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A systematic review of neurophysiological sensing for the
assessment of acute pain
Raul Fernandez Rojas 1✉, Nicholas Brown2, Gordon Waddington3,4 and Roland Goecke 1

Pain is a complex and personal experience that presents diverse measurement challenges. Different sensing technologies can be
used as a surrogate measure of pain to overcome these challenges. The objective of this review is to summarise and synthesise the
published literature to: (a) identify relevant non-invasive physiological sensing technologies that can be used for the assessment of
human pain, (b) describe the analytical tools used in artificial intelligence (AI) to decode pain data collected from sensing
technologies, and (c) describe the main implications in the application of these technologies. A literature search was conducted in
July 2022 to query PubMed, Web of Sciences, and Scopus. Papers published between January 2013 and July 2022 are considered.
Forty-eight studies are included in this literature review. Two main sensing technologies (neurological and physiological) are
identified in the literature. The sensing technologies and their modality (unimodal or multimodal) are presented. The literature
provided numerous examples of how different analytical tools in AI have been applied to decode pain. This review identifies
different non-invasive sensing technologies, their analytical tools, and the implications for their use. There are significant
opportunities to leverage multimodal sensing and deep learning to improve accuracy of pain monitoring systems. This review also
identifies the need for analyses and datasets that explore the inclusion of neural and physiological information together. Finally,
challenges and opportunities for designing better systems for pain assessment are also presented.
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INTRODUCTION
In 2020, the International Association for the Study of Pain (IASP)
revised the definition of pain, which currently reads1: “An
unpleasant sensory and emotional experience associated with,
or resembling that associated with, actual or potential tissue
damage.” This definition encapsulates that pain has sensory and
affective elements, both nociceptive (physiological encoding and
processing of noxious stimuli) and neuropathic (it can happen at
any time without a pain-inducing event) pain experiences, and a
cognitive element indicated in the anticipation of potential harm.
In addition, the revised IASP definition notes that a “verbal
description is only one of several behaviours to express pain.”
Based on this definition and interpretation, for this review, one can
argue that pain can be measured in multiple ways and in multiple
contexts.
Pain can be thought as a construct that can be assessed using

different approaches: self report, behaviour (e.g., vocalisations,
facial expressions, body movement), and physiological activity2.
Self reports, or patient reported measures, have been considered
the gold standard in pain assessment in clinical practice. Self-
reporting tools, such as the numerical rating scale (NRS) or the
visual analogue scale (VAS), provide a fast and simple way to
measure pain, require minimal effort to administer and are easily
understood by the clinician and patient3. These metrics rely on the
patients’ ability to assess and communicate their own pain
experience. Another alternative is the verbal rating scale (VRS),
which is sometimes used for individuals (e.g., young children,
adolescents or adults with speech problems or learning disabil-
ities) who have difficulty translating their pain experience into a
numerical value, thus, this metric uses words to describe the
magnitude of pain experience. A disadvantage of this metric is

that patients may find the VRS difficult to answer, since the
answers describing pain may be ambiguous and may not
represent the best fit to their pain experience4. In addition,
fluency in the language used for the VRS can be a barrier to
effective assessment of pain5.
Behavioural measures can be used in individuals with impaired

cognition or language skills, or in patients for whom self report is
not possible or invalid. These tools capture facial expressions
(including grimace, opened mouth, raising of eyebrows)6,
vocalisations (e.g., crying, moaning, screaming)7, or bodily move-
ments (e.g., posture, rigid or tense body, rest and sleep)8 as
indicators of pain from the perspective of an external observer,
e.g., nurses, doctors, or carers. Thus, these metrics are completely
dependent on others to be attentive to nonverbal signs in pain,
which represents a challenge since the trained observers must be
able to reliably distinguish pain from a variety of other facial and
bodily expressions9. A clear limitation of these type of metrics is
observer error and bias, since there is a possibility that two trained
observers might interpret behaviours differently. Other limitations
of this measure include (1) individual differences in the expression
of pain, which may be considerable from patient to patient; (2) the
tendency of patients to alter their behaviour in the presence of an
observer10; or (3) the inability of some populations to display signs
of pain due to early developmental stage in infants or the use of
sedatives or blocking agents that may mask pain behaviours11.
Physiological measures are an alternative when self reports are

