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Evaluating reliability in wearable devices

for sleep staging
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Sleep is crucial for physical and mental health, but traditional sleep quality assessment methods have
limitations. This scoping review analyzes 35 articles from the past decade, evaluating 62 wearable
setups with varying sensors, algorithms, and features. Our analysis indicates a trend towards
combining accelerometer and photoplethysmography (PPG) data for out-of-lab sleep staging.
Devices using only accelerometer data are effective for sleep/wake detection but fall short in
identifying multiple sleep stages, unlike those incorporating PPG signals. To enhance the reliability of
sleep staging wearables, we propose five recommendations: (1) Algorithm validation with equity,
diversity, and inclusion considerations, (2) Comparative performance analysis of commercial
algorithms across multiple sleep stages, (3) Exploration of feature impacts on algorithm accuracy, (4)
Consistent reporting of performance metrics for objective reliability assessment, and (5)
Encouragement of open-source classifier and data availability. Implementing these recommendations
canimprove the accuracy and reliability of sleep staging algorithms in wearables, solidifying their value

in research and clinical settings.

Sleep, encompassing approximately one-third of our lifespan, is a fun-
damental aspect of our daily activities and plays a crucial role in main-
taining our health, work performance, and overall well-being'. Extensive
research has consistently demonstrated the detrimental impact of poor
sleep quality on various health conditions, including cardiovascular
diseases’, diabetes’, hypertension®, depression’, immune-related diseases®,
and cancer mortality risk’. As an increasing number of individuals
recognize the significance of sleep quality in leading a healthy lifestyle,
both sleep-related research and industries have witnessed substantial
growth®’.

Polysomnography (PSG) currently serves as the gold standard for sleep
assessment, involving a comprehensive measurement of various physiolo-
gical changes during sleep’. This method requires the placement of multiple
sensors to monitor brain activity, heart activity, eye movements, muscle
activity, blood oxygen levels, breathing patterns, body movements, snoring,
and other noises. However, the complex setup and high cost associated with
PSG discourage regular testing, thereby limiting its utility for accurate sleep
monitoring. Patients undergoing PSG must endure the placement of
numerous sensors on their bodies, intricate wiring systems, and bulky
electronic devices for data transmission and storage. Additionally, PSG
recordings primarily take place within specialized sleep laboratories, which

are often inhospitable to natural sleep patterns'’. Consequently, many
patients experience difficulties falling asleep and do not exhibit natural sleep
behavior due to the elaborate setup.

While many wearable-based algorithms focus on distinguishing
between sleep and wakefulness, a comprehensive evaluation of sleep
architecture and specific sleep stages is essential for proper diagnosis and
treatment of sleep disorders'. Sleep staging provides valuable insights into
the quality, characteristics, and transitions of sleep stages, enabling a more
thorough understanding of sleep patterns and facilitating tailored
interventions".

Recent articles have summarized the use of commercially available
devices for sleep monitoring, yet there is a notable gap in addressing the
development of algorithms for sleep staging and the associated challenges.
In response to this gap, this review aims to provide a comprehensive
overview of recent advancements in wearable sensors and portable elec-
tronics, particularly focusing on innovations that enhance the comfort and
usability of sleep monitoring devices by eliminating the need for adhesive,
conductive gels, or cable connections. We also offer essential recommen-
dations to guide future developments in algorithm design for wearables,
targeting the accurate and reliable assessment of sleep parameters. This
work is essential in improving the diagnosis and management of sleep
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disorders, ultimately contributing to better overall sleep health and well-

13-15

being ™.

Results

Publications

This scoping review identified a total of 35 articles that evaluated a total of
62 setups of wearable devices, some of which occurred several times in
different articles, as shown in Fig. 1. On PubMed 88 articles were identified,
On Embase 41 articles were retrieved and on IEEE Xplore 9 articles. While
screening through the articles, an additional 14 relevant articles were
identified. While screening 22 duplicates and six inaccessible or incompa-
tible articles were removed, leaving a total of 124 articles for evaluation. Fifty
articles were excluded either did not discuss wearables or did not assess
them, and another 14 articles did not evaluate the sleep metrics of the
wearables. Additionally, 4 review articles and 5 theoretical articles were
removed. Finally, 16 articles were removed where no epoch-by-epoch
evaluation was included, resulting in 35 articles that were deemed suitable
for in-depth analysis. Five of which were analyzed in more depth to extract
the details for sleep staging algorithms and the used features. It was observed
that the trend in wearable technology is shifting toward multi-sensor
devices, where wearables incorporate not only accelerometers but also PPG,
temperature, or other types of sensors. Specifically, this review included 62
wearable setups, of which 28 exclusively utilized accelerometers and 32
incorporated multiple different sensors. For two devices'®"” it was not clearly
stated what sensor input(s) are being used to assess sleep.

Characteristics of participants

Sleep stages exhibit significant variation both between males and females
and across different age groups." Most of the studies included a relatively
balanced number of male and female participants, except Fedorin et al.” did

not state the gender distribution. Eight studies focused on children and
adolescents' ", and five studies targeted young adults”~"', which was
defined as articles reporting an average age below 25 or specifically stating
that they investigated young adults. Only two articles’™™” examined the
performance of wearable devices in an older population, meaning having an
average age over 50. One article also had an average investigated age above
50 but reported a large variance in age*’. The remaining 22 studies covered
mainly individuals between 25 and 50 years. Finally, Fedorin et al."” did not
state the age of their participants.

Inclusion of participants with sleep disorders and/or
comorbidities

Medical conditions like insomnia, sleep disorders, or neurological disorders
can also affect sleep staging.” The majority (25) of the included articles
recorded data from healthy participants only. Four articles included healthy
participants as well as participants with some kind of sleep disorder’*****.
Three studies focused exclusively on participants with sleep disorders™**.
One article included only participants with unipolar major depressive
disorder”, while another one only involved participants with dermatitis®.
Finally, one article included only participants who had obstructive sleep
apnea (OSA) had neurological disorders, and/or used medications that are
known to have effects on sleep™. In Fig. 2 these findings are summarized.

