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Five million nights: temporal dynamics in
human sleep phenotypes
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Sleep monitoring has become widespread with the rise of affordable wearable devices. However,
converting sleep data into actionable change remains challenging as diverse factors can cause
combinations of sleep parameters to differ both between people and within people over time.
Researchers have attempted to combine sleep parameters to improve detecting similarities between
nights of sleep. The cluster of similar combinations of sleep parameters from a night of sleep defines
that night’s sleep phenotype. To date, quantitative models of sleep phenotype made from data
collected from large populations have used cross-sectional data, which preclude longitudinal
analyses that could better quantify differences within individuals over time. In analyses reported here,
we used five million nights of wearable sleep data to test (a) whether an individual’s sleep phenotype
changes over time and (b) whether these changes elucidate new information about acute periods of
illness (e.g., flu, fever, COVID-19). We found evidence for 13 sleep phenotypes associated with sleep
quality and that individuals transition between these phenotypes over time. Patterns of transitions
significantly differ (i) between individuals (with vs. without a chronic health condition; chi-square test;
p-value < 1e−100) and (ii) within individuals over time (before vs. during an acute condition; Chi-
Square test; p-value < 1e−100). Finally, we found that the patterns of transitions carried more
information about chronic and acute health conditions than did phenotype membership alone
(longitudinal analyses yielded 2–10× as much information as cross-sectional analyses). These results
support the use of temporal dynamics in the future development of longitudinal sleep analyses.

Sleep monitoring has become widespread with the rise of affordable wear-
able devices1. While the National Institutes of Health (NIH) recommends
that adults obtain 7–9-h of sleep in the form of a single (monophasic) sleep
period per 24-h period, large-scale, real-world sleep studies observed a
diversity of sleep structures, from short monophasic to varied-length
polyphasic, and sleep characteristics2–5. Researchers have attributed such
variability, both between people and within people over time, to several
health- and daily living-related factors2–9. Because of this variability, con-
verting sleep data from individuals in the real world into actionable insights
to improve one’s health remains challenging. Tomake it possible to develop
tools that provide such health insights, we need better methods for quan-
tifying differences between people and within people over time.

Researchers have developed a promising large-scale sleep data clus-
teringmodel to identify clusters of sleepwith insomnia-like characteristics2.

Katori et al. captured characteristics of an individual’s sleep behavior using
sleep features (e.g., sleep time, sleep percentage, and number of sleep seg-
ments) extracted from 7-night periods of sleep. They extracted several
clusters from a topological manifold of the sleep features and referred to
these clusters as sleep phenotypes. They identified “insomnia-like” pheno-
types characterized by clusters of nights with short, highly fractured sleep, as
well as phenotypes related to social jet lag and shift work. These results
suggest that sleep phenotypes derived from a topological manifold could be
a useful classification to quantify differences in sleep behavior between
people.

However, such large-scale analyses of sleep phenotype have, to date,
used cross-sectional data, which preclude longitudinal analyses that could
better quantify differenceswithin individuals. Individual differences in sleep
are relevant to acute conditions, such as illness, as well as changes in
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behavior, such as those related to consumption, exercise, or stress, and thus
are essential for sleep-based assessment of one’s health. If sleep phenotypes
represent meaningful differences in sleep behavior, then within-individual
transitions between phenotypes over time in a population, whichwe refer to
as temporal dynamics, should be related to the population’s health. Thus,we
hypothesized that the temporal dynamics of a healthy population, primarily
driven by daily living, should be different from those of an ill population.

Here, we assess whether an individual’s position in a clustering model
of sleep phenotypes changes over time and whether such changes contain
additive information about health conditions. Our dataset of 5.10 million
nights over 33,152 individuals allows us to investigate this question in
greater depth and at higher resolution compared with previous studies,
which were based on only 3–7 recorded sleep nights per participant (Katori
et al.). We adapt Katori et al.’s data processing pipeline to our 5-million-
night dataset while treating each of our sleep periods (3-6 nights) inde-
pendently and obtain a set of cohesive sleep phenotypes that include both a
recommended sleep phenotype (8-hour and monophasic) and insomnia-
like sleep phenotypes (<6.5 h and/or segmented).Wediscover a spectrumof
variability in the degree towhich individuals remain in the same cluster over
time. We model possible movements from one cluster to another as edges
between nodes in a graph and set the weight of each edge as the probability
that an individual in a given population transitions between the clusters
associated with that edge. To assess relevance to particular health condi-
tions, we test (i) whether patterns in transition probabilities of a chronically
ill cohort differ from those of a generally healthy cohort and (ii) whether
patterns in transition probabilities during illness differ from before illness in
the same group of individuals. We discover that these temporal dynamics
are perturbed by various health conditions, including diabetes, sleep apnea,
flu, fever, and COVID-19. We further find that our temporal dynamics
model captures multiplicatively more information about these health con-
ditions than static clusters on its own. Our findings show that sleep phe-
notypes change over time and that temporal sleep dynamics carry
significant, nonrandom information about a range of health conditions.

Results
Adaptation of previous sleep data clustering model to TemPre-
dict Dataset
We performed our analyses using sleep-wake time series and self-report
survey responses collected from 33,152 individuals (age = 44.4 ± 12 years
(mean ± std.); 19,792 males; 12,571 females; 32 others; 757 unknown; see
Table 1 for more detail) between January 1st and October 24th of 2020, as
part of the TemPredict Study10. We obtained usable, wearable data from
these participants using a commercially available smart-ring wearable
device (Oura Ring) for 4,682,978 (91.89%) nights out of 5,095,798 potential
nights of data.

As shown in Fig. 1a, b, we first deconstructed each night of a
sleep–wake time series into sets of long and short sleep periods that
represent sleep structure and then extracted sleep quality features from each
type of sleep period as defined inpriorwork2.As shown in thebottomhalf of
Fig. 1b, we extracted nine sleep characteristics to capture the architecture of
an individual’s sleep in each night. We applied similar steps as Katori et al.
for constructing our long and short windows from the sleep–wake time
series and reported themean and standard deviation of each index shown in

Table 2. Katori et al. found a Sleep Time Long mean of 6.60 hours while we
found Sleep Time Long to be 6.99 h on average. Katori et al. found aWake
Time Long mean of 170.25min, while we found a Wake Time Long of
64.4min on average. We expected differences in these sleep feature values
for two reasons: Our population was 44.4 years old on average compared
with 62 years for the population studied by Katori et al. In addition, our
population was self-selected from Oura Ring users, while the Katori et al.
population represents a “healthy volunteer” selection bias11; for both rea-
sons, some differences in sleep feature values are to be expected.