not available or as a complement to a clinical assessment.
Physiological measures might be more accurate than behavioural
measures for patients with intellectual disability or non-verbal
patients12. Physiological measures of pain are based on the
assumption that pain induces changes in autonomic activity of the
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nervous system and that these variations can be observed using
different sensors that measure nervous system physiology. Studies
of physiological responses in non-verbal patients, infants, and
children in clinical settings often include methods of assessment
observing derived cardiovascular and respiratory parameters, such
as heart rate, blood pressure, respiration rate, oxygen saturation
rate, skin sweating, and pupil size variations13,14. In this context,
the use of sensors to measure physiological changes are of great
importance, since their use can provide a precise, systematic, and
simultaneous assessment of different physiological indicators.
The appropriate management of pain is an essential element of

care. This ethical duty to treat pain was highlighted by the
Declaration of Montreal, which calls for “access to pain manage-
ment as a fundamental human right”15. To support this ethical
duty, there is a need to obtain an objective, reliable, and accurate
physiologic marker of pain that can assist clinicians to establish
the most beneficial treatment for patients in pain. The field of pain
management would benefit enormously from further advance-
ment in objective, physiologic markers of pain3. To gain insight
into how neurophysiological indicators can serve as valid
measures of pain, it is important to understand the underlying
mechanisms of how neurophysiological signals can be used to
capture pain. To this end, we will discuss some of the most
common aspects of the nervous system that provide insights
into pain.

Aetiology of pain
In the event of painful stimuli on the body, pain is mediated by
processing in the nervous system. The nervous system consists of
two subsystems, the peripheral nervous system and the central
nervous system (CNS). The main function of the CNS is the
integration and processing of sensory information in the body.
The CNS consists of the brain and the spinal cord. Information
regarding the effect of painful stimuli on the affected area (within
the body or on extremities and trunk) is transported through the
peripheral nervous system to the central and autonomic nervous
systems by means of neural afferent pathways16. This process, in
which the brain is informed of actual or potential tissue damage, is
known as nociception. It is worth noting that in most cases,
nociceptive stimulation (e.g., bruises, cuts, fractures) leads to pain;
however, pain (e.g., phantom limb pain) can occur in the absence
of any noxious stimulation. In this regard, nociceptive pain is often
acute and brief in duration, and originates in response to a
sufficiently intense stimulus.
Sensory pain receptors (also known as nociceptors) are sensory

neurons that are attached to thin afferent nerve fibres (located at
the skin, muscle, joints, bone, and viscera) and terminate in the
dorsal horn of the spine17. Nociceptors help detect signals from
potentially damaging stimuli in the body and can be activated
when the stimulus is sufficiently intense. A nociceptor is a type of
receptor with high threshold that respond to noxious thermal,
chemical, or mechanical forces. This may be an intense mechan-
ical stimuli such as cutting or pinching of the skin, intense heat or
cold on the skin, or exposure to noxious chemicals16. When
nociceptors are activated, the nociceptive signals are relayed to
the spinal cord and transmitted to the thalamus within the CNS.
The thalamus serves as central hub for sensory information before
the signal is transported to different cortical areas of the brain
responsible for integrating the information and response18.
Contrary to well-defined sensory areas of the brain, such as the
auditory cortex or visual cortex, there is no single pain cortex
associated with pain perception19. Instead, there are multiple
cortical and sub-cortical areas (also known as the pain matrix) that
are associated with pain processing. These include the primary
and secondary somatosensory cortex (S1, S2), anterior cingulate
cortex (ACC), prefrontal cortex (PFC), insular cortex, nucleus
accumbens, amygdala and thalamus20,21.

The peripheral nervous systems has two major subdivisions. The
somatic nervous system is associated with predominantly
voluntary activities, such as relaying instructions from the CNS
to the muscles for voluntary movement. The autonomic nervous
system is related to the regulation of involuntary, physiologic
processes, such as regulating heart rate, blood pressure, or
respiration22. The autonomic system is particularly associated with
pain, since painful stimuli elicit an autonomic response (e.g.,
muscles will tighten, heart rate increases, skin temperature will
fall) as an automatic defensive response in the body to avoid any
further damage and to escape the painful stimulus. This
autonomic response occurs irrespective of awareness or the pain
experience16,23. In addition, the body will remember the noxious
experience and can replicate the responses in the occurrence of
similar events.
The autonomic nervous system (ANS) has two main branches