Types of devices and reference systems

The majority of devices examined in this review (d = 28, ‘d is the number of
devices) relied solely on accelerometer data for sleep analysis. However,
there has been an increasing trend in recent years towards utilizing both
accelerometer and PPG data for evaluating sleep, which is reflected in the
inclusion of 28 such devices in this review, as seen in Fig. 3. Further, two
devices'"*” included in this review incorporated data from three sensors—
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Fig. 1 | Search workflow depicting the identification, screening, eligibility, and inclusion of articles in the review. The figure illustrates the sequential steps involved in the

systematic search process, including the identification of relevant articles, screening for eligibility criteria, and final inclusion of selected articles in the review.
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accelerometer, PPG, and temperature sensors. An additional two devices**"’

utilized input from accelerometers and additionally other sensors, such as
ambient light, bio-impedance, or skin temperature, but did not include a
PPG sensor. Lastly, there were two devices'®"” for which the specific sensor
input utilized for sleep analysis was not reported for all included devices.
On average, sleep/wake classification accuracies were reported to be
87.2% based on 53 assessed devices. There was no significant difference in
accuracies between devices using only accelerometer data (86.7%, d =28)
and devices using both PPG and accelerometer data (87.8%, d=22), as
determined by a t-test (significance threshold p<0.05). All reported
accuracies ranged from 79% to 96%, except for Kanady et al.’s study’, which
reported lower values of 54% and 64%. This difference can be attributed to
their 24-hour measurement, which had a higher wake-to-sleep ratio com-
pared to overnight measurements in other studies. Therefore, these
accuracies reflect the generally poor performance of sleep classifiers in
detecting wake. The average accuracy for 3-stage classification (wake vs.
NREM vs. REM) was 69.7% (d = 3), and for 4-stage classification (wake vs.
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Fig. 2 | Distribution of included participants based on health status per article.
The figure presents the distribution of participants included in the reviewed studies
based on their health status. Notably, only 11% of all included studies assessed the
performance of wearables for sleep staging in both healthy participants and parti-

cipants with sleep disorders.
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light vs. deep vs. REM), it was 65.2% (d = 9). More detailed information is in
Table 1.

Articles discussed data collection at sleep laboratories (n =23, ‘n’ is the
number of articles), athome (n = 9) or quasi-/semi-laboratories (n = 2). One
study included recordings from particpants’ home and a sleep laboratory™".
Most of the articles (n = 32) used PSG as a reference system to validate the
results of the wearables, as it can be seen in Fig. 4. However, three studies
utilized an EEG system®"*** as a reference, two used a single-channel EEG
device'** and one used the Dreem 2°' mobile EEG device.

Sleep staging epoch lengths
According to the guidelines for sleep staging, the PSG data are analysed in
30-s segments, called epochs, and these are then classified into the sleep
stages™. About two thirds (d = 41) of the 62 wearable setups in the reviewed
articles provided epochs of 30 s, which can be directly compared to the
epochs of the PSG data. A quarter (d = 17) of the wearable setups had access
to 60-s epochs. One article” employed a device that only provided access to
2-min segmented data. Furthermore, for two devices in one study” the sleep
stages in epochs of 5 min were reported. For one device™ the epoch length
was not stated. The distribution of epoch lengths used can be seen in Fig. 5.

A challenge is to compare sleep stages that are half or two/four/ten
times as long as the reference measurements. A commonly used method for
60-s epochs is to fuse the PSG epochs to 60 s. If one or both epochs are
classified as wake, they are scored as wake, and if both are classified as sleep,
they are scored as sleep'********>*, Another commonly used method is to
split the epochs into 30-s segments and assign them the same value as the
long epoch™***. Roberts et al." used the timestamp of the beginning of the
staged epoch and used the classification of the reference epoch with the
nearest start timestamp; no conversion between 30s and 60 s occurred.
Devine et al.” assigned sleep and wake with the values 1 and 0, respectively,
averaged the values over four epochs, and then rounded to the nearest
integer to obtain 2-min epochs. Chinoy et al.'® scored the PSG data at 30-s
and 60-s epochs to be able to compare it to devices with 30-s epochs and
devices with 60-s epochs. Stucky et al.*’ used PSG data that was scored in 20-
s epochs and compared it to 30-s epochs where they looked at the PSG
intervals and compared it to the dominating device stage in that interval; if
two were equal, the first one was chosen.

When authors were able to work with 30-s epochs (or raw data) of
commercially available devices, the devices often had to be provided by the
company or the authors were employed by the company?'*>7%**20-341:4247,

Algorithms for sleep staging
The majority of the articles'®'"!?2#222473236-9243454753 iy cluded in this review
reported their findings based on proprietary algorithms used by wearable

Sensor types d = 62
Multi (no PPG) Acc+PPG+Temp 3%

b)
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45%
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Fig. 3 | Type of sensors used to perform the sleep analysis per device. a A clear
trend is visible that more wearable setups are investigated that include PPG data in
sleep staging. b For 4% of all included device setups, it was not clear what sensor
input the wearable used to do sleep staging. Acc Accelerometer data, PPG

Photoplethysmography, Temp Temperature data, Multi (no PPG) Multi-sensor
devices not including PPG, " d' refers to a wearable setup, while *N/R' stands for ‘not
reported'.
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Reference device n = 35

EEG 9%

PSG
91%
Fig. 4| Ground truth methods used for evaluating wearables per article. PSG is the

most used reference device, used in 91% of all identified articles. Note ‘n' refers to
number of articles.

Epoch length d = 62

Other N/R 2%

Fig. 5 | Reported length of epochs used to evaluate the performance of wearables
per wearable setup. In 66% of the included wearable setups, the standard epoch
length of 30 seconds was used. Other: 2 min and 5 min epochs, " d' refers to a wearable
setup, and "N/R' refers to ‘Not reported'.

device companies, with many not disclosing the specific features employed
in their sleep staging algorithms, as it can be seen from Fig. 6. For sleep
detection using only accelerometer data (actigraphy), well-established
algorithms are most often used, including the Cole-Kripke algorithm™, the
University of California, San Diego (UCSD) scoring algorithm™ and the

Algorithms reported for devices
including PPG signal d = 30

Reported
20%

Fig. 6 | Reported algorithms for devices using PPG sensors. The figure depicts the
percentage of devices utilizing PPG sensors and the corresponding reported algo-
rithms used for sleep staging. Notably, only 17% of all devices including PPG signals
reported the algorithm used for sleep staging. Note 'd' refers to a wearable setup,
while "N/R' stands for ‘not reported'.