Staticsleep landscape revealsmajor sleepcluster and insomnia-
like minor sleep clusters
To capture a persistent sleep phenotype, we constructed non-overlapping
periods of 3–6 consecutive nights, which we refer to as sleep periods. We
obtained 766,885 sleep periods after applying the exclusion criteria, and we
extracted themeanand standarddeviationof the 9nightly indexes over each
period. We performed Uniform Manifold Approximation and Projection
(UMAP)with 2 components onour 766,885 by 18 featurematrix to obtain a
2-dimensional representation of the data (Fig. 1d).

Figure 1d shows the 2-dimensional representation as a scatter plot,
where the first UMAP component is the x-coordinate and the second
UMAP component is the y-coordinate for each point.We observed the data
from 5 clusters that are substantially isolated from each other: one major
cluster with four minor clusters off the left side. We used DBSCAN to
identify the clusters, though the precise clustering method is flexible given
the large space between clusters. For the major cluster (Cluster 0), we
identified 650,339 periods (Fig. 1d, in blue). For the minor clusters, we
identified 56,131periods inCluster 1 (Fig. 1d, red), 45,488periods inCluster
2 (Fig. 1d, green), 14,845 periods in Cluster 3 (Fig. 1d, yellow), and 82
periods in Cluster 4 (Fig. 1d, pink).

To understand whether each cluster represents a sleep phenotype, we
examined the characteristics of the sleep periods that make up each cluster.
Figure 1f showsa typical sleepperiod fromeach cluster.The subfigures show
the long and short sleep windows from all nights of each sleep period. Short
windows, shown as thick lines, are less than 3 h in length and longwindows,
shown as thin lines, are greater than 3 hours in length. As illustrated in
Fig. 1f, nights can include one or more sleep windows, with the most
common nightly combinations of long, short, long+ short, long+ long,
and short+ short. In eachnightwithmultiplewindows (represented jointly
by a ‘+’), a stretch of wakefulness >60min in duration separates the two
windows.

We found that despite compression through UMAP, each cluster
could be described by a characteristic that dominated the cluster (Fig. 1f).
Cluster 0 consisted of sleep periods where every night of the 3–6 nights
had exactly one longwindow. Themajority (84.8%) of all sleep periods are
part of Cluster 0, while the remaining sleep periods (15.2%) are part of
Clusters 1–4, orminor clusters. Cluster 1 consisted of sleep periodswith at
least one short window night, which describes nights where sleep is
interrupted or very short. Cluster 2 consisted of sleep periods with at least
one long+short window night. Cluster 3 consisted of sleep periods with at
least one long+ long window night. Cluster 4 consisted of sleep periods
comprised only of nights with very short sleep. We believe that the
interaction between the UMAP algorithm and the LW Count and SW
Count features, which only take on a small number of possible values,
played a major role in the existence of our cluster characteristics. We
treated each cluster as a high-level sleep phenotype for our initial temporal
analysis.

The minor clusters all exhibited some insomnia-like patterns, marked
by short sleep duration or sleep disruption, as defined in the DSM-5-TR
criteria12. DSM-5-TRdescribesmiddle insomnia as the inability tomaintain
sleep, defined by frequent waking during the night after sleep onset beyond
20–30min, and late insomnia as early-morning wakefulness, defined by
waking before sleep reaches 6.5 h. Clusters 1–4 exhibit nights either con-
taining at least a 60-min block of wake or less than 6.5 h of total sleep. We
describe these clusters as insomnia-like because, if these patterns continued

Table 1 | Demographics of participants (N = 33,152; 757
unknown)

Age bin

Sex 18–19 20–29 30–39 40–49 50–59 60–69 70–79 80+

Female 51 1145 2952 3738 2965 1349 349 22

Male 79 2271 5539 5930 3819 1628 494 32

Other – 2 7 9 8 4 1 1

Number of participants in each demographic by age and sex.
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Fig. 1 | Obtaining Sleep Phenotypes from Five Million Nights of Sleep. Con-
struction of sleep landscape and high-level phenotypes. a, b 3–6-night sleep periods’
timing (top left) are broken down by night (top right), and assessed for duration of
individual sleep and wake bouts. c Each night is featured into numerical values for
each of the 18 parameters (bottom; blue: long window parameters; green: short

window parameters). d Projection of features into 2D space defined by first two
UMAP components; 5 clusters are revealed. e Total number of 3–6-night sleep
periods in each cluster. f Example of a typical 3–6-night sleep period from each
cluster with cluster characteristics used to describe sleep phenotypes. Short windows
are shown with thick lines, while long windows are shown with thin lines.
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for at least 3 months, an individual might be diagnosed with insomnia
according to the DSM-5-TR insomnia disorder criteria.

High-level sleep phenotype is dynamic within individuals
over time
To testwhether individuals’ sleepphenotype changesover time,we analyzed
the distribution and transition patterns of the sleep periods for each indi-
vidual (mean n = 23.13 ± 13.74 sleep periods for 33,152 individuals). First,
we assessed whether an individual’s sleep periods tended to be evenly or
unevenly distributed across clusters. A heavily uneven distribution,
resembling a Dirac delta distribution, would indicate that an individual’s
sleep phenotype is static over time (i.e., their sleep phenotypes were not
evenly distributed across clusters but heavily localized to one cluster). A
more even distribution would indicate more sleep phenotype changes over
time. Figure 2d shows the within-individual distribution of sleep periods
across clusters for every individual inourdataset. 71.5%of individuals spend
>5% sleep periods in minor sleep clusters, indicating a partially uneven
distribution. 9.2%of these individuals spend 40%ormore of their total sleep
periods in one of the minor sleep clusters, indicating a more even dis-
tribution. These are individualswho appeared to consistentlymove between
sleep phenotypes.

Second, we tested whether transitions between temporally adjacent
sleepperiods froman individual indicate typical changes in sleepphenotype.
We constructed a directed graphwhere each cluster is a node, and each edge
weight is the number of transitions between two nodes divided by the
number of transitions starting from the first node (Fig. 2a). In other words,
the edge weight was the probability of transitioning to the end node given
that one started in the start node (Fig. 2b). If sleep phenotype was static over
time, the diagonal of the adjacency matrix in Fig. 2b would have been the
strongest weight in each row. However, this was not the case, as the first
column (Cluster 0) was the strongest in each row. This temporal transition
model showed that the sleep phenotype was not stationary over time.

Transitions from Cluster 0 to the minor clusters occurred after 11.9%
of Cluster 0 sleep periods. Transitions from the minor cluster to another
minor cluster occurred after 28-31% of minor cluster sleep periods. Both
results show that the stability of sleep phenotype varied across individuals
and time.

