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Parkinson’s disease (PD) presents diverse symptoms and comorbidities, complicating its diagnosis
and management. The primary objective of this cross-sectional, monocentric study was to assess
digital gait sensor data’s utility for monitoring and diagnosis of motor and gait impairment in PD. As a
secondary objective, for themore challenging tasks of detecting comorbidities, non-motor outcomes,
and disease progression subgroups, we evaluated for the first time the integration of digital markers
with metabolomics and clinical data. Using shoe-attached digital sensors, we collected gait
measurements from 162 patients and 129 controls in a single visit. Machine learning models showed
significant diagnostic power, with AUC scores of 83–92% for PD vs. control and up to 75% for motor
severity classification. Integrating gait data with metabolomics and clinical data improved predictions
for challenging-to-detect comorbidities such as hallucinations. Overall, this approach using digital
biomarkers andmultimodal data integration can assist in objective diseasemonitoring, diagnosis, and
comorbidity detection.

Parkinson’s disease (PD) exhibits a remarkable heterogeneity in its clinical
manifestations, covering a spectrum of motor and non-motor symptoms
that varywidely amongpatients1,2. Thisdiversity poses significant challenges
to the accurate diagnosis of PD and the prognosis of individual disease
progression, making effective management and therapy development
difficult3. Each patientmay experience a different pattern ofmotor andnon-
motor symptoms at disease onset, as well as different patterns of disease
progression. Therefore, careful and time-consuming assessment is required
to capture the individual spectrumof symptoms and subsequently allow for
tailored interventions to manage individual symptomatology and improve
quality of life. Improving the understanding of the varied manifestations of
PD could guide the development of future therapies and lead to more
personalizedmedicine strategies that can better address the unique needs of
each patient and thereby achieve improved effectiveness across the broad
spectrum of PD phenotypes.

Digital biomarkers are defined as characteristics collected from
digital health technologies that are measured as indicators of normal
biological processes, pathogenic processes, or responses to an expo-
sure or intervention, including therapeutic interventions4. These

markers represent a new opportunity in the diagnosis and manage-
ment of PD, providing objective, quantifiable physiological and
behavioral data collected through digital devices such as sensors and
mobile applications. An example of such data is gait sensor data,
which captures detailed walking patterns and can reveal subtle motor
impairments not easily detected by conventional clinical assessments.
Compared to traditional clinical measurements, digital biomarkers
offer several potential advantages: they are less invasive, can be col-
lected continuously over time, and may reduce patient burden by
allowing measurements to be taken at home, minimizing the need for
frequent clinical visits5. This continuous monitoring capability has
the potential to facilitate a real-time understanding of disease pro-
gression and patient response to treatment. By integrating digital
biomarkers into the diagnostic and prognostic processes in health-
care, clinicians could achieve a more detailed view of PD variability,
with the potential to improve the precision of outcome predictions
and enabling more personalized disease management plans. This
approach may help to address or alleviate some of the current lim-
itations in predicting outcomes for PD by harnessing advanced
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technologies to gather more objective, comprehensive and accurate
data on the heterogeneous and sometimes transitory impair-
ments in PD.

Previous studies on digital biomarkers for PD, particularly those
focusing on gait-related characteristics, have already highlighted the
potential of wearable technology and continuous monitoring to improve
diagnosis andmanagement of the disease. For instance, Shah et al. identified
key gait-related digital biomarkers such as turn angle and swing time
variability as significant discriminators ofmobility between PDpatients and
healthy controls during a week of continuous monitoring6. A similar
investigation by Rehman et al. emphasized the importance of combining
classical spatiotemporal features with signal processing-based gait char-
acteristics, which provided higher classification accuracy, and highlighted
their potential for early disease identification7. In addition, information
theory derived measures have also been applied successfully, e.g., Coates
et al. studied the sample entropy of digital gait data as a biomarker, showing
its effectiveness in reflecting changes in gait regularity over time among PD
patients8. These prior findings collectively support the use of digital gait-
related biomarkers as informative indicators of motor impairment and
other disease severity and diagnostic outcomes in PD, providing a potential
pathway for improved clinical assessments and possibly earlier and more
effective therapeutic interventions.

To complement previous work, this cross-sectional, monocentric, and
observational study compared PD patients with controls to assess the pre-
dictability of the currentdiagnostic status andmotor score impairment from
a brief digital gait-based assessment performed during a single clinical visit
per person. In addition, we compared patients with respect to their current
gait andmobility impairments, comorbidities, andmotor score progression
rates to assess the predictability of these important characteristics for disease
monitoring. This was done in two ways: (a) Using digital gait data alone
(witha focus ondetecting the followingoutcomes that are strongly related to
gait alteration: PD vs. control diagnostic status, motor score outcomes, and
mobility and gait impairment outcomes), and (b) through its integration
withmetabolomicsand simple clinical descriptors (with a focusondetecting
the following outcomes that are not closely related to gait changes and are
more challenging topredict usingonly a singledatamodality: comorbidities,
non-motor scores, andmotor score progression rates), an aspect that, to our
knowledge, has not been previously explored in the literature. The aim of
these analyses was to determine whether automated gait measurements

during a brief walking exercise, lasting at most a few minutes, or their
combination with a few selected metabolite and clinical features, could
provide more objective and less time-consuming to obtain surrogate bio-
marker signatures for multiple PD monitoring outcomes that typically
require extensive and burdensome clinical examinations.

Using the gait sensor technology eGaIT (embeddedGaitAnalysisusing
Intelligent Technologies)9, gait data was previously collected from a selec-
tion of 291 subjects, including 162 PD patients and 129 controls, from the
Luxembourg Parkinson’s Study10. Data was captured through standardized
tasks that ranged from simple walking to complex multitasking scenarios.
This approach allowed for the extraction of precise gait features, whichwere
then analyzed alongside omics data and clinical assessments. We tested
different types of machine learning approaches, including Stochastic Gra-
dient Boosting, Support Vector Machines and Random Forest, among
others, to build, cross-validate and interpret predictivemodels. Our analyses
aimed to explore multiple health outcomes in PD, namely to (i) distinguish
between PD patients and control subjects, (ii) assess current disease severity
in terms of motor scores, (iii) identify specific gait impairments such as
freezing of gait, and (iv) detect common non-motor symptoms and
comorbidities in PD, such as cognitive impairment, as well as patient sub-
groups with different rates of motor score progression. Since comorbidities
and non-motor symptoms, such as cognitive impairment and depression,
are not directly related to changes to motor changes in PD, but may still
influence gait patterns—given that gait involves both cognitive and motor
functions—it is valuable to investigate whether these more difficult-to-
detect outcomes can be more effectively assessed using multimodal data to
improve machine learning models. This also applies to the classification of
motor score progression rates,which canbe assessedmore comprehensively
by considering current metabolic and clinical changes, in addition to
changes in gait characteristics. Therefore, while we focused on gait data as
input to predict the first three categories of outcomes strongly associated
with motor impairment, we compared and integrated digital gait bio-
markers with clinical andmetabolomics data derived from the baseline visit
for the same subjects (see detailed descriptions of these datasets in the
“Methods” section) for the more difficult-to-assess outcome variables
related to comorbidities, non-motor symptoms and progression rates (see
also the workflow overview in Fig. 1). This comprehensive analysis clearly
distinguishes our work from previously published papers on digital gait
assessments, which typically focused on the discrimination of PD patients

Fig. 1 | Schematic overview of the study workflow. The input data types used for
the cross-validated machine learning analyses are highlighted on the left and the
prediction tasks on the right. The prediction tasks focus on the estimation of four
groups of outcomes (roughly sorted by increasing complexity): (1) disease diag-
nosis, (2) motor score severity, (3) gait and mobility impairments, and (4)
comorbidities, non-motor outcomes, andprogression rate (measured by the average
annual change in theMDS-UPDRS III motor score over four years of follow-up and

categorized as slow or fast, depending on whether the change falls in the lower or
upper quartile, respectively). For the first three data modalities, unimodal machine
learning models were built using gait data only, as this was sufficient to achieve
satisfactory cross-validation performance, whereas for the more challenging fourth
group of tasks, aimed at detecting comorbidities, non-motor outcomes and pro-
gression rate subgroups,multimodalmodels combining gait, omics and clinical data
were built in addition to comparing the individual data modalities.
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versus control subjects6,11–13. Our study was designed to assess the strengths
and weaknesses of each individual data type and explore the potential
synergies achieved through integrative predictions, an aspect that we regard
as novel compared to prior work in the literature. The integrative approach
enhanced the robustness of our predictions, and for some of the considered
PD outcomes, it also led to marked improvements in accuracy. In addition,
the analyses of the most predictive attributes provided insights into the
informative value of specific biomarker features, as well as the complex
interplay between different types of biomarkers – an aspect that has largely
been neglected so far in the existing literature on digital gait assessments.

Overall, the comparative and integrative analyses of digital gait bio-
markerswith clinical andmetabolomics data presented here underscore both
the utility of the gait data and the potential benefits of combining multiple
complementary data sources for PD research. Formultiple clinically relevant
outcomes in PD, including the PD vs. control diagnostic status, the MDS-
UPDRS IIImotor score, assessment of gait andmobility impairment, and the
occurrence of multiple comorbidities, our results show that either the digital
gait data alone provide significant predictive information (particularly for the
diagnostic status and the motor and gait-related outcomes), or that the
integrationof gait, clinical andmetabolomicsdata can improve thediagnostic
accuracy compared tousingonly singledatamodalities. Taken together, these
strategies for using digital gait markers or multiple data modalities for
machine learning prediction in PD could help to pave the way for a more
objective, standardized, and largely automated disease monitoring.