Sadeh algorithm™. In general, they calculate weighted sums of activity levels
in one-minute intervals, including levels from preceding and succeeding
minutes”. For devices using also PPG data, five articles'™*"*****" describe
their own sleep staging algorithms in detail using machine learning, which
are reviewed in the following sections. Further Mahadevan et al.*’ described
a possible algorithm for a wake / sleep detection using accelerometer data,
skin temperature and an environment light sensor but no PPG data.

The evaluated classifiers for sleep staging with wearable devices include
linear discriminant classifier, quadratic discriminant classifier, random
forest classifier, support vector machine, neural nets, logistic regression,
k-nearest neighbor and gradient boosting machine'”*"*****. The overall best
accuracy for sleep/wake classification has been shown to be 96% with the
light gradient boosting machine*. The best accuracy for 3 stages sleep
staging was 85%'° with the linear discriminant classifier. The overall highest
accuracy for 4 stage sleep staging was 79%"' with the light gradient boosting
machine. It has to be mentioned, that both Beattie et al.”® and Walch et al.’*
state in their articles that the choice of the classifier was not as impactful as
the selection of the input features.

Data processing and feature selection

In some studies'”*"*’ before feature extraction for classifier training, the data
underwent pre-processing. This included peak detection in PPG to estimate
RR intervals in ECG” or detrending, denoising, and filtering on all raw
data”. Altini and Kinnunen applied a 5th order Butterworth filter
(3-11 Hz) on the accelerometer data and performed temperature artifact
rejection by masking values outside of 31-40 degrees. They applied a real-
time moving average filter to the PPG data and removed intervals more than
16 bpm away from the 7-point median of its immediate neighbors. Addi-
tionally, they required the existence of five consecutive windows.

Beattie et al.” used accelerometer features including an integration of
the accelerometer signal in 30-s epochs, the magnitude (maximum and
minimum of each axis), and time since the last movement and until the next
significant movement. Walch et al.”' described their feature extracted from
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the accelerometer as the activity count from the raw data, which should be
similar to the features used by actigraphy (described and evaluated by te
Lindert et al.”®). Altini and Kinnunen" included the trimmed mean, max-
imum, and interquartile range of each axis in 30-s windows. Furthermore,
the mean amplitude deviation and the difference in arm angle were eval-
uated of 5-s epochs and then aggregated to 30-s epochs. Finally, Fedorin
et al.” also utilized features derived from accelerometer data, but their
specific features were not explicitly stated.

The included features derived from the PPG measurements varied
greatly from article to article. Beattie et al.” extracted heart rate (HR) from
the PPG signal and used several heart rate variability (HRV) features in their
sleep staging classifier, including high frequency (HF), low frequency (LF),
and very low frequency (VLF) power, root mean sum of squared distance
(RMSSD), percentage of adjacent RR intervals differing by more than 50 ms
(pPNN50), delta RR, mean HR, 90th percentile HR, and 10th percentile HR.
They also included breathing rate features such as HF power (0.15-0.4 Hz),
LF power (0.04-0.15Hz), and VLF power (0.015-0.04 Hz). Altini and
Kinnunen*' used several HRV features in their sleep staging classifier,
including HR, RMSSD, standard deviation of normal-to-normal intervals
(SDNN), pNN50, LF power (0.04-0.15 Hz), and HF power (0.15-0.4 Hz),
frequency peak in LF and HF, total power, normalized power, breathing
rate, mean, and coefficient of variation of zero-crossing interval. On the
other hand, Walch et al.”' used the bpm values for every second and the
standard deviation of the windows around the scored epoch. Finally,
Fedorin et al.”” included the HRV and the RR in its time and frequency
domains and in nonlinear time sequence processing. They also used some
PPG shape features, although these were not specified.

In their classifier, Walch et al.”! incorporated a feature termed “clock
proxy,” which is a cosine wave derived from an individual’s circadian clock
that was estimated using data from the previous night’s sleep with the
wearable. Fedorin et al."” included statistical information regarding sleep
stages as features, such as a sleep stage transition probability matrix and the
probability of each sleep stage occurring per hour after falling asleep. Altini
and Kinnunen" included features derived from a negative temperature
coefficient sensor, including mean, minimum, maximum, and standard
deviation, as well as a sensor-independent circadian factor. The circadian
factor is composed of a cosine wave representing circadian drive, a decay
representing the decay of homeostatic sleep pressure, and a linear function
representing the elapsed time since the beginning of sleep.

Altini and Kinnunen*' did a normalization of most of the features per
night, excluding some acceleration features, and then used them as an input
for the models. Beattie et al.”* used a set of rules after sleep staging to penalize
unlikely physiological patterns.

Sleep staging without full raw data access

In the study by Roberts et al."*, already processed data provided by Apple
and Oura were used to distinguish between wake and sleep without full raw
data access, like the previously described classifiers. The Apple Watch Series
2 provided raw accelerometer data but only provided access to bpm esti-
mates for the heart rate, sampled at approximately 0.2 Hz. For the Oura
Ring, the researchers used motion counts provided every 30s and RR
intervals from the PPG sensor. They employed a gradient boosting classifier
and achieved accuracy and sensitivity comparable to the proprietary sleep
staging algorithm used by Oura. At the time of this study, Apple did not yet
have its own sleep classifier. The model trained on the data obtained from
these devices achieved higher accuracy for the Apple Watch than for the
Oura Ring. The researchers suspected that the difference in accuracy and
specificity could be attributed to the various types of data available from the
devices. Additionally, the algorithm developed in this study was suitable for
real-time applications.

Influence of different features on classifier performance

The reported specificities for sleep/wake detection range from 41% to 60.2%
(accuracies 90%/92.6%)** for the algorithms using already processed data
and 65% (sensitivity fixed at 90%)' up to 80.74% (accuracy 98.15%)"".

Walch etal.” stated that for the wake/sleep staging, the motion features are a
good predictor, and the addition of the circadian features increases the
accuracy more than the addition of the heart rate features. Altini and
Kinnunen"' also used motion as the baseline accuracy and added features,
reporting that the addition of temperature and HRV increased the accuracy
by about the same amount, while the last added circadian features only
increased the f1 score. Roberts et al.*® found that the specificity could be
increased by around 20-35% when the wake epochs are oversampled, at the
cost of 8-12% of accuracy.