Subclusters describe fine-grained phenotypes; 1 recommended
and 12 alternative phenotypes
Katori et al. discovered that subdivisions of each cluster allowed them to
construct more distinct sleep phenotypes. Following this finding, we
explored subdividing our clusters as well. Katori et al. used a density-based
clustering method, which is not well suited for UMAP embedding repre-
sentations because the UMAP algorithm does not preserve the density
information of the original feature space. Thus, we applied a geometry- and
a rule-based approach (see Section “Subcluster Construction inMethods”),
obtaining 7 subclusters from Cluster 0 and 3 subclusters of Cluster 1.

We applied a rule-based subdivision for Cluster 1 after finding that
Cluster 1 exhibited multiple sleep patterns. We found that a subset of sleep
periods in Cluster 1 contained nights withmultiple long sleep windows and
extracted these sleep periods as Subcluster 1c. This is shown by the LW
Count (the number of long windows per night on average in a sleep period)
of Subcluster 1-c being greater than 1, as shown in Table 3 (LWCount, 1-c:
1.188).We extracted another set of sleepperiods in the remainder ofCluster

1 that exhibited shorter than typical longwindows (LWLen, 1-b: 4.606 h) as
Subcluster 1-b. The remaining sleep periods are described as Subcluster 1-a.

Figure 3a illustrates how we geometrically subdivided Cluster 0. Fea-
ture values in Cluster 0 form a gradient (Fig. 3c), where the peripheral
regions formrecognizable sleeppatterns.Weextracted theperipheral region
of Cluster 0 and divided it into 6 subclusters (60° regions of the periphery)
based on their angle from the centroid of Cluster 0, as shown in Fig. 3a. We
observed that key feature values show quasi-regular change by the angle
from the center of Cluster 0, (Fig. 3b, starting at −180° and going coun-
terclockwise). The smooth gradient around the periphery of the cluster and
the cohesive character of eachperipheral region suggest that other clustering
solutions arepossible, as noharddelineations are apparent in theunderlying
features. The center of Cluster 0 is the average of all peripheral regions
(Table 3).

We refer to the central Cluster 0 subcluster as the recommended sleep
phenotype, as it most closely resembles the recommended 8-hour mono-
phasic adult sleep phenotype. We refer to the peripheral Cluster 0 sub-
clusters and minor clusters’ subclusters as the alternative sleep phenotypes,
as they deviated from the recommended phenotype. Two of the Cluster
0 subclusters exhibited stronger signs of poor sleep with high mean wake
times during long sleepwindows (0-E: 1.192 h, 0-F: 1.858 h) and lower sleep
percentage (0-E: 84.4%, 0-F: 78.9%) than the otherCluster 0 subclusters.We
describe these two as insomnia-like for our analyses, though this inter-
pretation is subjective, resulting in a total of eight insomnia-like phenotypes.

All clusters typically transition to the recommended phenotype
With an enriched set of sleep phenotypes derived from subclustering, we
reassessed the temporal dynamics of our population (Fig. 4a). We recal-
culated the conditional transition probabilities of the entire population
using the 13 subclusters and revealed new heterogeneity (Fig. 4b). The
clearest visual feature is the dark purple column on the far left. The column
represents the likelihood of transitioning in the next sleep period to the
recommended sleep phenotype from each other phenotype. The recom-
mended phenotype transitions to itself with probability 0.799. The like-
lihood of transitioning to the recommended phenotype ranged from 0.431
to 0.821, excluding Cluster 4 (0.095). Alternative phenotypes in Cluster 0
were more likely to transition to the recommended phenotype
(0.723–0.821) than those in theminor clusters (0.431–0.655). Remaining in
or transitioning to the recommended phenotype was the dominant tran-
sition pattern.

Lower sleep percentage phenotypes in Cluster 0 are more likely
to transition to insomnia-like minor clusters
Weexaminedwhether lower sleep percentage phenotypes inCluster 0 show
differences in transition patterns from other phenotypes in Cluster 0. Of the
Cluster 0 subclusters, those exhibiting lower sleep percentages (Subclusters
0-E and 0-F) are the least likely to transition to recommended sleep
(probabilities of 0.723 and 0.732, respectively). On the other hand, Sub-
clusters 0-A, 0-B, and 0-C, which were not considered insomnia-like, were
the most likely to transition to the recommended phenotype (probabilities
of 0.754, 0.765, 0.821, respectively). Similarly, Subclusters 0-E and 0-F were
more likely thanSubclusters 0-A, 0-B, and0-C to transition to insomnia-like
phenotypes in Subclusters 1-a (0.053-0.064 vs. 0.034-0.048) and 1-b (0.068-
0.081 vs. 0.025-0.049). In summary, lower sleep percentage phenotypes in
Cluster 0 transition to minor cluster phenotypes, which exhibit insomnia-

Table 2 | Statistics of nine nightly sleep feature values

Sleep features

Stat. Sleep percent (%) ST long (h) WT long (h) ST short (h) WT short (h) LW count (#) SW count (#) LW length (h) SW length (h)

Mean 0.859 6.992 1.074 0.924 0.401 0.988 0.030 8.066 1.312

Std. Dev. 0.089 1.274 0.578 0.918 0.353 0.148 0.180 1.416 1.023

Mean and standard deviation of nightly sleep feature values across 4,682,978 nights overall 33,152 individuals.
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Fig. 2 | Temporal dynamics in sleep phenotypes. A graph model of sleep pheno-
typic change over time. a Illustrates graph approach to capture temporal changes in
sleep across a population, using conditional transition probability between clusters.
Arrows represent transitions, color indicates the initial cluster, and line thickness
indicates conditional transition probability. b Adjacency matrix heatmap indicates
conditional transition probability between pairs of clusters. Rows sum to one.
c Examples of individuals with different variabilities in cluster. Note variable

individuals transition between minor clusters, and stable individuals occupy dif-
ferent positions in major clusters. d Proportion of periods in each cluster across all
individuals. Individuals are sorted by time spent in the major cluster. The blue, teal,
and yellow colors at the top of the left column show the highly variable individuals
who spent minimal time in the major cluster. The orange to red show the occa-
sionally variable and stable individuals. White circles in the major cluster column
indicate the position of the example individuals.
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Table 3 | Key features of alternative subclusters in the minor clusters

Features: mean (S.D.) over subcluster

Subcluster LW count SW count Sleep percentage LW length (h) SW length (h) N (sleep periods)

0 (rec.) 0.999 (0.014) 0.000 (0.000) 0.870 (0.045) 8.087 (0.842) – 650,339

1-a 0.811 (0.064) 0.215 (0.101) 0.784 (0.073) 6.384 (1.034) 0.196 (0.233) 45,354

1-b 0.620 (0.096) 0.407 (0.180) 0.700 (0.105) 4.606 (1.184) 0.405 (0.422) 4937

1-c 1.145 (0.108) 0.236 (0.125) 0.769 (0.064) 7.412 (1.236) 0.411 (0.311) 5840

2 1.000 (0.002) 0.201 (0.080) 0.821 (0.053) 7.757 (1.045) 0.331 (0.212) 45,488

3 1.188 (0.055) 0.000 (0.000) 0.824 (0.051) 8.250 (0.978) – 14,845

4 0.000 (0.000) 0.854 (0.191) 0.552 (0.167) – 0.510 (0.286) 82

Key feature means of minor cluster alternative sleep phenotypes in comparison to recommended sleep phenotype.