Results
PD vs. control classification
To evaluate the efficacy of digital gait biomarkers for detecting disease
associated gait impairments, we initially focused on PD vs. control classi-
fication. We compared two types of input features derived from gait sensor
data: extracted gait parameters and raw signal time series features (see
“Methods” section “Data collection”). Each feature set was analyzed using
different machine learning models to determine their diagnostic potential
within a 10-fold cross-validation (CV) framework (see “Methods” section
on “Machine learning, cross-validation, and model interpretation”).

Results from extracted gait parameters. Using extracted gait para-
meters, the 10-fold CV results for discriminating PD from controls
(Table 1, second row) showed median AUC scores between 65% and
77%, depending on the model. The Deep Boosting (DEEP) model
achieved the highestmedianAUCat 76.9%, suggesting that decision tree-
based ensemblemethods arewell suited for the considered heterogeneous
data. Demographic covariates alone (age, sex) provided considerably
lower predictive accuracy (median AUC of 59.1%), indicating that digital
gait parameters add substantial information.

Results from raw signal time series features. When using time series
features derived from the raw signal data, AUC scores ranged from 83%
to 92% (Table 1, bottom row). The extreme gradient boosting (XGB) and
Deep Boosting (DEEP) models had the highest median AUC scores with
91.7% and 91.0%, respectively. These improvements over gait-specific

parameters highlight the utility of using time series features for capturing
detailed gait characteristics indicative of PD. Although these features are
complex to interpret, andmanually crafted gait featuresmay be preferred
for explainable models, the cross-validation results show that using fea-
tures more closely reflecting the raw signal data improves diagnostic
performance. This suggests that using time series features to analyze the
full complexity of gait dynamics is more informative for PD symptom
detection than relying on a limited set of extracted gait features. This may
be due to more comprehensive data coverage and finer granularity of the
time series features, reflecting subtle gait abnormalities not apparent in
processed gait parameters.

Severity prediction: PDmotor score estimation/surrogate bio-
marker modeling
To complement PD vs. control diagnostic predictions with a machine
learning assessment ofmotor severity, we performed predictivemodeling of
PDmotor severity using the MDS-UPDRS Part III sum score14 at the same
visit as a target variable. Our goal was to assess the utility of gait-specific
features as potential digital surrogate biomarkers for commonly usedmotor
performance assessments. Successful validation of gait features could reduce
costs, time, and effort in traditional clinical exams, allowing for streamlined
and potentially at-home assessments.

We applied the same cross-validated classification pipeline used for
diagnostic predictions to the motor score analyses, binarizing UPDRS Part
III total scores using amedian threshold (19 points) and predicting whether
patients fall into the low or high total score category.

Similar to PD vs. control classification, tree-based ensemble methods
showed superior diagnostic performance. Using time series features from
raw gait data, the Random Forest model achieved the highest median AUC
at 75.4%,whichwas remarkably above the performance achievedwhenonly
using age and sex as predictors (55.4%). For most modeling approaches,
using time series features from raw gait data provided higher average AUC
scores than gait-specific features (Table 2, second row).

As themachine learning analysis canhelp to identifywhich features are
most informative to detect motor severity in PD, we conducted a SHAP
value analysis15 for the more interpretable model using gait parameters as
input. The SHAPvalue plot in Fig. 2 shows the importanceof individual gait
features in predicting motor scores using extreme gradient boosting, the
best-performing technique in cross-validation. SHAP values indicate how
each feature shifts themodel output from the baseline prediction. Themean
values for the gait parameter “MaximumFootClearance” (corresponding to
themaximumelevation of the foot from the groundduring the swingphase)
and “Toe Off Angle” (corresponding to the angle between the heel and the
surface at the beginning of the swing phase) had the highest SHAP values,
likely reflecting a greater degree of foot clearance difficulty in patients with
severe motor impairments. Other important features included the standard
deviation of “Stride Length” and “Landing Impact,” indicating increased
variation in these parameters with more severe motor impairments. These
results demonstrate the potential of digital gait sensor data combined with
machine learning, especially tree-based methods, for classifying motor
severity in PD. This approach could enable simple at-home gait-based

Table 1 | Cross-validated predictive performance for PD vs. control classification

Models Linear SVM RBF SVM RF Stochastic GBM DEEP XGB Clinical confounders
(median)

10-fold CV
AUC
median
(mad)

Extracted gait parameters 0.649
(0.13)

0.695
(0.18)

0.743
(0.11)

0.737
(0.12)

a0.769
(0.07)

0.754
(0.06)

0.591
(0.09)

Raw signal time series
features

0.847
(0.04)

0.865
(0.08)

0.834
(0.05)

0.876
(0.09)

0.910
(0.06)

a0.917
(0.07)

Cross-validated predictive performance for PD vs. control classification using different machine learningmethods and extracted gait parameters or time series features computed from the raw gait signal
data as input “Clinical confounders” refers to a model that was solely trained with age and sex as predictors and serves as a comparator.
AUC area under the Receiver OperatingCharacteristic Curve,median andmedian absolute deviation (mad) across 10 cross-validation (CV) cycles,SVM support vectormachine,RBF radial basis function,
RF random forest, DEEP deep boosting, XGB extreme gradient boosting, GBM gradient boosting machines.
aThe highest median AUC for each row.
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assessments as surrogate biomarkers for motor performance, reducing the
need for more labor-intensive clinical evaluations. In addition, the SHAP
analysis provides insights into the most influential features for predicting
UPDRS 3 motor outcomes, helping clinicians and researchers to prioritize
specific gait parameters in routine evaluations of disease severity.

Prediction of gait- and mobility-related outcomes
The analysis of gait- and mobility-related impairments in PD was a key
focus of this study, as digital gait biomarker data is expected to be highly

informative for classifying gait and movement-associated outcomes. We
aimed to detect three main outcomes: (1) Freezing of gait (FoG), using the
FoG severity score from the FOGQ questionnaire16, (2) the mobility sub-
score from the PDQ39 quality-of-life questionnaire17, and (3) the general
occurrence of gait disorders as part of standard clinical assessments in the
Luxembourg Parkinson’s Study10. For the quantitative outcomes (FOGQ
score and PDQ39 mobility sub-score), we binarized the scores into values
above and below the median to apply classification approaches and per-
formancemetrics comparable to those used for categorical outcomes.As the

Table 2 | Cross-validated predictive performance for MDS-UPDRS Part III classification

Models Linear SVM RBF SVM RF Stochastic GBM DEEP XGB Clinical confounders
(median)

10-fold CV
AUC
median
(mad)

Extracted gait parameters 0.610
(0.21)

0.654
(0.09)

0.705
(0.12)

0.615
(0.16)

0.667
(0.12)

a0.76
(0.12)

0.554
(0.12)

Raw signal time series
features

0.664
(0.09)

0.666
(0.08)

a0.754
(0.22)

0.655
(0.13)

0.740
(0.10)

0.745
(0.06)

Cross-validatedpredictiveperformance forMDS-UPDRSPart III classificationofwhetherMDS-UPDRSPart III sumscores are aboveorbelow themedia scoreusingdifferentmachine learningmethodsand
timeseries features computed fromeither the extractedgait parametersor the rawgait signal data as input. “Clinical confounders” refers to amodel thatwassolely trainedwith ageandsexaspredictors and
serves as a comparator.
AUC area under the Receiver Operating Characteristic Curve, median and median absolute deviation across 10 cross-validation (CV) cycles, SVM support vector machine, RBF radial basis function, RF
random forest, DEEP deep boosting, XGB extreme gradient boosting, GBM gradient boosting machines.
aThe highest median AUC for each row.

Fig. 2 | SHAP value plot of the top-ranked features for predicting low vs. high
UPDRS 3motor score outcomes.The plot shows the gait-specific digital biomarker
features with the highest SHAP values for predicting low vs. high UPDRS 3 motor
score outcomes using extreme gradient boosting for machine learning. The color
coding from purple to yellow represents the feature value range from low to high.

The labels on the left correspond to the individual gait features that were most
predictive in terms of the absolute SHAP value, sorted from top to bottom (corre-
sponding absolute SHAP values are shown in bold on the left side of the plot; for a
description of the individual features see Supplementary Table 1).
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focus of these analyses was on maximizing model predictivity rather than
interpretability, we used the comprehensive set of time series features from
raw gait data for the machine learning analyses, applying the same CV
framework and machine learning approaches as for the PD vs. control and
motor severity predictions.

Prediction of freezing of gait (FoG). Consistent with previous analyses,
a tree-based ensemble learning method (stochastic GBM) led to the
highest median AUC of 91.7%, which was remarkably above the 60.9%
achievedwhen only using age and sex (clinical confounders) as predictors
(see Table 3, first data row). These results highlight the significant pre-
dictive performance of gait-based machine learning for FoG score
classification.

Gait disorder occurrence detection. For inferring the presence of
general gait disorders in PD as diagnosed by the treating neurologist, the
10-fold CV framework revealed varying model performances (Table 3,
second data row). The Linear SVM model achieved the highest median
AUC at 74.2%, again with a remarkable difference to the 55.4% achieved
by the “clinical confounders” model.