The reported accuracies for three-stage sleep staging were 69%°' and
85%", with Cohen’s kappa values ranging from 0.4 to 0.67 indicating
moderate to substantial agreement with the PSG sleep staging. Walch etal.”
found that motion is the weakest predictor of three-stage sleep staging,
indicating that heart rate features are much more important.

For four-stage sleep staging, the reported accuracies were 69%, 77%"°
and 79%"" and the Cohen’s kappa values were 0.52°° and 0.58", indicating
moderate agreement with the PSG sleep staging. Beattie et al.” stated that
the Cohen’s kappa value is the same if one is only using motion or accel-
erometer features and that the score doubles when using both feature types.
Altini and Kinnunen"' started with a baseline accuracy using just motion
features, resulting in an accuracy of 57%. The addition of temperature
features added 4%, while the addition of HRV features increased accuracy by
16%. Finally, the addition of circadian features resulted in an increase in
accuracy by 3%.

Discussion

The objective of this review was to assess the current literature on the
challenges associated with algorithm development in sleep staging using
wearables. To achieve this, we conducted an extensive search to identify
previous research in this area. Although many articles discussed wearables
and sleep evaluation, most focused on sensing technologies or devices that
only use accelerometer data. Despite the growing number of wearables that
incorporate multiple sensors for sleep staging, there is a lack of research on
algorithms used for sleep staging and the potential benefits of using multi-
sensor inputs.

The American Academy of Sleep Medicine (AASM) expressed the
need for validation of consumer sleep technologies™’. However, there are no
standardized protocol or measures for evaluating wearable devices which do
not include EEG sensors. Menghini et al.” proposed a framework to
improve validation. Two types of assessment measures that are commonly
used are: total duration of different sleep quality measures (total sleep time,
sleep onset latency, wake after sleep onset, and sleep efficiency) and epoch-
by-epoch sleep staging comparison (accuracy, sensitivity, and specificity). In
this review only articles were included which report results of an epoch-by-
epoch sleep staging comparison.

PSG is considered the gold-standard method for diagnosing sleep
disorders. Physiological signals, including EEG, electrooculography (EOG),
electromyography (EMG), and electrocardiography (ECG), are measured
during PSG to identify sleep stages. Sleep is classified into N1, N2, N3, and
REM stages, each with unique physiological patterns, according to the
AASM sleep scoring™. The N1 and N2 stages are often combined and
referred to as light sleep, whereas N3 is considered deep sleep. However,
manual sleep staging may not be perfectly consistent across different scorers.
The agreement among scorers for sleep staging ranged from 78.9%" to
82.6%"”. Before 2007 the standard to classify sleep stages was developed by
Rechtschaffen and Kales®. In this standard the sleep is classified in S1 to 4,
REM and movement time. Generally, S1 to S4 are referred to N1, N2 and N3
where S3+4-54 refer to N3, and REM stays REM. Although significant dif-
ferences between the two manuals have been identified*™ and the usage of
data of two different manual have to be handled carefully.

Sleep evaluation faces several limitations: PSG, the gold standard
measurement device, is bulky and inconvenient, and existing studies using
actigraphy, a widely used alternative, have shown limitations in detecting
wake episodes and providing more detailed sleep staging. However, Ryser
et al.” have recently demonstrated a more reliable approach for correctly
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classifying wake epochs. New generations of wearables, with multiple sen-
sors for PPG or temperature, aspire to overcome these limitations and
provide more detailed sleep staging from unobtrusive devices using more
advanced algorithms.

The current review acknowledges certain limitations that should be
taken into consideration. Firstly, although a thorough search was conducted
across three platforms (IEEE Xplore, PubMed, and Embase), it is important
to note that there is a possibility of missing out on relevant articles. Secondly,
some of the selected articles did not report accuracy as a primary outcome, but
other results like sensitivity, specificity or total durations of sleep and wake.
This may impact the overall representation of the findings in the final table,
potentially influencing the interpretation of the results. These limitations,
though present, do not undermine the value of this review, but rather high-
light the importance of future research to report all outcome values and
address any potential gaps to enhance our understanding of the topic.

We identified two main evaluation metrics for sleep wearables: total
duration of sleep and wake time and epoch-by-epoch sleep classifier eva-
luation. These metrics are often reported in relation to PSG or EEG mea-
surements and sometimes in combination with actigraphy devices.
However, the reported metrics need to be treated with caution due to various
sources of error, such as data synchronization issues and variable sleep
staging epoch lengths. We decided to focus on articles reporting epoch-by-
epoch results as these results contain the most information about the per-
formance of classifiers.

Our in-depth analysis of the algorithms for sleep staging with multiple
sensor inputs, especially the addition of PPG features to machine learning
models, shows promising results. Feature selection has been shown to be
crucial for the development of a sleep staging classifier. Next to features
extracted from the accelerometer and the PPG data, some further features,
such as temperature, were used. Additionally, features that were not from
sensors, such as circadian features and statistical information, were inclu-
ded. A recent study®® demonstrated that the breathing rate can be extracted
from an accelerometer positioned on the chest. This extracted breathing rate
could be used as another feature for classifiers sleep staging classification.

However, most of the reviewed articles did not provide insight into the
algorithms used for sleep staging, as they were proprietary algorithms
provided by the manufacturer. This makes it hard to compare the same
device in two different studies and may be a cause for differences. Fur-
thermore, access to sleep staging epochs is often limited, and the authors of
the articles had to rely on the manufacturer to provide them. Consequently,
for many of the in-depth analysis articles, the data were provided by or
associated with the manufacturer of the device.

While our primary focus is on wearables, it is essential to recognize that
the field of sleep evaluation continues to evolve. Recent research has also
evolved beyond traditional wearables, exploring sleep staging from sound
analysis”*. Although not within the scope of this article, sound-based sleep
staging methods, which analyze audio data during sleep, offer a promising
avenue for non-intrusive assessment of sleep quality and staging. Future
studies might explore combinations between sound-based sleep monitoring
and wearable technologies to further enhance the accuracy and compre-
hensiveness of sleep evaluation.