Fig. 3 | Enriching Sleep Phenotypes in Cluster 0. Here we describe how we sub-
divided clusters to obtain more fine-grained phenotypes. Rather than a single set of
behaviors, Cluster 0 is best described as a gradient of different sleep patterns, where
the periphery of the cluster describes more recognizable sleep patterns than the
center. aWe extracted the peripheral sleep periods and divided them into 6 sub-
clusters based on their angle from the centroid of Cluster 0. bWe showhowkey sleep

features, standardized by the Cluster 0 mean and std, changed as we swept around
the periphery of Cluster 0. The background colors on the right match the colors of
the subclusters in (a). cWe show the feature value gradients across Cluster 0 as
heatmaps. The bottom row shows the standard deviation, while the top shows
the mean.
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like patterns more often than other Cluster 0 phenotypes. These findings
suggest that sleep percentage inmonophasic sleepers carries information on
insomnia-like sleep interruptions in future nights.

Insomnia-like phenotypes transition to subclusters with similar
total sleep time over other insomnia-like phenotypes
We examined the transition probabilities of insomnia-like phenotypes to
understand dynamics when insomnia-like individuals didn’t transition to

recommended sleep (Cluster 0-center). Among the insomnia-like pheno-
types, Clusters 1-a, 1-b, and 4 exhibits shorter total sleep times (6.58, 5.01,
0.55 h), while 1-c, 2, and 3 exhibits longer total sleep times (7.82, 8.08,
8.250 h). We refer to the first group as the short, fractured phenotypes and
the second groups as the long, fractured phenotypes (Table 4).

The short, fractured phenotypes consistently transition to themselves
over long-fractured subclusters. Subclusters 1-a, 1-b, and 4 transitioned to
subclusters with short, fractured phenotypes at probabilities 0.167, 0.387,

Fig. 4 | Assessing chronic and acute health conditions with temporal dynamics.
Subcluster-derived graph of observed transition probabilities between and within
clusters. aDirected graphmodel modified to assess transitions across all subclusters.
b–d Subcluster transition matrices for all individuals (b), individuals with self-

reported sleep apnea (c), and individuals with self-reported diabetes (d).
e Comparative information gain in classifying conditions (left), associated p-values
(center), and the relative ratio of red/blue (right), from transition matrices (red) vs.
instantaneous location only (nodes without edges; blue).
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0.948 respectively, while they transition to long fractured phenotypes at
probabilities 0.044 (73.6% relative reduction), 0.113 (70.8% relative reduc-
tion), 0.024 (97.4% relative reduction) respectively. Conversely, the long,
fractured phenotypes consistently transition to themselves over short-
fractured phenotypes. Subclusters 1-c, 2, and 3 transition to subclusterswith
long, fractured phenotypes at probabilities 0.413, 0.210, 0.241, respectively,
while they transition to subclusters with short-fractured phenotypes at
probabilities 0.106 (74.3% relative reduction), 0.072 (65.7% relative reduc-
tion), 0.072 (70.1% relative reduction) respectively. Visually, these patterns
manifest as darker squares of the adjacent similar subclusters (Fig. 4b).
These findings suggest that when insomnia-like phenotypes do not transi-
tion to recommended sleep, they tend to transition to an insomnia-like
phenotype with a similar total sleep time.

Distributionof sleepphenotypeshiftswithdiabetes, sleepapnea,
flu, fever, and COVID-19
To assess the relevance of the static sleep landscape to health, we tested for
differences between the general population and various abnormal popula-
tions (Fig. 4e). We tested whether the sleep phenotype categories based on
our subclusters are relevant to various health conditions. For diabetes and
sleep apnea conditions, we performed a chi-square test for independence
between the frequency of sleep phenotype of the positive and negative
groups for sleep apnea and diabetes as reported in the baseline self-report
survey. We found that the positive groups were significantly different from
the negative groups at p-values of 8.5 × 10−11 (sleep apnea; 10,017 neg vs.
1111 pos) and 3.0 × 10−11 (diabetes; 10,732 neg vs. 387) [chi-square test for
independence between sleep periods from positive and negative indivi-
duals].We compared the nights around aCOVID-19diagnosis, aflu report,
and a fever symptom report to nights many weeks prior.We found that the
frequency of sleep phenotypes was significantly different with p-values
6.5 × 10−8 (COVID-19; 147 individuals), 3.2 × 10−8 (flu; 2019 individuals),
2.5 × 10−12 (fever; 272 individuals) [chi-square test for independence within
the individual between sleep periods from positive and negative time
regions].

Temporal dynamics contain 2–10× as much information about
health conditions as static sleep phenotype
To assess the relevance of our temporal dynamicsmodel to health, we tested
for differences between the general population and various abnormal
populations and compared the information gained between our dynamic
model of sleep and the static sleep landscape model tested in the previous
section. As shown in Fig. 4e, we tested whether the transitions based on our
subclusters are relevant to various health conditions. We performed a chi-
square test for independence between the transition probabilities of the
positive and negative groups, as described in the previous section, of various
health conditions, treating the frequency of transitions between subclusters
as a categorical variable.We showed that, under this transition-basedmodel,
the positive groups were significantly different from the negative groups
withp-values, 1.5 × 10−137 (sleep apnea; 10,017neg vs. 1111pos), 6.0 × 10−104

(diabetes; 10,732 neg vs. 387 pos), 6.7 × 10−27 (COVID-19; 147 individuals),
1.3 × 10−12 (flu; 2019 individuals), 1.2 × 10−64 (fever; 272 individuals) for
sleep apnea, diabetes, COVID-19, flu, and fever respectively [chi-square
tests for independence as described in prior section].

We compared the health relevance of this model to the static model
using information theoretic metrics. We calculated the information gain of
the static and dynamicmodels and found that the dynamicmodel yielded a
several-fold increase in information over the static model; 1.97× in sleep
apnea, 2.07× in diabetes, 3.36× in COVID-19, 5.19× in flu, and 9.96×
in fever.