Predictionofmobility scores.While digital sensor datamainly captures
gait-related changes in PD, we investigated if it could also predict overall
mobility impairments using the Parkinson’s Disease Questionnaire-39
(PDQ-39) mobility sub-score. In the cross-validation, the deep boosting
model (DEEP) achieved the highest median AUC of 79.9%, which was
remarkably above the 53.5% achieved only with age and sex as predictors
(Table 3, third data row).

Detection of comorbidities, non-motor symptoms and disease
progression sub-groups
PD is often associatedwith various comorbidities that affect patients’quality
of life and disease progression. Better understanding and monitoring of
these comorbidities could help to improve patient management, provide
more tailored therapies for different PD subgroups, and potentially also
facilitate theprediction of future disease outcomes. Below,weprovide a brief
overview of the comorbidities considered here, their significance for quality
of life in PD, and, where applicable, their associations with each other and
with the future course of the disease:
• Cognitive impairment: Common in PD, ranging from mild to

severe dementia. It affects daily functioning, overlaps with other
comorbidities such as depression and hallucinations, and is asso-
ciated with faster progression of motor symptom and poorer
prognosis18,19.

• Dopamine dysregulation syndrome (DDS): Associated with advanced
stages of PD, often characterized by compulsive use of dopaminergic
medications, leading to behavioral and psychiatric symptoms. It is
associated with impulse control disorders and mood disorders20,21.

• Depression: Common in PD, often coexisting with cognitive impair-
ment and exacerbating motor symptoms. Early identification and
treatment are essential to improve patient outcomes17,22.

• Hallucinations: Associated with advanced stages of PD and cognitive
decline. They indicate a severe disease state and a higher risk of
dementia18,23.

• Dyskinesia: Involuntary movements associated with long-term
dopaminergic treatment, linked to advanced PD stages. Management
of dyskinesia requires a balance between control of motor symptoms
and reduction of involuntary movements24,25.

• Apathy: Often overlaps with depression and cognitive impairment,
resulting in decreased motivation and engagement in daily
activities16,26.

All of these comorbidities are associated with a reduced quality of life
(QoL), which was assessed as an additional outcome variable using the
Parkinson’s Disease Questionnaire-39 (PDQ-39)24. In addition, comor-
bidities may also be indicative of different PD sub-groups, such as fast vs.
slow progressors (fast progressors often have higher levels of cognitive
impairment, depression and dyskinesia27–29), or the tremor-dominant,
mixed, and akinetic-rigid subtypes (tremor-dominant cases have a lower
prevalence of dementia compared to akinetic-rigid subtypes, which are
more prone to rapid cognitive decline and depression30). Although we did
not have sufficient statistical power to evaluate amachine learning-based 3-
group categorization of the tremor-dominant, mixed, and akinetic-rigid
subtypes, we cross-validated binary classification models to distinguish
between fast and slow progressors (top and bottom quartiles of patients in
terms of average annual MDS-UPDRS III motor score change).

In general, classifying comorbidities and non-motor symptoms in PD
is challenging due to their complex and heterogeneous nature. As these
multifactorial outcomes are difficult to characterize using a single data
source and mostly not directly related to gait alterations, we expanded our
analysis to include clinical andmetabolomics data as furtherpredictors.This
approach recognizes that comorbidities and non-motor symptoms in PD,
such as cognitive impairment, depression, autonomic symptoms, and sen-
sory impairment, may not directly manifest in motor symptoms detectable
by gait analysis. Similarly, the assessment of disease progression subgroups
may reveal greater differences in theirmetabolomic profiles that are directly
related to diseasemechanisms or in their clinical features that are relevant to
early prodromal stages, rather than changes in gait characteristics that are
more likely to reflect later, downstream consequences of the disease. By
incorporating non-motor clinical data (see “Clinical data” section in the
Methods part) and bloodmetabolomics data (biochemicalmarkers), we can
provide a more comprehensive assessment of PD progression and current
non-motor outcomes. Comparing and integrating these diverse data sour-
ces allows for a thorough exploration of biological and clinical interactions,
revealing subtle patterns and associations that a single-source analysismight
miss. This multimodal approach aims to increase model accuracy and

Table 3 | Cross-validated performance for three motor performance-related classification problems

Models Linear SVM RBF SVM RF Stochastic GBM DEEP XGB Clinical confounders
(median)

10-fold CV
AUC
median
(mad)

FoG 0.694
(0.04)

0.792
(0.19)

0.889
(0.11)

a0.917
(0.12)

0.833
(0.12)

0.903
(0.14)

0.609
(0.11)

Gait disorder occurrence a0.742
(0.14)

0.562
(0.20)

0.589
(0.11)

0.569
(0.18)

0.577
(0.17)

0.652
(0.22)

0.554
(0.13)

PDQ-39 mobility
sub-score

0.646
(0.12)

0.781
(0.09)

0.759
(0.19)

0.795
(0.16)

a0.799
(0.14)

0.764
(0.12)

0.535
(0.09)

Cross-validated performance for three classification problems using different machine learningmethods and time series features computed from the raw gait signal data as input: (1) Freezing of Gait (FoG)
score binary classification into scores above/below themedian; (2) gait disorder occurrence prediction (yes/no); (3) predicting whether the PDQ-39mobility sub-score of PD patients is above themedian in
the cohort (yes/no). “Clinical confounders” refers to a model that was solely trained with age and sex as predictors and serves as a comparator.
AUC area under the Receiver OperatingCharacteristic Curve,median andmedian absolute deviation (mad) across 10 cross-validation (CV) cycles,SVM support vectormachine,RBF radial basis function,
DEEP deep boosting, XGB extreme gradient boosting, RF random forest, GBM gradient boosting machines.
aThe highest median AUC for each row.
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robustness and offer insights into the value of different data sources for
detecting comorbidities and PD progression subgroups.

Comparative detection of comorbidities, non-motor symptoms and
progression subgroups using single data sources. The ability to detect
comorbidities, non-motor symptoms and progression subgroups in PD was
first assessed using the three distinct data sources separately: digital gait
biomarker data, non-motor clinical variables, and blood metabolomics data.
For gait biomarker data, time series features from the raw gait data were used
due to their higher predictive performance in the previous analyses discussed
above. All models were trained using the XGB algorithm and evaluated with
the same 10-fold CV framework, calculating median AUC scores for each
outcome and input data type (Table 4).

As expected, predicting heterogeneous comorbidities and non-motor
outcomes in PD as well as progression subgroups provedmore challenging
than estimating diagnostic, severity, and gait-related outcomes. Perfor-
mance varied significantly depending on the data type and outcome, with
medianAUCscores up to 92% for predicting dyskinesia but lowpredictivity
for apathy.

Clinical data were most effective in detecting dopamine dysre-
gulation syndrome (MDS-UPDRS Part I, question 1.6; AUC: 71.4%),
dyskinesias (MDS-UPDRS Part IV, question 1; AUC: 91.7%), and
progression rate subgroups (top and bottom quartiles of mean annual
change in the MDS-UPDRS III score, AUC: 72.8%) and had the
highest AUC for apathy (61.6%), although apathy was generally
difficult to detect. Metabolomics data showed superior predictive
capabilities for mental and quality-of-life outcomes, including mild
cognitive impairment (MoCA score < 26; AUC: 78.8%), hallucina-
tions (MDS-UPDRS Part I, question 1.2; AUC: 78.5%), and general
quality of life (PDQ-39 score median split; AUC: 67.6%).

Gait data, while less predictive for comorbidities than for disease
symptom detection and motor severity outcomes, provided the highest
AUC (78.3%) for depression (Beck Depression Inventory, BDI-I30,). This is
in line with previously reported associations between depressive symptoms
and quantitative gait dysfunction in the elderly31. Overall, gait data yielded
median AUC scores between 60% to 78% for comorbidities, competitive
with other approaches, indicating significant discriminative information.

These results show that while detection of non-motor outcomes and
comorbidities is feasible to a limited extent with single data sources, the
significantpredictive power achievedbymultiple diverse data sources across
most of the outcomes suggests that an integrated, multimodal data analysis
approach could further improve predictive accuracy. Consequently, further
investigations into integrative predictivemodeling using the combined data
sources were conducted (see below).

Multimodal integrative prediction of comorbidities, non-motor
symptoms, and fast vs. slow progression. To exploit the synergies
of different data modalities, we combined features from all three input
types: gait data (time series features), clinical variables, andmetabolomics
data. To ensure that these features were on the same scale, they were
standardized within each fold of the cross-validation by subtracting the
mean and dividing by the standard deviation. As the original features
from different data types differ not only in their scales but also in their
distribution characteristics, we address potential limitations associated
with this integration in the Discussion section part on study limitations.
The same machine learning and cross-validation approach used for the
individual data sources was applied for the integrated analysis to ensure
comparability.

The resulting integrative models showed improved median AUC
scoresacrossmultiple outcomes (Table 5 andFig. 3).Notably, theprediction
of dopamine dysregulation syndrome had a median AUC of 85.7%, con-
siderablyhigher than thebest individual data source (71.4%). Predictions for
hallucinations and quality of life (PDQ-39) also improved, with median
AUCs of 81.3% and 69.0%, compared to 78.5% and 67.6% for the best
individual sources. For other outcomes, the integrative method yielded
comparable performance to the average of the individual data sources, with
moderate AUC values for depression (75.9%), cognitive impairment
(69.4%), PDQ-39 quality of life assessment (69.0%), and progression rate
subgroup (66.7%), and low performance for apathy (52.8%). Due to pro-
nounced standarddeviations, statistical significancebetweenmethodologies
cannot be shown, and higher AUC values should therefore be regarded as
indicative and will require further validation. Generally, while using the
most informative individual data source can be advantageous for specific
comorbidities, the integrative approach tends to provide competitive or
better median AUCs for most outcomes.