Further research and standardization of the framework™ are necessary
to evaluate the benefits of including multiple sensors in wearables for reliable
sleep staging. This requires access to epoch-by-epoch data and knowledge of
the algorithms used. Moreover, a deeper understanding of the important
features measured by wearables should be addressed. The data sets used
should put special emphasis on heterogeneous field participants, including
varying ages, different ethnicities, and a balanced gender distribution.
Further emphasis should be placed on investigating the performance of
wearables for sleep disorders and other comorbidities.

After conducting this literature review the following is recommended
for future work:

* Conduct validation studies to evaluate algorithm performance, parti-
cularly when involving diverse participants with sleep disorders (like
insomnia or sleep apnea) and comorbidities (like pychiatric disorders).

Implementing equity, diversity and inclusion will enhance the gen-
eralizability of the findings and allows for a comprehensive assessment
of the algorithm’s effectiveness in real-world scenarios. As it can be seen
from Fig. 2, most of the studies were conducted with only healthy
participants. The sample size of the articles reported in this review
range from 6 to 118 participants. Where the average number of
participant is 42.6. In order to achieve generalization it is important to
have a reasonable large dataset which should contain more than 50
participants. In general we recommend using the article of Bujang and
Adnan® to calculate the suitable sample size.

» Compare commercially available multi-stage devices across studies to
validate their performance. The validation process plays a pivotal role
in ensuring the reliability and accuracy of multistage devices in
detecting sleep stages, while also providing valuable insights into the
performance of diverse algorithms. Through systematic evaluation
across multiple studies, researchers can acquire a comprehensive
understanding of the strengths, limitations, and areas for improvement
of these devices. As it can be seen from the Table 1, only a fraction of all
available wearables doing sleep staging have been validated in
independent studies to validate their performance.

* Conduct investigations to thoroughly explore and understand the
significant features measured by wearable sensors, such as accel-
erometer, PPG, temperature, and other non-sensor-based features. By
delving into these features, researchers can gain insights into their
respective contributions and potential synergies in assessing sleep
quality and stages. Understanding the characteristics, strengths, and
limitations of each sensor-based and non-sensor-based feature enables
researchers to make informed decisions regarding their inclusion in
algorithms and data analysis pipelines. The necessity for more
investigation in features arise from the fact that only 20% of all articles
reported the used algorithm (Fig. 6) and in total only 5 articles
described the used features.

 Consistently report sensor specifications (type, resolution, measure-
ment range), validation details (sensor input, epoch length) and per-
formance metrics (accuracy, sensitivity, specificity) for transparency
and comparisons®’. For example, sleep data is typically more abundant
than wake data in sleep studies, as individuals spend a significant
portion of their time asleep. This data asymmetry could impose bias in
the algorithm toward having a higher likelihood of correctly identifying
sleep stages but may have more difficulty accurately classifying wake-
fulness. In the following unbiased metrics should be used to report the
performance of a classifier, especially the Matthews correlation
coefficient”.

* Cultivate the open-source availability of classifier code for independent
validation and research collaboration. This facilitates rigorous peer
review and enables researchers to in-depth check the algorithm’s
methodology. It also allows other researchers to reproduce the results,
conduct comparative analyses, and build upon existing work.

In conclusion, accurate and reliable consumer sleep technology is
pivotal in comprehending sleep patterns and their impact on health. Our
literature review uncovered an increasing trend in utilizing accel-
erometer and photoplethysmography (PPG) data for sleep assessment,
with the integration of PPG features and additional sensors demon-
strating enhanced sleep stage classification. To achieve precise sleep
stage classification, meticulous analysis and optimization of data pro-
cessing, alignment, epoch length, and feature selection are imperative.
Collaborative endeavors between sleep researchers and device manu-
facturers are instrumental in refining machine learning models and
augmenting the accuracy of sleep wearables. Further research is required
to validate the performance of multi-sensor devices, deepen the
understanding of key wearable-based features, and assess their efficacy
in sleep disorders and comorbidities. Five recommendations for future
work are proposed: (1) validate algorithms after implementing equity,
diversity, and inclusion, (2) compare multi-stage device performance,
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(3) explore impact of features, (4) report validation use performance
metrics consistently, and (5) promote open-source classifier and data
availability. These guidelines could facilitate more precise and reliable
sleep assessment, ultimately benefiting individuals’ well-being and
advancing the field of sleep research.

Methods

Literature Search and Selection Criteria

We conducted a literature search across IEEE Xplore, PubMed, and Embase,
adhering to PRISMA guidelines for systematic reviews’". The search covered
publications from January 2013 to January 2023, focusing on recent
developments in sleep assessment using wearable technology. Search terms
included ‘sleep’, ‘quality’, ‘efficiency’, ‘assessment’, ‘evaluation’, ‘actigraphy’,
‘accelerometer’, ‘PPG’, ‘photoplethysmogram’, ‘photoplethysmography’,
‘heart rate’, and ‘wearable’. These terms were combined using Boolean
operators to capture a broad range of relevant studies. The detailed search
terms can be found in the supplemental material (see “Supplementary
methods”). The literature review process involved one author (V.B.) con-
ducting the initial search and a second author (M.E.) independently ver-
ifying the results.

Inclusion criteria for the review were articles presenting results of
wearable devices for sleep evaluation on an epoch-by-epoch basis. Exclusion
criteria included duplicate publications, inaccessible articles (lacking full-
text availability), studies not relevant to wearable technology, those not
assessing sleep metrics or lacking epoch-by-epoch evaluation, as well as
review articles and theoretical papers.

Data Analysis and Statistical Approach

For data analysis, we focused on the accuracy of sleep staging classifiers as
reported in the selected studies. Given the potential imbalance in sleep stage
datasets (disproportionate representation of sleep versus wake epochs), we
chose accuracy for its widespread recognition and interpretability in sleep
research. The analysis involved compiling reported accuracies of various
devices and algorithms, specifically noting their performance in differ-
entiating between sleep stages such as wake, NREM, REM, light sleep, and
deep sleep.

A t-test was employed to assess statistically significant differences in
classifier accuracies among the reviewed devices and algorithms. This
involved calculating mean accuracy values for each device or algorithm and
comparing them using the t-test, with a set significance level of p < 0.05. This
statistical analysis aimed to identify any significant trends or disparities in
the performance of various sleep staging technologies.

Data availability
The authors declare that all data supporting the findings of this study are
available within this paper.