Discussion
In thiswork, we found that sleep phenotypes are dynamicwithin individuals
across time and that these dynamics contain information relevant to health
conditions. We first replicated the methods proposed by Katori et al. to
obtain a 2-dimensional embedding that containedphenotype-like clusters of
3–6-night sleep periods. We enriched our landscape by subdividing clusters
to obtain 13 distinct sleep phenotypes. To study how populations and
individuals move between phenotypes over time, we constructed a graph of
within-individual transitions between sleep phenotypes over time, where
subclusterswerenodes, possiblemovementsbetween subclusterswere edges,
and the probabilities of moving between a pair of subclusters were edge
weights. This analysis of temporal dynamics revealed that an individual’s
current sleep patterns can indicate in what ways those patterns are likely to
change soon. One such pattern suggested that a low percentage of time in
deep sleep indicates a higher chance of insomnia-like sleep disruption in the
following sleep period. We hypothesized that transitions between pheno-
types (edge weights in our temporal dynamics graph) might carry more
information about an individual’s health than the current sleep phenotype
alone. We found that the dynamic transition model indeed carried several
times more information about cardiometabolic-, respiratory-, and sleep-
related health factors. These findings suggest that capturing temporal
dynamics in sleep phenotype could improve individual and population-level
sleep screening for health.

Our sleep landscape produced similar features and insomnia-like
subclusters as Katori et al. Subcluster 0-center represented the NIH-
recommended 8-h monophasic sleep phenotype. Subclusters 0-A through
0-F represented alternativemonophasic sleep phenotypes, with 0-E and 0-F
exhibiting the lowest sleep percentages (84.4%, 78.9%). Clusters 1–4
represented fragmented (wake > 1 h) or very short sleep (<6.5 h). While
prior work did not quantitatively test whether the phenotype is associated
with health, we found that the static sleep phenotype model significantly
separated populations of diabetes and sleep apnea as well as time periods of
flu, fever, andCOVID-19. These initial results support the reproducibility of
sleep phenotype landscapes and validate the relevance of such landscapes to
sleep disorders.

We then investigatedwhether an individual’s sleep phenotype is stable
over time. A period of 8-hour monophasic sleep is followed by a similar
period 79.9% of the time. Alternative sleep phenotypes tend not to be stable

Table 4 | Means of key sleep features over Cluster 0 subclusters

Key sleep features: mean (S.D.) over subcluster

Subcluster Sleep percentage mean ST long mean (h) WT long mean (h) LW length mean (h) N (sleep periods)

0 (center) 0.870 (0.045) 7.036 (0.795) 1.052 (0.389) 8.087 (0.842) 595,711

0-A 0.919 (0.017) 7.080 (0.407) 0.622 (0.135) 7.702 (0.406) 8800

0-B 0.876 (0.016) 6.546 (0.319) 0.933 (0.120) 7.479 (0.347) 10,855

0-C 0.921 (0.017) 8.319 (0.387) 0.718 (0.166) 9.037 (0.436) 6771

0-D 0.872 (0.022) 8.499 (0.514) 1.246 (0.204) 9.745 (0.484) 4270

0-E 0.844 (0.031) 6.373 (0.680) 1.192 (0.187) 7.565 (0.657) 11,621

0-F 0.789 (0.046) 6.987 (0.971) 1.858 (0.345) 8.845 (0.921) 12,311

Shows the key sleep features and number of sleep periods of the Cluster 0 subclusters.
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(Subclusters 0-A–0-F: 5.3–12.6%, Clusters 1–3: 10.7–14.4%, Cluster 4:
45.2%), and instead transition to the recommended phenotype 43.1–82.1%
of the time (excluding Cluster 4 at 9.5%). These findings suggest that sleep
phenotype is not stable over time. As transitions to alternate sleep pheno-
types were both spread across the population but also disproportionate in a
small set of individuals, specific rates and transition patterns are likely
population and study dependent.

Given that sleep, phenotype is not static and that 8 out of our 13
phenotypes are marked by some degree of insomnia-like patterns (short or
disrupted sleep defined by DSM-5-TR), we hypothesized that an indivi-
dual’s particular phenotypemight suggest how likely theyare to transition to
an insomnia-like phenotype. Periods of relatively low sleep percentage,
monophasic sleep were more likely to transition to disrupted or short sleep
(22.6–25.9%) than higher sleep percentage monophasic sleep periods
(7.4–15.1%). These findings suggest that low sleep percentage in mono-
phasic sleepers may indicate susceptibility to insomnia-like sleep inter-
ruptions in future nights. Furthermore, when we group insomnia-like
phenotypes by total sleep time, insomnia-like phenotypes transitioned to
themselves 16.7–41.3% of the time. This further illustrates how insomnia-
like sleep predisposes one to insomnia-like interruptions in future nights
of sleep.

We further show that these temporal dynamics are relevant to cardi-
ometabolic and respiratory health, alongwith sleep quality.We showed that
diabetic and sleep apnea individuals aremore likely to stay in insomnia-like
sleep clusters (see Fig. 4c, d). We also showed that there are significant
differences in distribution between the months prior to and the weeks
aroundCOVID-19,flu, and fever diagnoses (see Fig. 4e). Across conditions,
we found a 2–10× information gain from a static to dynamicmodel of sleep.
These results suggest that temporal sleep dynamics may be an informative
feature in health screening tools.

At the individual level, our results suggest that temporal sleep dynamic
features could improve algorithms detecting the presence of and tracking
the severity of chronic health conditions, though future work is needed to
assess this possibility. Further, researchers have assessed the potential for
anomaly detection of acute illness (e.g., COVID-19 and flu) using sleep and
physiological features10,13,14. Our work here suggests that modeling within-
individual temporal dynamics may help account for substantial amounts of
variability in different modalities used in algorithms. As a result, incor-
porating methods like those we describe here may improve algorithm
performance both when identifying acute illness and potentially when
screening for chronic conditions as well. Perhaps, especially for the latter,
such approaches could support public health and population risk screening
efforts in addition to the potential value for algorithms aimed at individuals.
Significant work is needed to test these hypotheses in different conditions
and populations.

The work we present successfully supports hypotheses of the value of
dynamic features in longitudinal data, and it is intended toprovide examples
demonstrating the potential gains from approaches using such features.We
caution against overinterpreting specific numbers in our findings, as our
work has several limitations. First, health conditions were determined by
individual self-report, and thus, some “healthy”periodsmayhave contained
unreported conditions. Second, the sample size for certain conditions was
relatively much smaller than the general population they were compared
against (e.g., Diabetes vs. General population: 387 vs. 33,152), and thus, the
sampled condition population may not be representative of the entire
condition population. Third, there are likely confounding factors beyond
thosewemadeanyattempt to assess, and this could be the case at all stages of
analysis. For example, at the sensor level, we cannot differentiate between an
individual removing their ring and continuing to sleep and them removing
their ring as theywake up. Fourth, the studyonly enrolled thosewho already
owned anOuraRing,whichmaybe associatedwith socioeconomic biases in
the population. Finally, our data was collected in 2020, during which the
COVID-19 pandemic heavily affected the world, and so changes that
occurred due to lockdown and heightened stress likely affect our analyses,
particularly our general population statistics.