These results confirm the added value of comparing different data
modalities and considering a multi-modal strategy in capturing the multi-
faceted nature of PD for detecting comorbidities. Integrating com-
plementary data types offers amore comprehensive coverage of informative
features and can therefore facilitate themachine learning based detection of
multiple clinically relevant outcomes.

Analysisof themostpredictive features in themultimodalmodels
In addition to evaluating the predictive performance of the machine
learning models using multiple data modalities, we also investigated
the most predictive features identified by the SHAP value analysis.
The corresponding SHAP value plots are included in the Supple-
mentary Materials. Here, we discuss the top-ranked features for each
outcome variable considered in the multimodal analyses. Because the

Table 4 | Cross-validated performance for predicting comorbidities, non-motor outcomes, and progression rate subgroups

Outcome/median AUC (mad) Gait data Clinical data Metabolomics data

Cognitive impairment (MoCA) 0.664 (0.14) 0.759 (0.14) a0.788 (0.08)

Dopamine dysregulation syndrome 0.688 (0.19) a0.714 (0.32) 0.676 (0.34)

Depression (BDI) a0.783 (0.14) 0.764 (0.17) 0.647 (0.11)

Hallucinations 0.673 (0.17) 0.750 (0.31) a0.785 (0.08)

Dyskinesias 0.637 (0.20) a0.917 (0.12) 0.667 (0.17)

Apathy (Starkstein scale) 0.598 (0.19) a0.616 (0.15) 0.524 (0.13)

Quality of life (PDQ-39) 0.647 (0.17) 0.600 (0.08) a0.676 (0.21)

Progression rate 0.633 (0.13) a0.728 (0.13) 0.717 (0.22)

Cross-validated performance for predicting comorbidities, non-motor outcomes, and progression rate subgroups (left column) in Parkinson’s disease patients using either the time series features derived
from thegait data (column2), clinical variables (usingonly thenon-motor features from the “Clinical data” section in theMethodspart; column3) or bloodmetabolomicsdata (column4) as input.Quantitative
outcome scores were binarized using a median threshold to obtain comparable AUC scores across different types of outcomes (for the progression rate outcome only, the fast and slow progressor
subgroupswere defined as the upper and lower quartiles, respectively, of the average annual change in theMDS-UPDRS III motor score, consistentwith previous studies27). The extreme gradient boosting
(XGB) algorithm was used for prediction and 10-fold cross-validation was applied. The presented scores represent the median area under the Receiver Operating Characteristic Curve (AUC) across the
cross-validation cycles and their median deviation (mad).
aThe highest median AUC achieved for each outcome.
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digital gait features often lack interpretability, our discussion focuses
primarily on the most predictive metabolic and clinical features for
the outcomes studied.

Cognition (Montreal Cognitive Assessment,MoCA). Among themost
predictive features for cognitive ability asmeasured by theMoCA score32,
we observed, in line with prior expectations, that age was the strongest
clinical predictor (ranked third overall across the features from all data
modalities, see the SHAP value plot in Supplementary Fig. 1), consistent
with the well-documented association between aging and cognitive
decline33,34. Most of the other top-ranked features in the SHAP value
analysis are gait sensor features with limited interpretability (e.g.,
reflecting statistical moments or information-theoretic measures, such as
the spectral entropy of sensor measurements). However, a few metabo-
lites also appeared among the top-ranked predictors, including (S)-
alpha-amino-omega-caprolactam (PubChem ID: 440599) as the most
informative metabolite. This compound is a component in various foods
and plants that, to the best of our knowledge, has not previously been
associated with PD or cognitive changes before. A study of structurally
similar caprolactam compounds in a mouse model of amnesia showed a
significant amnesia-reversal activity for multiple of these compounds35,
suggesting that representatives of this class of compounds may indeed
affect cognitive function. However, as cognitive abilities and dietary
habits can influence each other in numerousways, an inverse causation or
confounding role of diet, reflecting indirect associations to both (S)-
alpha-amino-omega-caprolactam levels and cognition, cannot be
excluded.

Dopamine dysregulation syndrome (MDS-UPDRS Part I, ques-
tion 1.6). For machine learning detection of dopamine dysregulation
syndrome (DDS), most of the top predictive features were metabolite
abundances, although multiple digital gait markers that lack an intuitive
interpretation were also among the top-ranked features according to the
SHAP analysis (see SHAP value plot in Supplementary Fig. 2). The
metabolite feature with the highest SHAP value was 3-hydroxy-2-
ethylpropionate (PubChem ID: 188979, also known as
2-ethylhydracrylic acid, 2-EHA), a human short-chain fatty acid derived
from isoleucine metabolism. 2-EHA has been proposed both as a

Table 5 | Cross-validated performance for integrative
prediction of comorbidities, non-motor outcomes, and
progression rate subgroups

Outcome Median
AUC (mad)

Integrative Model
Median AUC (mad)

Best individual data
source Median
AUC (mad)

Cognitive
impairment (MoCA)

0.694 (0.12) a0.788 (0.08)

Dopamine dysregulation
syndrome

a0.857 (0.01) 0.714 (0.32)

Depression (BDI) 0.759 (0.06) a0.783 (0.14)

Hallucinations a0.813 (0.23) 0.785 (0.08)

Dyskinesias 0.901 (0.14) a0.917 (0.12)

Apathy (Starkstein) 0.528 (0.26) a0.616 (0.15)

Quality of life (PDQ-39) a0.690 (0.12) 0.676 (0.21)

Progression rate 0.667 (0.16) a0.728 (0.13)

Cross-validated performance for predicting comorbidities, non-motor outcomes, and progression rate
subgroups (left column) in PD by integrating time series features from raw signal gait data, clinical
variables (non-motor features from the “Clinical data” section in theMethods), andbloodmetabolomics
data. Quantitative outcome scores were binarized using a median threshold for comparable
performance scores (for the progression rate outcome only, the fast and slow progression subgroups
were defined as the top and bottom quartiles, respectively, of the average annual change in the MDS-
UPDRS III motor score, consistent with previous studies27). The extreme gradient boosting (XGB)
algorithm was used for prediction with 10-fold cross-validation. The presented scores represent the
median area under the Receiver Operating Characteristic Curve (AUC). Column 1 shows the different
outcomemeasures,column2 themedianAUCscoresandmedianabsolutedeviations (mad)acrossthe
cross-validation cycles for the integrative models, and column 3 the AUC scores and standard
deviations for the best models based on individual data sources (see Table 4).
aThe highest median AUC.

Fig. 3 | Bar plot visualization comparing the predictive performance for different
PD outcomes and models using different input data. The plot compares the
predictive performance in terms ofmedian cross-validatedAUC values withmedian
absolute deviations (MAD) for the PD outcomes considered in the integrative

analyses and models using different input data (Clinical Data, Gait Data, Metabo-
lomics Data, and IntegrativeModel). Each outcome is represented on the horizontal
axis, ordered by decreasing average AUC values across all models.

https://doi.org/10.1038/s41746-024-01236-z Article

npj Digital Medicine |           (2024) 7:235 7

www.nature.com/npjdigitalmed


biomarker for isoleucine pathway defects36 and as a biomarker for
exposure to the neurotoxin MPP+, as treatment of rats with the MPP+
precursor MPTP results in increased urinary 2-EHA levels37. Branched-
chain amino acid (BCAA) metabolites, such as isoleucine, are known to
affect neurotransmitter pathways, including dopamine signaling38, and
have previously been implicated in mood disorders, such as major
depression39 and bipolar disorder40. Thus, abnormal levels of 2-EHAmay
indicate alterations in dopamine signaling associated with either iso-
leucine pathway dysregulation or neurotoxin exposure. However,
because variations in dietary intake can also alter the levels of BCAAs and
theirmetabolites, such as 2-EHA, further studies are needed to determine
the specific contribution of these factors to the observed alterations in
2-EHA levels in patients with DDS.

Beck depression inventory (BDI-I). For the prediction of depression
outcomes according to the Beck Depression Inventory scale, the highest
SHAP value was achieved by a clinical predictor variable, the Sniffin’
Sticks40 smell test score (see Supplementary Fig. 3). Indeed, not only is loss
of smell a common early comorbidity in PD, but the Sniffin’ sticks
olfactory function score has previously already been found to be sig-
nificantly lower in patients with depression than in controls41. In addi-
tion, patients with loss of smell are also more likely to have symptoms of
depression, which worsens with the severity of olfactory dysfunction42.
Although both depression and loss of smell may be influenced by con-
founding factors, a potential causal relationship between the two is
supported by previously reported associations. Specifically, depression
has been associated with a dysfunctional amygdala, which affects inhi-
bitory projections to the olfactory bulb, and a reduced olfactory bulb
volume has been observed in depression, which may impair olfactory
function43. The second highest ranked predictor was a humanmetabolite,
gamma-glutamylvaline (γ-EV), a dipeptide involved in glutathione
metabolism44. Although direct studies linking γ-EV to depression have
not been identified, it has been implicated in broader metabolic and
inflammatory pathways that are known to influence mental health. For
example, γ-EV has been reported to ameliorate TNF-α-induced vascular
inflammation, which is an important factor in the pathophysiology of
depression45. As γ-EV is found in specific foods such as legumes46, we note
that differences in γ-EV levels between the sample groups may reflect
differences in dietary habits, which could be influenced by several factors
directly or indirectly associated with depression, such as socioeconomic
status, access to healthy food options, stress levels, and overall lifestyle
choices.

