
repository: https://github.com/SysBioChalmers/DLKcat. Databases including 
BRENDA (https://www.brenda-enzymes.org), SABIO-RK (http://sabiork.h-its.
org/), UniProt database (https://www.uniprot.org/) and PubChem (https://
pubchem.ncbi.nlm.nih.gov) were used in the DLKcat model construction. KEGG 
(http://www.kegg.jp/) was used in the evaluation of the DLKcat performance. 
Databases including the MetaNetX database (https://www.metanetx.org/), the 
Protein Data Bank in Europe database (https://www.ebi.ac.uk/pdbe/) and the 
Complex Portal (https://www.ebi.ac.uk/complexportal) were used in the ecGEM 
reconstruction. The authors declare that all data supporting the findings and 
for reproducing all figures of this study are available within the paper and its 
Supplementary Information. Source data are provided with this paper.

Code availability
To facilitate further usage, we provide all codes and detailed instruction in the 
GitHub repository: https://github.com/SysBioChalmers/DLKcat. A user-friendly 
example for kcat prediction is also included in the repository.
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