Received: 21 June 2023; Accepted: 18 January 2024;
Published online: 18 March 2024

References

1. Luyster, F. S,, Strollo, P. J., Zee, P. C. & Walsh, J. K. Sleep: a health
imperative. Sleep 35, 727-734 (2012).

2. Figueiro, M. G. & Pedler, D. Cardiovascular disease and lifestyle
choices: Spotlight on circadian rhythms and sleep. Prog. Cardiovas.
Diseases (2023).

3. Jung, |. et al. Sleep duration and the risk of type 2 diabetes: a
community-based cohort study with a 16-year follow-up. Endocrinol.
Metab. 38, 146-155 (2023).

4. Isayeva, G., Shalimova, A. & Buriakovska, O. The impact of sleep
disorders in the formation of hypertension. Arterial Hypertens. 26,
170-179 (2022).

5. Nutt, D., Wilson, S. & Paterson, L. Sleep disorders as core symptoms
of depression. Dialogues in Clinical Neuroscience (2022).

10.

11.

12.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Garbarino, S., Lanteri, P., Bragazzi, N. L., Magnavita, N. & Scoditti, E.
Role of sleep deprivation in immune-related disease risk and
outcomes. Commun. Biol. 4, 1304 (2021).

Huang, B.-H. et al. Sleep and physical activity in relation to all-cause,
cardiovascular disease and cancer mortality risk. Br. J. Sports Med.
56, 718-724 (2022).

Brager, A. J. & Simonelli, G. Current state of sleep-related
performance optimization interventions for the e-sports industry.
Neurosports 1, 3 (2020).

Worley, S. L. The extraordinary importance of sleep: the detrimental
effects of inadequate sleep on health and public safety drive an
explosion of sleep research. Pharmacy Ther. 43, 758 (2018).

Rundo, J. V. & Downey llI, R. Polysomnography. Handbook Clin.
Neurol. 160, 381-392 (2019).

Abad, V. C. & Guilleminault, C. Diagnosis and treatment of sleep
disorders: a brief review for clinicians. Dialog. Clin. Neurosci. 5,
371-388 (2003).

Djanian, S., Bruun, A. & Nielsen, T. D. Sleep classification using
consumer sleep technologies and ai: A review of the current
landscape. Sleep Med. 100, 390-403 (2022).

Baron, K. G. et al. Feeling validated yet? a scoping review of the use of
consumer-targeted wearable and mobile technology to measure and
improve sleep. Sleep Med. Rev. 40, 151-159 (2018).

Guillodo, E. et al. Clinical applications of mobile health
wearable-based sleep monitoring: systematic review. JMIR mHealth
and uHealth 8, e10733 (2020).

Kwon, S., Kim, H. & Yeo, W.-H. Recent advances in wearable sensors
and portable electronics for sleep monitoring. Iscience 24,

102461 (2021).

Chinoy, E. D. et al. Performance of seven consumer sleep-tracking
devices compared with polysomnography. Sleep 44 (2020). https://
academic.oup.com/sleep/article/44/5/zsaa291/6055610.

de Zambotti, M. et al. Measures of sleep and cardiac functioning
during sleep using a multi-sensory commercially-available wristband
in adolescents: wearable technology to measure sleep and cardiac
functioning. Physiol. Behav. 158, 143 (2016).

Sridhar, N., Shoeb, A. & Stephens, P. Deep learning for automated
sleep staging using instantaneous heart rate. NPJ Dig. Med.

106 (2020).

Fedorin, I., Slyusarenko, K., Lee, W. & Sakhnenko, N. Sleep stages
classification in a healthy people based on optical plethysmography
and accelerometer signals via wearable devices. Ukraine Conference
on Electrical and Computer Engineering 2019 IEEE 1201-1204 (2019).
Toon, E. et al. Comparison of commercial wrist-based and
smartphone accelerometers, actigraphy, and PSG in a clinical cohort
of children and adolescents. J. Clin. Sleep Med. 12, 343 (2016).

de Zambotti, M., Rosas, L., Colrain, |. M. &Baker, F. C. The sleep of the
ring: comparison of the OURA sleep tracker against
polysomnography. Behav. Sleep Med. 17, 124 (2019).

Pesonen, A. K. & Kuula, L. The validity of a new consumer-targeted
wrist device in sleep measurement: an overnight comparison against
polysomnography in children and adolescents. J. Clin. Sleep Med. 14,
585 (2018).

Lee, X. K. et al. Validation of a consumer sleep wearable device with
actigraphy and polysomnography in adolescents across sleep
opportunity manipulations. J. Clin. Sleep Med. 15, 1337 (2019).
Godino, J. G. et al. Performance of a commercial multi-sensor
wearable (Fitbit Charge HR) in measuring physical activity and sleepin
healthy children. PLoS ONE15 (2020). https://doi.org/10.1371/
JOURNAL.PONE.0237719.

Menghini, L., Yuksel, D., Goldstone, A., Baker, F. C. & de Zambotti, M.
Performance of Fitbit Charge 3 against polysomnography in
measuring sleep in adolescent boys and girls. Chronobiol. Int. 38,
1010 (2021).

npj Digital Medicine | (2024)7:74

12


https://academic.oup.com/sleep/article/44/5/zsaa291/6055610
https://academic.oup.com/sleep/article/44/5/zsaa291/6055610
https://academic.oup.com/sleep/article/44/5/zsaa291/6055610
https://doi.org/10.1371/JOURNAL.PONE.0237719
https://doi.org/10.1371/JOURNAL.PONE.0237719
https://doi.org/10.1371/JOURNAL.PONE.0237719

https://doi.org/10.1038/s41746-024-01016-9

Review article

26.

27.

28.

20.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Chee, N. I. et al. Multi-night validation of a sleep tracking ring in
adolescents compared with a research actigraph and
polysomnography. Nat. Sci. Sleep 13, 177-190 (2021).

Slater, J. A. et al. Assessing sleep using hip and wrist actigraphy.
Sleep Biol. Rhythms 13, 172-180 (2015).

Kanady, J. C. et al. Validation of sleep measurement in a multisensor
consumer grade wearable device in healthy young adults. J. Clin.
Sleep Med. 16, 917 (2020).