Hallucinations (MDS-UPDRS Part I, question 1.2). The most pre-
dictive features for detecting the occurrence of hallucinations in PD
patients include both metabolite and digital gait features (see Supple-
mentary Fig. 4). The most informative predictor was a gait-specific fea-
ture from the “Timed Up and Go” (TUG) test, indicating altered
variability of accelerometer readings in the sensor attached to the right
shoe. This finding suggests that PD patients experiencing hallucinations
are also more likely to have a greater gait instability.

The second ranked predictor was sucrose, commonly known as table
sugar, a disaccharide composedof glucose and fructose.While differences in
blood plasma sucrose levels may reflect dietary differences between groups,
which could be influenced by several socioeconomic and lifestyle factors
associated with a higher risk of hallucinations, a high-sucrose diet has
previously been directly associated with various psychiatric phenotypes,
particularly in cases with reduced expression of glyoxalase-1, an enzyme
involved in the detoxification of sucrose metabolites47. However, reverse
causationmay be amore plausible explanation for the observed association,
as increased consumption of sugar is not only a common feature of PD, but
the consumption also increases with the occurrence of comorbidities and
non-motor symptoms48. More focused studies are needed to confirm and
better understand the potential association between dietary sucrose and
hallucinations in PD.

Dyskinesia (MDS-UPDRS Part IV, question 1). For the detection of
dyskinesia in PD, the most informative predictor according to the SHAP
value analysis was the disease duration (measured from the time of PD
diagnosis by a healthcare professional to the time of assessment during
the study, see SHAP value plot in Supplementary Fig. 5). This is in line
with prior expectations, as it is well-established that PD patients with
dyskinesia have a significantly longer disease duration than those who do
not have this comorbidity25,49. The second highest ranking predictorwas a
metabolite feature, corresponding to either mannitol or sorbitol
(although no disambiguation was possible based on the metabolite
measurements, both of these molecules are sugar alcohols found natu-
rally in many fruits and vegetables). Mannitol is known to temporarily
disrupt the blood-brain-barrier50, which could affect the delivery of
therapeutic agents to the brain, including PD drugs whose long-term use
has been associated with dyskinesias, such as levodopa. However, similar
to other comorbidities,many possible associations between dietary habits
related to the levels of thismetabolite and dyskinesias are conceivable (see
the example of reverse causation for hallucinations discussed above), and
determining potential causal mechanisms will require targeted
investigations.

Apathy (Starkstein scale). Of all comorbidities considered in this study,
apathy was the most challenging to detect using machine learning on the
available gait, molecular, and clinical data sources, achieving amaximum
AUC of 61.6%. Therefore, the associated feature rankings should be
interpreted with caution. The most predictive features in the integrative
machine learning models include both gait and metabolomics features
(see Supplementary Fig. 6). While the top-ranked gait features corre-
spond to complex transformations of the sensor data that lack intuitive
interpretation, the top predictive metabolites had known identities. The
metabolite with the highest SHAP value was 1-linoleoyl-GPI (PubChem
ID: 11124828). This lysophospholipid has previously been causally
associated with Major Depressive Disorder (MDD) through Mendelian
randomization analysis, suggesting its potential relevance to mood
disorders51. While a potential mechanism linking 1-linoleoyl-GPI to
MDD or apathy is unknown and requires further investigation, altered
lipid metabolism in general has been associated with mood disorders in
several studies52–54.

Quality of life inParkinson’sdisease (PDQ-39). Although quality of life
(QoL) does not reflect a specific disease symptom or comorbidity, but
rather captures the patient’s overall well-being anymay therefore bemore
difficult to relate to particular biomarkers, we still observed a higher
predictive performance for the PDQ-39 QoL measure than for apathy.
Correspondingly, we also identified predictors with high SHAP values in
the PDQ-39 analysis, including mainly gait attributes with limited
interpretability and multiple metabolites (see SHAP value plot in Sup-
plementary Fig. 7). The most predictive metabolite was daidzein sulfate
(PubChem ID: 12114465), a soy isoflavone derivative found in many soy
products, which may serve as a marker for the dietary intake of these
products. Soy products, which are rich inmany isoflavones in addition to
daidzein, have been associated with various health benefits that may
indirectly improve QoL. Epidemiologic studies suggest that soy product
intake may have a modest preventive role against mortality from heart
disease and stomach cancer55, and specifically in PD, soybean intake has
been proposed to have a beneficial effect on motor complications by
increasing levodopa bioavailability56. However, because soy products
contain many biomolecules that may affect health and well-being, and
their intake is associated with several other lifestyle factors and dietary
factors, more targeted studies are needed to confirm potential specific
relationships with QoL in PD.

Progression rate subgroups (top and bottom quartiles of the aver-
age annual MDS-UPDRS III motor score change). For the prediction
of slow versus fast motor score progression subgroups in PD, the top-
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ranked variables included mostly metabolic features and a few gait
sensor-derived features that lacked interpretability (see SHAP value plot
in Supplementary Fig. 8). The most predictive feature was the metabolite
phenylalanine, an essential amino acid that can influence neuro-
transmitter synthesis, potentially affecting motor function in PD
patients. Specifically, phenylalanine is a precursor to tyrosine, which is
subsequently converted to dopamine, a key neurotransmitter involved in
motor control57. As the loss of dopamine-producing neurons in the
midbrain is one of the main hallmarks of PD, leading to the cardinal
motor symptoms of the disease, phenylalanine-derived pathways are
thought to play an important role in maintaining dopamine levels in PD.
Indeed, previous metabolomic analyses have already revealed alterations
in phenylalaninemetabolism inPD58–60, including changes observed in de
novo patients that cannot be explained by dopaminergic treatment
effects. Overall, while several confounding factors may influence the
levels of phenylalanine, given its role in dopamine synthesis, its differ-
ences between fast and slow progressors may warrant further
investigation.

Discussion
Digital gait sensors represent a sensitive, easy-to-use, and largely automated
method for patient monitoring, offering continuous and objective mea-
surement of gait patterns for disease symptom diagnosis and monitoring.

Our study has shown the potential of using digital gait sensor data as a
complementary biomarker tool for detecting clinically relevant outcomes in
PD, specifically to facilitate themonitoring ofmotor score performance, the
detection of gait disorders and mobility impairment, and specific comor-
bidities. In addition, we explored the synergies of integrating these data with
complementarymetabolomics and clinical data to improve accuracy for the
more challenging task of classifying comorbidity and motor score pro-
gression. While digital gait sensor data alone is insufficient as a standalone
biomarker, particularly for difficult-to-detect comorbidities and the more
complex continuous outcome variables that have been binarized using a
median threshold, its integration with other data sources can provide
valuable insights and improve classification performance. By employing
advanced machine learning techniques to analyze these data modalities
collected from the Luxembourg Parkinson’s Study, we have observed that
digital gait biomarkers can provide valuable information to distinguish
between PDpatients and controls, assess disease severity, and detect specific
gait impairments.

Although the outcomes to be predicted in our cross-sectional
study were already available from extensive clinical examinations, a
machine learning analysis focused on surrogate biomarker modeling
for disease monitoring was warranted for multiple reasons. First, for
the assessment of motor impairment, short gait-based tests may
provide a faster and less burdensome alternative to traditional clinical
examinations. These short digital gait assessments could facilitate the
monitoring of motor score progression by offering the possibility of
reducing the frequency and duration of clinical visits, using the gait
assessments as a source of information for interim assessment of
disease progression. Second, while comorbidities are often studied
only with a focus on future prognosis, assessing current comorbidities
during clinical disease monitoring, as done in this cross-sectional
study, remains a challenging and time-consuming task. This process
could benefit from more objective and easily measurable biomarkers.
Detection of comorbidities and other disease outcomes using digital
gait data, either alone or combined withmetabolomics measurements
and easily obtained demographic or clinical descriptors, could pro-
vide a faster and more objective assessment. In general, we believe
that digital sensor-based surrogate biomarker models for disease
monitoring can offer several practical benefits for detecting outcomes
that are difficult to assess in clinical examinations, including:
1. Helping to reduce frequent labor-intensive and complex clinical testing

with less frequent, simplermeasurements, thereby reducing healthcare
costs and improving patient compliance and quality of life.

2. Supplementing or replacing largely subjective assessments with
objective, data-driven assessments.

3. Enabling a more continuous monitoring to detect disease progression
and specific impairments, such as gait disturbances, earlier.

4. Facilitating remote monitoring and telemedicine, increasing access to
healthcare, especially for patients who have difficulty traveling to
clinics.

5. Supporting disease monitoring in clinical trials and research, as
detailed, objective data from digital sensors can be easily transmitted
for centralized analysis.