Future work may include features specific to outcomes of interest. For
example, encoding the daily phase of sleep onset as a feature could improve
ourmethod’s ability to diversify phenotypes related to social jet lag and shift
work.While we observed some patterns on the time scale of months, future
work may study whether seasonal and monthly timescales are robust and
informative dynamic patterns in their own right. Finally, because our aim
was to perform an initial exploration of how sleep could be dynamic over
time, many parameters that we used for feature extraction, clustering, and
modeling could be optimized for those interested in particular health out-
comes in future work.

Our work confirms that dynamical models and topological data ana-
lysis capture new information from sleep by viewing an individual’s sleep
phenotype as a state they are in temporarily rather thanas apersistent trait of
that individual. More complex sleep models based on multimodal data will
likely yield yetmore information, fueling algorithms for short and long-term
health prediction.

Methods
TemPredict study data collection
Our data was collected through the TemPredict study at the University of
California, San Francisco, which was conducted in collaboration with Oura
HealthOy. TheUniversity of California San Francisco (UCSF) Institutional
Review Board (IRB, IRB# 20-30408) and the U.S. Department of Defense
(DOD) Human Research Protections Office (HRPO, HRPO# E01877.1a)
approved all study activities. All researchwas performed in accordancewith
relevant guidelines and regulations and the Declaration of Helsinki.
Informed consent was obtained from all participants. We collected Oura
Ring Gen2 data from 63,153 participants from January to December of
2020. Further details are contained in Mason et al. A baseline self-report
survey collected comorbidity information, and daily self-report surveys
collected symptom reports as well as COVID-19 test data. Sleep stages (4-
stage: light NREM sleep, deep NREM sleep, REM sleep, and wake) at 30-s
granularity and sleep/wake onset (start and end times of a series of con-
tiguous sleep stage predictions) were obtained for each night of sleep from
the Oura Ring. The Oura Ring predicts the sleep stage with a proprietary
algorithm that has been validated against Polysomnography (PSG) and
Electro-encephalogram(EEG)byMiller et al.,Ghorbani et al., andZambotti
et al.15,16,17. PSG-validated sleep stage datawere available for 4,682,978nights
across n = 33,152 participants from January to October 2020. We describe
thepredicted sleep stages as part of the sleep summary feature set,whichalso
includes predictedwake and sleep onset.Wedid not directly performpower
analysis. The previous publication on sleep clustering (Katori et al.) was the
largest (~100 K nights); because we had ~5Mnights (~50×), we used all the
data available to discover insights instead of conscribing analyses to a large
enough sample to ensure the significance of any one potential effect.

Adapted data preprocessing and feature extraction
Our data preprocessing consisted of two stages. The first stage involved
filtering individuals, cleaning outputs from the classification algorithm,
constructing sleep-wake periods, and extracting the common sleep features.
The second stage involved selecting sleep periods (3–6 nights) and then
constructing our 18 sleep features from the selected sleep periods. Our
preprocessing and feature extraction steps closely followed Katori et al.
because our aim was to recapitulate the feature distributions their work
observed.

In the first stage of data preprocessing, we handled the data at a nightly
scale. First, we filtered individuals who did not have any nights with sleep
summary features. Next, we removed nights with missing or only awake
predictions from the sleep staging algorithm. We used the predicted sleep
onset andwake onset tofilter out predictednights thatwere less than 30min
and occurred in the same day (determined by beginning within 12 h before
or after midnight) as a longer predicted night. While these data may
represent short naps, a majority of these sleep predictions overlapped with
or occurred during the respective longer predicted night, suggesting that
these sleep predictions were more likely artifactual and thus should be
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excluded from analysis. We removed nights with missing, faulty, or ques-
tionable data because the featurization of suchnightsmisrepresents peoples’
sleep behavior.

Next, we constructed sleep windows from nights of sleep (determined
previously by predicted sleep and wake onset). We treated the highest level
of the sleep stage predictions as wake and the other three levels as sleep and
then followed the same steps to construct sleepwindows asKatori et al. This
consisted of four steps: (a) changing contiguous wake predictions less than
10min to sleep, (b) changing contiguous sleep predictions less than 10min
to wake, (c) connecting contiguous sleep predictions that were separated
from other sleep prediction segments by 60min of contiguous wake pre-
dictions as a single sleep window, and (d) making sleep windows less than
3 h into short windows and the remaining longwindows. Further detail and
a figure showing these steps can be found in the Katori et al. manuscript.
Steps (a) and (b) smoothout suddenchanges (e.g., 30 s ofwake in a 6-h sleep
window) that are likely the result of noise in the sleep stagepredictions. Steps
(c) and (d) encode breaks in sleep and differences between long and short
sleep windows as features.

Finally, we constructed the nightly sleep features following the steps
and naming conventions of Katori et al. For each sleep window, we
calculated the wake time and sleep time during the window based on the
sleep-wake predictions prior to the sleep window construction steps
(before stepA from the previous paragraph). These are theWTLong and
ST Long features for Wake Time and Sleep Time in a long window (WT
Short and ST Short for short windows). These features encode the
amount of time spent asleep and the amount of time spent awake during
a sleep window. We also calculated the total length of the sleep window
and called this feature LW Length or SW Length for Long Window
length or Short Window length. All these features are measured in time
(hours). These features are typically extracted from sleep-wake time
series to analyze sleep disorders. We also calculated the number of sleep
windows of each type in a night as a feature, with LW Count and SW
Count representing Long Window Count and Short Window Count.
Multiple short windows often occur on nights with fractured sleep. We
interpreted these features to indirectly represent the number of dis-
ruptions (>60 min of wake) in a night. Finally, we constructed Sleep
Percentage, which represents sleep efficiency and was calculated as the
total sleep time across all long and short windows divided by the dura-
tion of the sleep period, from sleep onset to wake onset. This provided 9
nightly sleep features. We chose these features because Katori et al. had
shown that these features effectively diversify a variety of observable
sleep phenotypes.

In the second stage of data preprocessing, we constructed a set of
candidate sleep periods and filtered sleep periods based on our exclusion
criteria and extracted our sleep features from the filtered sleep periods.
Candidate sleep periods were extracted in the form of non-overlapping
groups of 6 consecutive nights from an individual. Candidate sleep periods
contained varying quantities of missing data. So, we filtered the candidate
sleep periods by exclusion criteria to maintain data quality. Sleep periods
were required to have <5 hours of non-wear time for each contiguous
3-night section of the 6 nights as well as ≥3 nights of data. Erroneous sleep
periods of nightswithno sleepwindowswere removedaswell. Thesefiltered
and cleaned sleep periods could have between 3 and 6 nights of data. The
parameters for these criteria followed our research hypothesis that peoples’
sleep behavior (as measured by our features) is not static over time. Sleep
periods less than 3 dayswould be substantially affected by outlier nights and
thus not allow for meaningful mean and standard deviations of features.
Sleep periods greater than a week might include substantial behavioral
changes, which could prevent an analysis of how sleep behavior changes
over time. Thus, we chose a similar number of days to prior work and found
that this was sufficient to test our research hypotheses. This resulted in
766,885 sleep periods to be used for further analyses. Finally, we calculated
themeanand standarddeviationof the zero-fillednightly sleep features over
howevermany nights were in each sleep period, creating the 18 sleep period
features we used in our analysis.