Miller, D. J. et al. A validation study of the WHOOP strap against
polysomnography to assess sleep. J. Sports Sci. 38,

2631-2636 (2020).

Miller, D. J. et al. A validation study of a commercial wearable device to
automatically detect and estimate sleep. Biosensors11 (2021). https://
doi.org/10.3390/BIOS11060185.

Chinoy, E. D., Cuellar, J. A., Jameson, J. T. & Markwald, R. R.
Performance of four commercial wearable sleep-tracking devices
tested under unrestricted conditions at home in healthy young adults.
Nat. Sci. Sleep 14, 493 (2022).

De Zambotti, M., Claudatos, S., Inkelis, S., Colrain, |. M. & Baker, F. C.
Evaluation of a consumer fitness-tracking device to assess sleep in
adults: evaluation of wearable technology to assess sleep.
Chronobiol. Int. 32, 1024 (2015).

Regalia, G. et al. Sleep assessment by means of awrist actigraphy-
based algorithm: agreement with polysomnography in an
ambulatory study on older adults. Chronobiol. Int. 38,

400-414 (2020).

Razjouyan, J. et al. Improving sleep quality assessment using
wearable sensors by including information from postural/sleep
position changes and body acceleration: a comparison of chest-worn
sensors, wrist actigraphy, and polysomnography. J. Clin. Sleep Med.
13, 1301 (2017).

Peter-Derex, L. et al. Automatic analysis of single-channel sleep eeg in
a large spectrum of sleep disorders. J. Clin. Sleep Med. 17,
393-402 (2021).

Marino, M. et al. Measuring sleep: accuracy, sensitivity, and
specificity of wrist actigraphy compared to polysomnography. Sleep
36, 1747 (2013).

Kuo, C. E. et al. Development and evaluation of a wearable device for
sleep quality assessment. [EEE Trans. Biomed. Eng. 64,

1547-1557 (2017).

Dong, X. et al. Validation of Fitbit Charge 4 for assessing sleep in
Chinese patients with chronic insomnia: A comparison against
polysomnography and actigraphy. PLoS ONE 17 (2022). https://doi.
org/10.1371/JOURNAL.PONE.0275287.

Cook, J. D., Prairie, M. L. & Plante, D. T. Utility of the Fitbit Flex to
evaluate sleep in major depressive disorder: A comparison against
polysomnography and wrist-worn actigraphy. J. Affect. Disord. 217,
299-305 (2017).

Mahadevan, N. et al. Development of digital measures for nighttime
scratch and sleep using wrist-worn wearable devices. NPJ Dig. Med.
4 (2021). https://doi.org/10.1038/S41746-021-00402-X.

Altini, M. & Kinnunen, H. The promise of sleep: a multi-sensor
approach for accurate sleep stage detection using the Oura Ring.
Sensors 21 (2021). https://doi.org/10.3390/S21134302.

Ghorbani, S. et al. Multi-night at-home evaluation of improved sleep
detection and classification with a memory-enhanced consumer
sleep tracker. Nat. Sci. Sleep 14, 645 (2022).

Devine, J. K., Chinoy, E. D., Markwald, R. R., Schwartz, L. P. & Hursh,
S. R. Validation of Zulu Watch against polysomnography and
actigraphy for on-wrist sleep-wake determination and sleep-depth
estimation. Sensors 21, 76 (2020).

Haghayegh, S., Khoshnevis, S., Smolensky, M. H., Diller, K. R. &
Castriotta, R. J. Performance comparison of different interpretative
algorithms utilized to derive sleep parameters from wrist actigraphy
data. Chronobiol. Int. 36, 1752-1760 (2019).

45,

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

Haghayegh, S., Khoshnevis, S., Smolensky, M. H., Diller, K. R. &
Castriotta, R. J. Performance assessment of new-generation Fitbit
technology in deriving sleep parameters and stages. Chronobiol. Int.
37, 47-59 (2019).

Berry, R. B. et al. The AASM manual for the scoring of sleep and
associated events: rules, terminology and technical specifications
Version 2.2. Am. Acad. Sleep Med. (2015) www.aasmnet.org.

Miller, D. J., Sargent, C. & Roach, G. D. A validation of six wearable
devices for estimating sleep, heart rate and heart rate variability in
healthy adults. Sensors 22 (2022). https://doi.org/10.3390/
S22166317.

Roberts, D. M., Schade, M. M., Mathew, G. M., Gartenberg, D. &
Buxton, O. M. Detecting sleep using heart rate and motion data from
multisensor consumer-grade wearables, relative to wrist actigraphy
and polysomnography. Sleep 43, 1-19 (2020).

Stucky, B. et al. Validation of Fitbit Charge 2 sleep and heart rate
estimates against polysomnographic measures in shift workers:
Naturalistic study. J. Med. Int. Res. 23 (2021). https://doi.org/10.
2196/26476.

Beattie, Z. et al. Estimation of sleep stages in a healthy adult
population from optical plethysmography and accelerometer signals.
Physiol. Measur. 38, 1968 (2017).

Walch, O., Huang, Y., Forger, D. & Goldstein, C. Sleep stage
prediction with raw acceleration and photoplethysmography heart
rate data derived from a consumer wearable device. Sleep 42 (2019).
https://doi.org/10.1093/SLEEP/ZSZ180.

Pigeon, W. R. et al. Validation of the sleep-wake scoring of a new
wrist-worn sleep monitoring device. J. Clin. Sleep Med. 14,

1057 (2018).

de Zambotti, M., Goldstone, A., Claudatos, S., Colrain, |. M. & Baker,
F. C. A validation study of Fitbit Charge 2™ compared with
polysomnography in adults. Chronobiol. Int. 35, 465-476 (2017).
Cole, R. J., Kripke, D. F., Gruen, W., Mullaney, D. J. & Gillin, J. C.
Automatic sleep/wake identification from wrist activity. Sleep 15,
461-469 (1992).

Jean-Louis, G., Kripke, D. F., Mason, W. J., Elliott, J. A. & Youngstedt,
S. D. Sleep estimation from wrist movement quantified by different
actigraphic modalities. J. Neurosci. Methods 105, 185-191 (2001).
Sadeh, A., Sharkey, K. M. & Carskadon, M. A. Activity-based sleep-
wake identification: an empirical test of methodological issues. Sleep
17, 201-207 (1994).