Specifically, our results indicate that digital gait biomarkers provide
significant informative value for detecting multiple diagnostic, severity and
comorbidity outcomes that are commonly assessed in routine clinical
practice and in PD research studies. When analyzed using current tree-
based ensemble learning methods such as Extreme Gradient Boosting, gait
data show robust diagnostic power for PDversus control classification, with
median cross-validated AUC scores between 83% to 92% for extracted time
series features. These gait features could serve as surrogate biomarkers for
time-consumingand labor-intensive clinical assessments of patientmobility
and specificmotor and gait impairments. They have significant informative
value for classifyingmotor severity, withmedian AUC scores up to 75% for
distinguishing between low or high MDS-UPDRS Part III scores. This is
particularly noteworthy given that gait analysis cannotmeasuremany of the
motor symptoms evaluated in the UPDRS Part III, such as speech, dysar-
thria, hypomimia, and tremor of upper extremities, and considering that
subjective views are involved in the assignment of rating scores. For specific
gait-related outcomes, such as freezing of gait (bestmedian AUC: 92%) and
occurrence of gait disorders (best median AUC: 74%), as well as general
mobility assessment using the PDQ-39 mobility sub-score (best median
AUC: 80%), they also provide strong diagnostic performance.

Themain advantage of using digital gait sensor data for assessing these
outcomes compared to classical clinical assessments lies in the ability to
provide continuous and objective monitoring, potentially even in the
patient’s home environment without the necessity for a hospital visit. This
real-time data collection could enable earlier detection of changes in motor
symptoms, allowing formore timely interventions. Although further testing
and optimization of gait sensors in the home environment is needed, con-
tinuous gait monitoring has the potential to significantly reduce the fre-
quency and duration of clinical assessments, thereby reducing the burden
on both patients and healthcare providers. Such a proactive approach may
help to ensure that treatment adjustments can be made promptly, based on
the patient’s current condition rather than on retrospective reports or
infrequent observations. Therefore, the primary added value of gait bio-
markers is expected to be in the monitoring of general motor and gait
impairments, offering a reliable means of tracking these impairments
over time.

In addition, while reliably detecting all comorbidities, non-motor
symptoms and motor score progression subgroups in PD remains chal-
lenging, for certain non-motor symptoms such as depression, there is a
rationale for an associationwith gait impairments andour data suggests that
gait sensors can provide useful information for classifying these outcomes.
Previous studies have already shown thatmild depressive symptoms in early
PD are associated with gait impairments, including slower and more vari-
able gait speeds61. Moreover, depressive symptoms and gait speed were
found to be bidirectionally associated, with slower gait speeds predicting
future depressive symptoms and vice versa62. Considering these prior stu-
dies together with the machine learning results obtained here for the Beck
Depression Inventory, this suggests that gait analysis may offer valuable
insights into the early detection andmonitoring of at least some non-motor
symptoms, such as depression.

Our study also indicated benefits of comparing and integrating gait
data with complementary data modalities. While the individual data
modalities—gait biomarkers, clinical features, and metabolomics—already
provided valuable insights for detecting specific disease outcomes, their
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integration resulted in increasedmedianAUCs for detecting the presence of
multiple comorbidities, with improvements in particular for classifying
outcomes such as dopamine dysregulation syndrome and hallucinations.
Combining gait sensor data with a few easy-to-measure metabolites and
clinical features to detect non-motor and motor outcomes could enable
more objective, less time-consuming, and continuous disease monitoring,
potentially facilitating more timely interventions.

Overall, this study indicates that the use of digital gait sensor data,
integrated with metabolomics and clinical data, holds promise for advan-
cing the diagnosis and severity assessment of PD and some associated
comorbidities. This approach can provide an easy-to-use tool for sensitive
disease monitoring, which could reduce the cost and effort associated with
frequent and time-consuming clinical visits.

While thesefindings are encouraging, several challenges still need to be
addressed before digital biomarkers can be used in routine clinical practice
for PD, and it is important to consider the following study limitations to
provide a balanced perspective and guide future research:
1. Sample size and cross-sectional design: The sample size in our study,

while adequate for the primary analyses, is insufficient for more
complex tasks such as unsupervised detection of disease subtypes. In
addition, the cross-sectional design of the study limits our ability to
draw conclusions about the longitudinal progression of PD.

2. Data collection and missing values: Gait measurements were taken
only once during a short walking exercise of at most a few minutes’
duration. Although this approach reduces patient burden, it does not
capture long-term variations in gait patterns. We note that there was a
small percentage of missing values in the gait data, specifically 0.62%,
with a maximum of 1.24% for any single feature. These missing values
can be due to factors such as participant non-compliance, technical
issues, and brief measurement interruptions. However, given the very
low percentage of missingness, it is unlikely that this has significantly
affected the robustness and reliability of the analyses.

3. Predictive power and use as a standalone biomarker:While digital gait
sensor data showed significant potential in predicting various PD-
associated outcomes, our results suggest that it is not sufficient as a
standalone biomarker for most tasks. In particular, for difficult-to-
detect comorbidities that are not directly related to gait impairment,
digital gait data should only be considered as a complementary source
of information rather than a standalone biomarker. Further optimiza-
tion and validation of themodels are neededbefore they can be applied
in practice.

4. Integration ofmultiple datamodalities:While we use standardization to
adjust the scales for variables fromdifferentdatamodalities, the inherent
differences in the distribution characteristics of thesemodalities can still
pose challenges. Gait data, clinical variables, and metabolomics data
each follow different and complex statistical distributions, which can
affect the performance of machine learning algorithms. We have avoi-
ded using machine learning algorithms that require specific data dis-
tributions as input; however, the distributional differences between
different input data types can still lead to biased model training, e.g., if
certain data modalities dominate due to their statistical properties or
larger variance. However, manual inspection of the feature selection
results did not suggest the dominance of features fromonly a single data
type. Furthermore, the integration of the gait data with metabolomics
and clinical variables improved cross-validated predictions for some of
the outcomes considered. We acknowledge that there may still be
opportunities to furtheroptimizeand refinedata integrationbyapplying
other data transformation or normalization approaches. However,
because such transformations can also introduce additional noise into
the data, we decided to use a simple standardization approach that
already provided satisfactory cross-validation results. This approach
balances the need for data consistency and model performance while
minimizing the risk of introducing artifacts or bias.

5. Generalizability: The study cohort was recruited from a single center,
which may limit the generalizability of the findings to broader

populations. Future studies involvingmore diverse cohorts are needed
to optimize, validate, and generalize the results before the models can
be applied in practice.

6. Clinical relevance of predicted outcomes: The outcome variables
considered for prediction, such as the MDS-UPDRS III motor scores,
gait and motor impairment scores, comorbidity and non-motor
outcomemeasures, and progression rate subgroups, play an important
role in the monitoring of PD, but do not cover all aspects of the
complexity of PD. Other potential clinically relevant disease subtypes
that have been proposed in recent years63, but we lack sufficient sample
sizes and adequate ground truth data from neuroimaging to study
these recently proposed subtypes. In addition, due to the cross-
sectional nature of the study, the predictive models do not provide a
future prognosis, but rather assess current conditions, which limits
their use in long-term disease management.

7. Technical and practical challenges: Implementation of digital gait
sensor technology in routine clinical practice requires overcoming
technical challenges related to data collection, transmission, and pro-
cessing that go beyond the application ofmachine learningmodels and
that may necessitate adaptation to the specific equipment and envir-
onment to ensure accuracy and reliability in different clinical settings.
Finally, patient compliance and ease of use are critical factors thatmust
be adequately addressed in any future study.

Future studies should focus on refining the presented disease mon-
itoringmodels to address these challenges, investigating their feasibility and
reliability for home assessment, and exploring their application in standard
clinical practice to maximize their impact on patient care. While our study
focused primarily on diseasemonitoring applications, it is also important to
acknowledge the potential for using such integrative data for further pre-
dictive tasks, e.g., to identify additional disease subtypes beyond the fast vs.
slow progression classification considered here. Multimodal approaches to
disease subtyping could lead to more tailored therapeutic strategies and
improve clinical care by targeting specific pathophysiological mechanisms
associated with each subtype. However, detailed subtype stratification
requires a larger and more diverse patient cohort, and previously proposed
PD subtypes such as the “brain-first” and “body-first” classifications63 rely
heavily on advanced imaging data such as dopamine imaging and structural
MRI, which were not available for the studied cohort. In addition, further
investigations should aim to differentiate PD from other neurological dis-
orders that present with parkinsonism, such as atypical parkinsonian syn-
dromes. Overall, while these challenges still need to be addressed, this
research highlights the significant potential of digital biomarkers and
multimodal data integration approaches for realizingpersonalizedmedicine
for neurodegenerative diseases.

Methods
Study population
Participants in this study were recruited from the nationwide,monocentric,
observational, longitudinal Luxembourg Parkinson’s Study64 under the
auspices of the National Center of Excellence in Research on Parkinson’s
Disease (NCER-PD). All participants gave written informed consent, and
the study received a positive opinion from the National Research Ethics
Committee (CNER ref: 201407/13:), ensuring compliance with all relevant
ethical regulations. All research involving human research participants,
material, or data were performed in accordance with the Declaration of
Helsinki. To analyze cross-sectional gait changes associatedwith PD, digital
gait sensor data were collected from 162 PD patients and 129 controls
participating in the Luxembourg Parkinson’s Study. Table 6 presents rele-
vant baseline characteristics for both PD patients and controls derived from
this data set.