Adapted dimensionality reduction and clustering
Like Katori et al., after constructing our feature set of sleep periods, we
performed dimensionality reduction using Uniform Manifold Approx-
imation and Projection (UMAP) to construct a 2-D sleep landscape from
the first two UMAP components. UMAP is a non-linear dimension
reduction algorithm that seeks to learn the manifold structure of data and
find a low-dimensional embedding that preserves the essential topological
structure of thatmanifold.WeperformedUMAPon the standardized, zero-
filled sleep period features with 15 neighbors, min distance of 0.1, 2 com-
ponents, and the remaining default parameters from the UMAP python
library. These UMAP parameter settings were chosen based on the char-
acteristics of the dataset (size and closeness of samples) as suggested on the
UMAP documentation website. We performed Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) to obtain 5 distinct
clusters (the number of clusters inferred by DBSCAN from data) that
resemble the large clustersdiscoveredbyKatori et al.Wevalidate the clusters
by silhouette score and report the scores and cluster sizes in Table 5. By
analyzing the average mean and standard deviation in feature values per
cluster, we identified characteristics common to each cluster.

Subcluster construction: rule- andgeometric-basedapproaches
Webelieve Katori et al.’s choice to repeat DBSCANon each initial cluster to
discover subclusters could be improved upon in the context of our dataset.
UMAP is not designed to preserve the local density information of the data.
Due to UMAP’s design, a density-based clustering algorithm such as
DBSCAN may not be well suited to identify sub-clusters, though it is
effective for obtaining the more distinct, high-level clusters. However, like
Katori et al., we hypothesized that there was nonrandom variance within
some clusters that was associated with differences in the underlying sleep
behavior, so we applied our own sub-cluster approach to test this.

Alternatively, to perform DBSCAN on each cluster, we applied two
different approaches to constructing subclusters from a particular sleep
cluster: a rule-based approach and a geometry-based approach. Our
methods were based on the observation that each cluster exhibited a dif-
ferent characteristic in the variance of sleep phenotypes. Some clusters had a
distinct characteristic that likely drives sleep periods’ membership in the
cluster,whereas other clusters exhibit a smoothgradient of sleepparameters.
The rule-based approach for identifying subclusters consists of attempting
to identify a feature-based rule that lends to an intuitiveunderstandingof the
group and subdividing the group using the feature. The geometry-based
approach applies a set of geometric rules to create regions that capture the
gradient of feature valueswithin a cluster to somedegree.Wedesigned these
regions after inspecting visualizations of the sleep period features across the
cluster. We tested whether a subcluster captured nonrandom variance by
comparing the mean and standard deviation of relevant features to those of
the cluster it belongs to.

The rule-based approach was applied to clusters that exhibited a dis-
tinct identity duringpreliminary analysis. Clusters 2, 3, and4 all showed that
a logical rule constructed from a few features would capture every sample in
the cluster. For example, for Cluster 2, every period has exactly six long
windows and one short window. Intuitively, this suggests that exactly one
night had both a long and short sleep window and thus had fractured sleep.
These identities are illustrated in Fig. 1f.

Table 5 | Descriptors of major and minor clusters

Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4

N (sleep
periods)

650,339 56,131 45,488 14,845 82

Silhouette
score

0.371 0.446 0.663 0.765 0.927

Numerical descriptors of major andminor clusters. A number of sleep periods and cluster validation
statistic (mean silhouette score overall sleep periods in each cluster).
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However, Cluster 1 did not have a clear identity during preliminary
analysis. We noticed that the LW Count was close to the population mean
while the ST Long was much less than the population mean. Initially, one
might assume this suggests that sleep periods from Cluster 1 tend to have
shorter long windows. However, we noted this effect can also be caused by a
bimodal distribution of long window counts. We constructed a rule (No. of
LWs in any night >1) to separate what is now Subcluster 1c from the rest of
Cluster 1 and observed a divergence in the other features as well, leading us
to conclude that Cluster 1c exhibits a distinct identity.We further separated
Subcluster 1b with a rule (No. of SWs in any night >1) that led to another
distinct identity.We ended with three subclusters in Cluster 1. Clusters 2, 3,
and 4 remained unchanged. Key feature values of Subclusters 1a, 1b, and 1c
are shown in Table 3.

For Cluster 0, the rule-based approach did not allow us to construct
distinct subclusters. While every period in Cluster 0 contained exactly one
long window per night, different regions of the cluster exhibited different
amounts of sleep time, wake time, and total length, as can be seen in Fig. 2c,
some of which could be associated with poor sleep. Because we wanted to
separate the various sleep patterns into their own subclusters, we experi-
mented with several approaches to create subclusters and chose the
geometry-based approach.

The geometry-based approach involves recognizing the gradient of
different patterns across the cluster and designing a set of geometric rules to
segment the cluster into separate regions. As shown in Fig. 2c, we observed
that the peripheral regions of the cluster describe more distinct sleep pat-
terns than the center. So, we extracted the periphery of the cluster and
divided it into six subclusters (60-degree regions of the periphery starting at
−180° andgoing counter-clockwise) basedon the angle fromthe centroidof
Cluster 0, whose position was calculated as the mean of the x and y coor-
dinates of Cluster 0 sleep periods. We did not attempt any kind of opti-
mization by specific parameter separation because we believe that would
suggest false precision as to a “right” subcluster selection being critical to the
testing of our hypothesis. Instead, we sought amore arbitrary division out of
concern that over-specifying the subclusters might (1) become circular if
optimized by separation of features and (2) might distract from the desired
test, which is that any reasonable subdivision of the cluster should reveal
statistical differences consistent with meaningfully nonrandom change
within a given cluster. We settled on 6 because it is a commonly used
division of a circle, it allowed relatively large and well-represented sub-
clusters, and it allowed easy visualization of several differences without
creating anoverwhelmingnumber of comparisons.We confirmed that each
region represents a different sleep phenotype that gradually transitions into
the next sleep phenotype based on the means of key features, as shown in
Fig. 3b. We show the means and standard deviations of these regions
alongside the original cluster in Table 4.