that act the same time, the sympathetic (SNS) and parasympa-
thetic nervous systems (PNS). These two regulate and control
different autonomic functions in a number of vital organs. For
instance, in case of painful stimuli, the SNS is involved in the
body’s immediate response to danger (e.g., severe or acute pain);
this autonomic reaction to pain is also known as the “fight or
flight” response. The SNS activates a neurophysiological response
that includes the regulation of blood flow, blood pressure, and
vascular tone, and produces changes in blood pressure (BP), heart
rate, sweat release, and pupil diameter24; thus, pain produces an
increase of heart rate, blood pressure, oxygen intake, and sweat
release, and leads to pupil dilation25. On the other hand, the PNS
exhibits an inhibitory mechanism to pain that helps conserve and
restore those neurophysiological responses exited during the
sympathetic response. Among other functions, PNS slows the
heart rate, decreases respiratory rate, and constricts pupils. These
different functions make the measurement of pain complex.
Currently, there are sensing technologies that afford a non-

invasive measure into the ANS and CNS. For instance, available
metrics to measure changes in the ANS include, heart rate (HR)
and heart rate variability (HRV) (both HR and HRV can be obtained
either by electrocardiography (ECG) or photoplethysmography
(PPG)), electrodermal activity (EDA), respiration (RESP), electro-
myography (EMG), and pupillometry. Similarly, there are non-
invasive methods to measure activity in the CNS. Brain activity is
measured by means of imaging techniques, such as electro-
encephalography (EEG), functional near-infrared spectroscopy
(fNIRS), functional magnetic resonance imaging (fMRI), and
magnetoencephalography (MEG). However, fMRI and MEG tend
to be more intrusive26 and are, therefore, not considered in this
review. The data obtained from each sensing technology must be
subsequently analysed to enable an assessment of pain to
be made.
The recording or measurement of physiological response

require either real-time or post-collection processing and analysis.
A range of processing and analysis techniques have been used in
conjunction with the sensing technologies over many decades. In
addition, there have been considerable advances in the use of
tools, such as artificial intelligence (AI), to rapidly and more reliably
determine an individual’s pain state. The development of AI tools
combined with appropriate analytical models has made physio-
logical sensors an ideal source of data to assist clinicians to make a
more reliable and well-informed diagnosis of pain. With different
advances in non-invasive sensing technologies and analysis
approaches, which have emerged over the past decade, there is
a need to explore the critical role they play in pain assessment.
Therefore, the purpose of this review is to integrate the

literature on the different sensing technologies for the objective
assessment of pain. This review also identifies how the informa-
tion obtained by these sensors can be employed to develop
autonomous mechanisms that can assist in estimating an
individual’s pain. The contributions of this paper can be
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summarised as follows: (a) presenting a summary of the different
sensing technologies that can be used in measuring an
individual’s pain experience, which also includes a summary of
the expected neurophysiological response (e.g., increase or
decrease) during pain; (b) offering a detailed summary of
analytical methods, including pre-processing, feature extraction
and optimisation, and learning problem (e.g., classification or
regression) results; (c) presenting a summary of the practical
implications on the used of each sensing technology; and (d) a
detailed discussion on the identified challenges and possible
opportunities for designing better systems for pain assessment.

RESULTS
In this section, the study selection process including the steps
considered for the selection of articles in this review is presented.
In addition, the results for each of the research questions is
presented in the following subsections.

Study selection
Figure 1 presents the article identification and selection process.
The search strategy retrieved 553 studies from the three databases
and and additional 8 papers were manually included after
searching in the reference lists of the identified studies. After
removing duplicates found in different sources, 435 studies
remained for further review. After screening the titles and
abstracts against the inclusion criteria, 382 articles were discarded.
The remaining 53 articles were read in their entirety. From those, a
total of five papers were rejected for the following reasons: (1)
they were different instances of the same study (n= 3), and (2)
there was not enough information about the sensors and/or the
analysis (n= 2). The remaining 48 papers were included in this
review.
An overview of selected papers for this review is presented in

Table 1. The summary presents information about the type of pain
(e.g., electrical, thermal, postoperative, and sickle cell disease), the
type of noxious stimulation used to elicit pain (e.g., laser, cold
pressor test, thermode) and its anatomical location where the

stimuli was applied (e.g., hand, arm, abdomen), and the
population included (e.g., gender and age range) in each study.
In addition, the sensor name to measure the neurophysiological
response is also included. Based on the anatomical location, two
categories can be observed in this summary: sensors that measure
neural/brain activity (e.g., fNIRS, EEG) and sensors that measure
other physiological activity (e.g., EDA, ECG, EMG, PPG)—it is worth
mentioning that due to the exclusion criteria (non-invasive
methods), surface EMG (sEMG) will be used hereinafter. Therefore,
in the remaining of this paper, these two categories are referred as
neurological and physiological sensors, respectively.