PD diagnosis and monitoring. PD was diagnosed according to the
United Kingdom Parkinson’s Disease Society Brain Bank (UKPDSBB)
criteria65 and we use the term diagnosis throughout this manuscript to
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refer to the diagnostic status (PD or control) at the time of the baseline
clinical assessment. Controls were included based on the following cri-
teria: no evidence of neurodegenerative disease by clinical assessment and
available imaging; age over 18 years; no current pregnancy or active
cancer. Gait sensor data were used to predict the diagnostic status of PD
vs. control against these gold standard criteria using cross-validation. PD
and associated co-morbidities were monitored using the Unified Par-
kinson’s Disease Rating Scale by the Movement Disorder Society (MDS-
UPDRS)66 and other common clinical assessments for PD, including the
Parkinson’s Disease Questionnaire (PDQ-39)67, the Hoehn & Yahr
scale68, the Freezing of Gait Questionnaire (FOGQ)69, the Montreal
Cognitive Assessment (MoCA)32, the Starkstein scale for apathy16, and
the Beck Depression Inventory (BDI-I)17. While diagnostic status, MDS-
UPDRS III motor score, and gait and mobility score-related outcomes
were predicted using digital gait data alone, for themore challenging tasks
of predicting comorbidities, non-motor outcomes, and disease progres-
sion subgroups, we additionally built predictive models combining the
gait data with clinical and metabolomics data (see “Data collection”
section below).

Data collection
Gait data. Gait data were collected using the eGaIT (embedded Gait
Analysis using Intelligent Technologies) system17 with acceleration

sensors attached to the shoes for 291 subjects of the Luxembourgish
Parkinson’s Disease Study, including 162 PD patients and 129 controls.
Measurements were made during as part of a single clinical visit during
short walking exercises lasting a few minutes at most (no longitudinal
measurements across multiple visits were performed in this study).
Specifically, functional gait performance and mobility was evaluated
using the “Timed Up and Go” (TUG) assessment70. Briefly, this test
involves an individual standing from a seated position, walking 3.5
meters, turning around, returning to the chair, and sitting down. During
the assessment, the participant is wearing the eGaIT digital sensor system
on the shoes, continuously collecting gyroscope and accelerometer data
to compute standardized gait parameters. In addition to this single-task
assessment, the participants also performed the TUG test in parallel with
further tasks, such as carrying a glass of water (“TUGDual Task”) during
the walk at either fast speed or at their preferred speed (“Preferred Dual
Task”). These dual task tests are designed to evaluate the individual’s
ability to handle tasks that require both cognitive and physical engage-
ment simultaneously. Previous studies have indicated that the dual-task
versions of the TUG can be more predictive of certain age- or disease-
related impairments and outcomes of interest, such as fall risk, compared
to the single-task version71–73. More detailed descriptions of the collected
gait parameters and the derived features are provided in the Supple-
mental Material. For the data analysis, both time series features derived
from the measured raw signals (spatial coordinates over time) and the
extracted gait parameters for all tasks (considered as separate features)
were used as input. The extracted gait parameters reflect quantitative
features of the humangait, such as themean and standard deviation of the
stride length, the gait speed, or the duration of each stride. They have been
computed from the raw gait sensor measurements using proprietary
software by the company Portabiles69 (see the detailed list of gait features
in Supplementary Table 1). By contrast, the time series features are less
interpretable butmore comprehensive. They include generic quantitative
characteristics of longitudinal spatial measurement data, such as statis-
tical moments (mean, standard deviation, skewness, kurtosis), distribu-
tional characteristics captured through quantiles and range,
autocorrelation, cross-correlations, zero-crossing rate, and detrended
fluctuation analysis. Additional features include lumpiness, stationarity,
level shifts, variance changes, and information-theoretic measures, such
as the spectral entropy (see Supplementary Table 2 for the complete list
and brief description of all computed features).

Clinical data. The clinical data from the Luxembourg Parkinson’s Study
included in the analysis encompasses a collection of demographic vari-
ables, questionnaires, and clinical scores for motor and non-motor
symptoms. It covers the baseline clinical visit of the entire Luxembourg
Parkinson’s Study cohort of currently 736 patients and 855 controls,
including the subset of 162 PD patients and 129 controls covered by the
digital gait sensor data, andwe focused only on these overlapping subjects
for our integrative analyses. Importantly, the health outcome variableswe
considered were neither overlapping with nor related to the clinical
variables used as input for the integrative machine learning analyses.
Specifically, the outcome variables considered in the study include the PD
vs. control diagnostic status, the motor score severity as measured by the
MDS-UPDRS Part III sum score66, outcomes related to gait and mobility
impairment, including the freezing of gait (FoG) severity score from the
FOGQ questionnaire69, the presence/absence of general gait disorders as
part of the standard clinical assessments in the Luxembourg Parkinson’s
Study10, the mobility subscore from the PDQ39 questionnaire16,
comorbidities and non-motor outcomes (including cognitive impair-
ment as measured by the Montreal Cognitive Assessment (MoCA)32,
dopamine dysregulation syndrome (MDS-UPDRS Part I, question 1.6),
dyskinesia (MDS-UPDRS Part IV, question 1), depression as measured
by the Beck Depression Inventory (BDI-I)73, hallucinations (MDS-
UPDRS Part I, question 1.2), apathy asmeasured by the Starkstein scale16,
and quality of life (PDQ-39)74), and disease progression rate subgroups

Table 6 | Overview of baseline characteristics of the cohort

Characteristic PD Controls P-value (PD
vs. controls)

N (female/male) 162 (116/46) 129 (77/52) 0.03

Age in years at assessment
(mean ± stddev.)

64.3 ± 10.7 58.5 ± 12.2 2.7E-05

MDS-UPDRS III
(mean ± stddev.)

28.9 ± 13.5 3.1 ± 5.2 <2.2E-16

Hoehn & Yahr
(mean ± stddev.)

2.0 ± 0.5 - -

Disease duration since initial
symptom
(mean ± stddev.)

12.5 ± 7.1 - -

BMI (kg/m2)
(mean ± stddev.)

27.4 ± 4.0 27.0 ± 4.7 0.42

Presence of gait disorders
(yes/no)

64/98
39.5%/60.5%

4/125
3.1%/96.9%

6.7E-16

FOGQ
(mean ± stddev.)

3.2 ± 3.6 0.2 ± 0.8 1.1E-11

PDQ-39
(mean ± stddev.)

21.7 ± 14.1 5.5 ± 8.1 <2.2E-16

MoCA
(mean ± stddev.)

25.5 ± 3.1 27.4 ± 2.3 2.5E-09

Dopamine dysregulation
syndrome (severity scale
from 0 to 4, mean ± stddev.)

0.1 ± 0.4 0 ± 0.3 0.26

Hallucinations (severity
scale from 0 to 4,
mean ± stddev.)

0.1 ± 0.5 0 ± 0.1 0.0011

Dyskinesias (severity scale
from 0 to 4, mean ± stddev.)

0.3 ± 0.8 - -

Apathy (Starkstein)
(mean ± stddev.)

13.4 ± 5.1 9.2 ± 3.9 2.7E-14

Overview of baseline characteristics of the cohort (column 1) and the differences between PD
patients (column2) and controls (column3), aswell as the nominal p-value for the significance of the
difference (column 4; the two-sidedWelch’s t test was used for quantitative data and Fisher’s Exact
Test for categorical data). For characteristics with continuous values, columns 2 and 3 show the
mean and standard deviation in patients and controls, respectively; whereas for categorical
variables, relative numbers per group or percentages are shown. Dopamine dysregulation
syndromewasassessedusingMDS-UPDRSPart I, question1.6; hallucinationsusingMDS-UPDRS
Part I, question 1.2; and dyskinesias using MDS-UPDRS Part IV, question 1.
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(fast vs. slow progressors, defined as the patients in the top and bottom
quartiles, respectively, of the mean annual change in MDS-UPDRS III
motor score27).

As input features for the clinical and integrative machine learning
analyses,weused from the clinical data only a fewcarefully selected variables
that were distinct from the outcome variables, including age, sex, bodymass
index (BMI), anddisease duration, aswell as information fromanon-motor
test, the Sniffin’ Sticks test of olfactory function, which has previously been
shown to have significant predictive power in discriminating between PD
patients and controls74. Hyposmia, the reduced ability to smell and to detect
odors, is a significant but not specific symptom associated with PD and the
prodromal stages of the disease. It provides a sensitive and easy-to-measure
early indicator that can be used alongside other clinical data to enhance the
predictive power of PD diagnostic models. Finally, age and sex were
investigated as potential confounders in the analyses to ensure that the
results are not biased by these factors. Themotivation behind this small and
simple selection of only five clinical input features (age, sex, BMI, disease
duration, and olfactory function) was that a surrogate biomarker signature
for outcomes typically derived from conventional clinical assessments
would only add value if the burden of the data collection was significantly
lower compared to the standard clinical examination.

Metabolomics data. Blood plasma metabolomics measurements were
obtained through high-resolution liquid chromatography-mass spec-
trometry (LC-MS) and reflects the baseline clinical visit. This involved
the use of a Waters ACQUITY Ultra Performance Liquid Chromato-
graphy (UPLC) system coupled with a Thermo Scientific Q-Exactive
high-resolution/accurate mass spectrometer. The spectrometer was
equipped with a heated electrospray ionization (HESI-II) source and an
Orbitrap mass analyzer, operated at a mass resolution of 35,000. This
setup allowed for detailed profiling and quantification of metabolites
present in blood plasma samples from 549 PD patients and 590 control
subjects in the Luxembourg Parkinson’s Study. The dataset and experi-
mental procedures have been described in detail in the context of a
previous study75. A complete list of the covered metabolites, including
their public database identifiers, chemical properties, and associated
functional metabolite classes is provided in Supplementary Data 1.