Silhouette coefficient
We calculate the validation statistic, silhouette coefficient, to report the
quality of the clusters that the DBSCAN algorithm obtained. We used the
sklearn.metrics.silhouette_score python function to calculate the statistic.
This statisticfirst calculates themean intra-cluster distance, a, and themean
nearest-cluster distance, b, for each sample, and the calculates the ratio of the
difference to the max of these two quantities.

sillhouette score ¼ ðb� aÞ=maxða; bÞ ð1Þ

We report the mean silhouette scores of all points in each cluster in
Table 5.

Graph model of temporal dynamics
We modeled change in sleep over time with our temporal dynamics
model.We aimed to capture the probability that an individual starting in a
particular cluster or subcluster would transition to another cluster or
subcluster. To do this, we first gathered every pair of consecutive sleep
periods from the same individual (N = 699,552 transition pairs). Then, we

constructed a directed graph where each cluster or subcluster was a node.
Each directed edge represents a possible transition between consecutive
sleep periods. We designed the edge weights to capture how likely an
individual was to end in a particular node given the node in which they
started. The edge weight was calculated as the conditional transition
probability (CTP) as defined below.

We calculated conditional transition probabilities as follows. First, for
each node, A, we counted the total number or transition pairs beginning at
that node. Then, for eachnode,B, we counted the numberof transitionpairs
ending at the node.We divided the number of transition pairs from A to B
by the total number or transition pairs beginning at A to calculate the
conditional transition probability from A to B. This calculation is shown in
Eq. (2). The conditional transition probability was then assigned as the edge
weight for the directed edge from node A to node B. We repeated this for
every possible ordered pair of nodes and assigned edgeweights to every edge
in our graph.

CTPðA; BÞ ¼ PðNtþ1 ¼ B jNt ¼ AÞ ¼ PðNtþ1 ¼ B
T

Nt ¼ AÞ
PðNt ¼ AÞ ð2Þ

The CTP’s from each node can be viewed as a probability distribution
over the most likely next node, not only giving us context on which tran-
sitions aremore and less likely in the population, but also givingus amethod
for identifying the relative likelihood of various acute and chronic condi-
tions based on an individual’s transition patterns.

We used this transition model because it allowed us to understand
trends across large populations of individuals. Longitudinal patterns of sleep
across time have not been deeply studied on large populations at high
resolution, partially due to the high dimensionality of longitudinal sleep
time series, and as well as the challenge of collecting such data without
wearable devices. However, our transition model captures reoccurring
movement patterns within and across individuals, giving insight into
population-scale trends. This allowed us to compare the strength of a par-
ticular trend amongst various subpopulations and temporal segments, and
thus quantify how a particular dynamic characteristic might relate to sleep
differences between these subpopulations.

Selection of health conditions cohorts
To test the relevance of temporal dynamics to humanhealth,we constructed
various health condition cohorts. We selected two chronic conditions and
three acute conditions to study. For the chronic conditions, we used entries
from the baseline self-report survey to construct our cohorts. For the sleep
apnea condition, we received 10,017 negative reports, 1111 positive reports,
and 21,267 no-answer reports. For the diabetes condition, we received
10,732 negative reports, 387 positive reports, and 21,276 no-answer reports.
No-answer individuals were excluded from each respective analysis.

For the acute conditions, information was obtained from a daily
symptom survey delivered on participants’ mobile devices (typically
phones).We compared the 14 days before and 14 days after the date that the
conditionwas reportedwith all data prior to 50 days before the report. Sleep
periods were included if the start date of the sleep period was within the
selected time range. These time ranges were chosen so that the acute con-
ditions were likely to be present in the region around the report and likely
not be present in the region prior to the report, thus allowing us to test the
relevance of temporal dynamics to the acute condition. The COVID-19
cohort contained 147 individuals. The fever cohort contained 272 indivi-
duals. The flu cohort contains 2019 individuals. In the 50 days before the
report, individuals did not report any other acute condition. It should be
noted that for these conditions, a multitude of time-varying events that
could affect sleep, such as women’s cycling, changes in mental health, and
behavioral events, were not taken into account.
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Comparing static and dynamic models of sleep: Pearson’s
chi-square test and information gain
Tounderstand the dynamics’ information relevance to health,we compared
static models of sleep to dynamic models of sleep. To perform these com-
parisons, we (1) tested for the difference in distribution between the positive
and negative cohorts of each distribution and (2) assessed the difference in
information gain provided by one model over the other. In our dynamic
model, we treated the transitions from each node to every other node, P, as
one variable and the transition categories, C, as the other variable. The static
model contingency tablewas constructedwith thepresence of the condition,
P, as one variable and the static categories, S, as the other variable. These
tables were used to perform statistical tests and calculate information gain
(see Information Gain below). To simplify notation, we show our formulas
using the dynamicmodel as one variable and the transition categories, C, as
the other variable.

We performed the Pearson’s chi-square test18 to test whether the
positive group is significantly different in distribution from the negative
group for each condition.We compare the p-values obtained using the static
versus the dynamic models. Pearson’s chi-square statistic was calculated as
follows in Eq. (3), with O observed and E expected events.

X2 ¼
X ðO� EÞ2

E
ð3Þ

It was performed using the scipy.stats.chisquare function in the SciPy
Python library, with the positive group as the observed distribution, the
negative group as the expected distribution, and the degrees of freedom set
to be the number of categories for each respective model minus one.

Information gain is calculated by taking the difference between the
entropy of the presence of condition variable, H½P� and the conditional
entropy of the presence variable conditioned on the respective model’s
categorical variable, H½P j C�. We calculate information gain with Eq. (4).

IG P;Cð Þ ¼ H P½ � � H P jC½ � ð4Þ

We take the ratio, IGðP;CÞ=IGðP; SÞ, to quantify the change in
information gain between the static and dynamic models. to quantify the
change in information gain between the static and dynamic models.

Our intentionwas to use information gain as ameasure of effect size. A
metric like Cramer’s Vwould simplymeasure the difference inmean values
of a given comparison, whereas the metric of information gain reflects the
shift in distribution separability, which is an important effect ifmethods like
those we illustrate here will be used to support real-world algorithms. For
example, information gain is oftenused to decidewhich featureswill be used
for a split in a decision tree algorithm because it reflects the importance of a
variable to separating the dataset by a given label. As such, we believe it is the
most appropriate measure of effect size to compare the static and dynamic
models.

Data availability
The data that support the findings of this study are available from Oura
Health Oy but their data use policy does not permit us to make the data
available to third parties without approval, and so are not publicly available.
Therefore, those seeking to reproduce our findings should contact Ashley
Mason, PhD, and Benjamin Smarr, PhD for an online application to access
the study data portal. This application process will require requesters to
make awritten commitment expressing agreements to not duplicatedata, to
not share data with third parties, and/or other confidentiality precautions.

Code availability
The underlying code for this study is not publicly available butmay bemade
available to qualified researchers on reasonable request from the corre-
sponding author.
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