Fekedulegn, D. et al. Actigraphy-based assessment of sleep
parameters. Ann. Work Exp. Health 64, 350-367 (2020).

Te Lindert, B. H. & Van Someren, E. J. Sleep estimates using
microelectromechanical systems (MEMS). Sleep 36, 781-789 (2013).
Khosla, S. et al. Consumer sleep technology: An American Academy
of Sleep Medicine position statement. J. Clin. Sleep Med. 14,
877-880 (2018).

Menghini, L., Cellini, N., Goldstone, A., Baker, F. C. & De Zambotti, M.
A standardized framework for testing the performance of sleep-
tracking technology: step-by-step guidelines and open-source code.
Sleep 44 (2021). https://doi.org/10.1093/SLEEP/ZSAA170.

Younes, M., Raneri, J. & Hanly, P. Staging sleep in polysomnograms:
analysis of inter-scorer variability. J. Clin. Sleep Med. 12,

885-894 (2016).

Rosenberg, R. S., Steven, F. A. A. S. M. & Hout, V. The American
Academy of Sleep Medicine inter-scorer reliability program: sleep
stage scoring. J. Clin. Sleep Med. 9, 81-87 (2013).

Rechtschaffen, A. & Kales, A. A manual of standardized terminology,
techniques and scoring system for sleep stages of human subjects (U.
S. National Institute of Neurological Diseases and Blindness,
Neurological Information Network Bethesda, Md, 1968).

Moser, D. et al. Sleep classification according to AASM and
Rechtschaffen & Kales: Effects on sleep scoring parameters. Sleep
32, 139 (2009).

npj Digital Medicine | (2024)7:74

13


https://doi.org/10.3390/BIOS11060185
https://doi.org/10.3390/BIOS11060185
https://doi.org/10.3390/BIOS11060185
https://doi.org/10.1371/JOURNAL.PONE.0275287
https://doi.org/10.1371/JOURNAL.PONE.0275287
https://doi.org/10.1371/JOURNAL.PONE.0275287
https://doi.org/10.1038/S41746-021-00402-X
https://doi.org/10.1038/S41746-021-00402-X
https://doi.org/10.3390/S21134302
https://doi.org/10.3390/S21134302
http://www.aasmnet.org
http://www.aasmnet.org
https://doi.org/10.3390/S22166317
https://doi.org/10.3390/S22166317
https://doi.org/10.3390/S22166317
https://doi.org/10.2196/26476
https://doi.org/10.2196/26476
https://doi.org/10.2196/26476
https://doi.org/10.1093/SLEEP/ZSZ180
https://doi.org/10.1093/SLEEP/ZSZ180
https://doi.org/10.1093/SLEEP/ZSAA170
https://doi.org/10.1093/SLEEP/ZSAA170

https://doi.org/10.1038/s41746-024-01016-9

Review article

65. Ryser, F., Gassert, R., Werth, E. & Lambercy, O. A novel method to
increase specificity of sleep-wake classifiers based on wrist-worn
actigraphy. Chronobiol. Int. (2023). https://doi.org/10.1080/
07420528.2023.2188096.

66. Ryser, F., Hanassab, S., Lambercy, O., Werth, E. & Gassert, R.
Respiratory analysis during sleep using a chest-worn accelerometer:
a machine learning approach. Biomed. Signal Process. Control 78,
104014 (2022).

67. Hong, J. et al. End-to-end sleep staging using nocturnal sounds from
microphone chips for mobile devices. Nat. Sci. Sleep 14,

1187-1201 (2022).

68. Xue, B. et al. Non-contact sleep stage detection using canonical
correlation analysis of respiratory sound. IEEE J. Biomed. Health Inf.
24, 614-625 (2020).

69. Mohamad Adam Bujang, T. H. A. Requirements for minimum sample
size for sensitivity and specificity analysis. J. Clin. Diagnostic Res.
(2016). https://doi.org/10.7860/jcdr/2016/18129.8744.

70. Chicco, D. & Jurman, G. The advantages of the Matthews correlation
coefficient (MCC) over f1 score and accuracy in binary classification
evaluation. BMC Genomics 21 (2020). https://doi.org/10.1186/
512864-019-6413-7.

71. Moher, D., Liberati, A., Tetzlaff, J. & Altman, D. G. Preferred reporting
items for systematic reviews and meta-analyses: the PRISMA
statement. BMJ 339, 332-336 (2009).

Acknowledgements
Open access funding provided by Swiss Federal Institute of Technology
Zurich.

Author contributions

M.E. designed and led the study. V.B., M.E., O.L., and C.M. conceived the
study. The literature search was carried out by two reviewers, V.B. and M.E.
Both reviewers collaborated in constructing the protocol and developing the
search terms. V.B. conducted the initial literature search, while M.E.
independently confirmed the eligibility of articles, performed the screening of
included articles, and verified the extracted data. O.L. contributed valuable

clinical insights regarding sleep monitoring. M.E. directly supervised the
work of V.B. M.E and V.B. contributed equally to this work and share first
authorship. All authors have read and agreed to the published version of the
manuscript.

Competing interests
The authors declare no competing interests.

Additional information

Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41746-024-01016-9.

Correspondence and requests for materials should be addressed to
Mohamed Elgendi or Carlo Menon.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

npj Digital Medicine | (2024)7:74

14


https://doi.org/10.1080/07420528.2023.2188096
https://doi.org/10.1080/07420528.2023.2188096
https://doi.org/10.1080/07420528.2023.2188096
https://doi.org/10.7860/jcdr/2016/18129.8744
https://doi.org/10.7860/jcdr/2016/18129.8744
https://doi.org/10.1186/s12864-019-6413-7
https://doi.org/10.1186/s12864-019-6413-7
https://doi.org/10.1186/s12864-019-6413-7
https://doi.org/10.1038/s41746-024-01016-9
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Evaluating reliability in wearable devices for sleep staging
	Results
	Publications
	Characteristics of participants
	Inclusion of participants with sleep disorders and/or comorbidities
	Types of devices and reference systems
	Sleep staging epoch lengths
	Algorithms for sleep staging
	Data processing and feature selection
	Sleep staging without full raw data�access
	Influence of different features on classifier performance

	Discussion
	Methods
	Literature Search and Selection Criteria
	Data Analysis and Statistical Approach

	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