Intersection set of patients. All three types of data (gait, metabolomics,
and clinical) were available for 151 PD patients. This intersection set was
used for multimodal, integrative machine learning analyses to detect PD

comorbidities and non-motor symptoms. For motor score progression
classification, a further filtering was performed to focus on patients with
at least four annual clinical visits. This allowed for a robust calculation of
the average annual change inMDS UPDRS III motor score and selection
of the patients in the top or bottom quartile of this change, corresponding
to 54 fast and 38 slow progressors, respectively. In contrast, for the
unimodal machine learning predictions of PD vs. control diagnostic
status, MDS-UPDRS III motor score prediction, and gait and mobility
impairment detection, only digital gait sensor measurements were used
(covering 162 PD patients and 129 controls), as these outcomes are
expected to be more closely related to gait changes than comorbidities
and non-motor symptoms. An overview of the data flow for the study is
shown in Fig. 4, highlighting the samples and datasets used for unimodal
and multimodal analyses.

Data pre-processing
The data preprocessing performed in this study covered the clearing, fil-
tering and transformation of gait sensor data, clinical data, and metabo-
lomics measurements.

For the gait measurements, we first integrated the data across all gait
tasks (see “Data collection” section) as separate features from subjects who
participated in every task to enable a comprehensive analysis acrossmultiple
types of gait assessments. To imputemissing values, the R software package
missForest, an iterativemethod that uses random forests for imputation,was
employed as part of the cross-validation process76. Since only 0.62% of the
gait data was missing and the maximum percentage of missing values for
any feature was 1.24%, none of the gait features had to be filtered out from
the analysis. The method was applied after setting a random seed to ensure
the reproducibility of the imputation process. Only features where more
than 50% of the values were missing were completely removed from the
dataset. Moreover, features that showed no variance (constant features)
were identified and removed, since they provide no useful information for
distinguishing between different observations in predictive modeling.

For the clinical data, in addition to the imputation and removal of
constant features and variables exhibiting more than 50% missing values,
categorical features containingmore than ten categories were also removed
to simplify the model and avoid issues with high dimensionality, which can
lead to model overfitting. The remaining data was then converted to
numeric format to provide a suitable input for machine learning. However,
to limit the model complexity, we decided to use only a few manually
selected variables from the clinical data for model building (see “Clinical

Fig. 4 | Data flow for the Luxembourg
Parkinson’s Study. This figure illustrates the dis-
tribution of samples and the overlapping subsets of
data types in the Luxembourg Parkinson’s Study.
The study included 736 Parkinson’s disease (PD)
patients and 855 controls, all of whom provided
clinical data. Out of these, 162 PD patients and 129
controls had digital gait data collected. In addition,
metabolomics data were available for 549 PD
patients and 590 controls. For 151 PD patients, all
three data types available (gait, metabolomics, and
clinical data) were available and used for integrative
analyses. Unimodal analyses were performed for all
subjects with available gait data. The color-coded
boxes indicate the specific datasets used for unim-
odal and multimodal analyses.
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data” sub-section in the “Data collection” section), and none of these fea-
tures were affected by the missing value filter.

The pre-processing of the raw LC-MS metabolomics data has already
been described in detail for a previous study75. Briefly, the pre-processing
generated metabolite abundances in the form of log-transformed, batch
normalized and imputed peak-area data (i.e., total ion counts, representing
the integrated area-under-the-curve). For the batch normalization, experi-
mental samples had been randomized across the batches and each metabo-
lite’s raw values were divided by the median value of that metabolite in each
batch, standardizing all batches to have amedian of one. For eachmetabolite,
theminimumvalue across the batches for themedian-scaleddatawasused to
impute themissingvalues, becausemissingness in this typeofdata is generally
the result of measurements falling below the detection limit. Finally, the
batch-normalized and imputed data was transformed using the natural
logarithm.Thiswasmotivated by a comparisonof averagedensity estimation
plots of the peak-area data before and after log transformation, suggesting
that the log-transformed data better follows a normal distribution.

Machine learning, cross-validation, and model interpretation
A schematic overview of the overall study workflow, including the different
typesof input datamodalities used for cross-validatedmachine learning and
the main prediction goals in terms of different outcome categories (PD vs.
control diagnostic status, motor scores, gait and mobility impairments,
comorbidities, non-motor symptoms, progression rates) is shown in Fig. 1.
For the prediction of diagnostic status, motor scores, and gait and mobility
impairments, which are closely related to changes in gait characteristics, we
relied solely on the digital gait sensor data, whereas for themore challenging
task of detecting comorbidities, non-motor symptoms and disease pro-
gression rate subgroups, we combined gait, omics, and clinical data to
exploit the synergies of these different data modalities.

In this study, we employed a 10-fold cross-validation (CV) framework
to evaluate the performance of machine learning models developed to
predict clinically relevant PD outcomes using digital gait biomarkers and
complementary metabolomics and clinical data. Hyperparameter optimi-
zation was performed within the CV, but only using the internal tuning
procedures of the modeling approaches, otherwise default parameters were
used. We did not implement additional custom parameter tuning, as our
experience shows that the benefit for cross-validation performance is small,
while the runtime requirements and the risk of overfitting increase.Wenote
that the internally selected parameters may vary for each cross-validation
fold. Therefore, for reproducibility purposes, rather than listing internal
parameter selections for numerous cross-validation cycles and machine
learning methods, we have made the code for all analyses available on
GitLab (https://gitlab.com/uniluxembourg/lcsb/biomedical-data-science/
bds/digital-gait-pd). We acknowledge that further optimization of the
models presented in this article is still possible, but the focus of the present
study was to compare the model predictivity achievable using standard
machine learning implementations for different input data sources and
outcomevariables, rather than tuning individualmodels. This approachwas
chosen to provide a baseline understanding of model performance under
default conditions, and further optimization beyond the scope of this article
may be explored in future studies with larger sample sizes.

For all classification tasks, the average cross-validated area under the
receiver operating characteristic curve (AUC) was used as the evaluation
metric. Although the AUC could have been calculated for the entire dataset
instead, we chose to use cross-validation to assess the stability and robust-
ness of performance statistics across different data subsets. This approach
helps ensure that the model’s performance is consistent and not overly
dependent on any single subset of the data, by allowing us to evaluate the
median absolute deviation (MAD) from the median AUC across the cross-
validation cycles as a robust measure of prediction variability. The AUC
statistic was preferred for measuring the performance of a binary classifier,
as in contrast to other commonmeasures, such as the accuracy, it considers
both the sensitivity and specificity of the model across different threshold
settings.

The machine learning models considered in this analysis included
Linear SVM (Support VectorMachine), RBF (Radial Basis Function) SVM,
Random Forest77, Stochastic Gradient Boosting78, Extreme Gradient
Boosting (XGB)14 and Deep Boosting79. Each of these approaches has dis-
tinct characteristics and assumptions that make them suitable for different
types of data and analysis needs. Logistic regression and linear SVMs are
often used for binary classification tasks, providing probabilities that a given
input point belongs to a certain class. Radial Basis Function (RBF) SVMs are
more flexible in handling non-linear relationships via a kernel function,
which implicitly maps data points to a high dimensional space. Random
Forest, Stochastic Gradient Boosting and Deep Boosting are ensemble
methods that aggregate the predictions ofmultiple decision trees to improve
the model’s accuracy and robustness.

For our comparison of integrated versus individual data sources in
detecting comorbidities, non-motor symptoms anddisease progression rate
subgroups, we focused on the XGB approach. This decision was made to
avoid the extensive runtime requirements associated with applying all
machine learning methods in a cross-validation for all outcomes, and
because our primary goal for this part of the study was to compare the
informative value of different input data types rather than different algo-
rithms.We chose the XGB approach for this purpose because, in our initial
empirical investigations, it provided a suitable trade-off between runtime
performance and cross-validated AUC performance.

To aid in the interpretation of these models, we extracted SHAP
(SHapley Additive exPlanations) values15. SHAP values help in under-
standing the impact of each feature on the model’s prediction for an indi-
vidual sample, thereby providing insights into the behavior of themodel in a
transparent and interpretable manner. This is particularly important in
medical applications such as ours, where understanding the decision-
making process of themodel can provide clinical insights and aid in further
research and development of treatment strategies.

Overall, the motivation behind the outlined methodology was to
provide both a thorough evaluation and optimization framework for pre-
dictivemodeling and to ensure that themodels are interpretable, to promote
trust and deeper understanding of their practical implications in clinical
settings. All analyses were implemented in the R statistical programming
software (version 4.2.080) and run on a physical machine (CentOS 7.9.2009,
Kernel: 3.10.0-1160.25.1.el7.x86_64).

Data availability
The personal clinical, gait, and metabolomics data used for this manuscript
is not publicly available as they are linked to the Luxembourg Parkinson’s
Study and its internal regulations. Requests for access to the dataset can be
directed to request.ncer-pd@uni.lu.

Code availability
The analyseswere implemented inR (v4.2.0) and the code is available under
the MIT license in the following GitLab repository: https://gitlab.com/
uniluxembourg/lcsb/biomedical-data-science/bds/digital-gait-pd.
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