Sensors used for pain assessment
As described earlier, the two main categories of sensors used for
assessing pain in the literature are: neurological and physiological
sensors. Among the 48 studies, 27 studies (56%) assessed pain
using physiological sensors, 20 studies (42%) assessed pain using
neurological sensors, and only 1 study (2%) with a combination of
neurological and physiological sensors. It is clear that the most
popular sensors for the assessment of pain were EDA (n= 20), ECG
(n= 14), and EEG (n= 14), while the least popular were move-
ments sensors (accelerometer and gyroscope), Pupil, SpO2, and
BP. Although, SpO2, BP, and pulse can be obtained from PPG,
there was no indication of the type of sensor employed to obtain
these metrics; therefore, we decided to maintain these metrics
separately in the plot. It is also important to mention that, while
the majority of studies used a single type of sensor (unimodal =
30), some of the retrieved studies used a combination (multimodal
= 18) of two or more sensors for the assessment of pain. In
addition, those studies using a multimodal approach, most of
them employed physiological sensors (n= 17) only. Those studies
using unimodal sensing, most of them (n= 20) used neurological
sensors and only some (n= 10) used physiological sensors.
Figure 2 presents the distribution of the reviewed studies along
with their type of sensor modality (unimodal/multimodal).
In the following subsections, we report on the different sensors

used of pain assessment. In addition, information regarding the
effect of pain on the observed neurophysiological response (e.g.,

Fig. 1 PRISMA flowchart. The diagram shows the study selection process conducted for the purpose of reviewing the use of sensors and
machine/deep learning techniques for objectively assessing human pain.
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Table 1. Overview of reviewed studies in chronological order, their details and type of sensor used for pain detection.

Study Type of pain Stimuli Location of stimulation Population (F/M) Age μ ± Std Sensor Year

136◇ Patient’s disease – – 11,428 65.8 ±− ECG, RESP,
SpO2, Pupil

2022

160§ Thermal & (heat)
electrical

T: Thermode
E: TENS

T: Left inner forearm
E: Left index and middle
fingers

127 18–50 ECG, EDA, sEMG 2022

56 Thermal (cold) Cold pressor test Right hand 32 (6/26) 21.25 ± 1.64 Pupil 2022
31 Electrical TENS Right forearm 16 (7/ 9) 25.6 ± 4.8 EDA 2021
129♯ Thermal (heat) &

mechanical
T: Laser
M: Pinprick

T: Dorsum of left hand
M: Dorsum of right hand

T: 51 (25,26)
M:2 (1,1)

T: 27
M: 58 ± 10.5

EEG 2021

28† Thermal (heat) Thermode Right arm 87 (43,44) 18–65 EDA, ECG, sEMG 2021
117 Postoperative Surgery – 100 (56,44) 53.4 ± 12.5 PPG 2021
85 Thermal (heat & cold) Thermode Non-dominant hand 18 (3/15) 31.9 ± 5.5 fNIRS 2021
98 Physiotherapy Pressure/tactile

stimulation
Neck and arm 34 (23,11) 44 ± 15 EDA, sEMG,

RESP, PPG
2021

118 Postoperative TENS – 25 – PPG 2021
46 Electrical TENS Left & right arm 20 (9/11) 23–89

54.45 ± 17.44
ECG 2021

42 Electrical TENS – 20 (9/11) 23–89
54.45 ± 17.44

EDA 2021

29 Thermal (heat) &
electrical

T: Thermal grill
E: STMISOC stimulator

Right hand 25
T: 10 (4/6)
E: 15 (9/6)

23–39
25 ± 4.8

EDA 2021

83 Thermal (heat) Laser Left hand 29 (9/20) – EEG 2020
34⋆ Thermal – Right arm – – ECG, sEMG,

EDA, RESP
2020

63 Thermal (cold) Cold pressor test Dominant hand 30 (13/17) 24 ± 3 EEG 2020
64 Thermal (heat) Laser Left & right hand 18 (8/10) 25 ± 3.5 EEG 2020
32 Thermal (heat) Thermal grill Right hand 10 23–39 EDA 2020
52 Postoperative – – 100 53.8 ± 12.4 PPG 2019
69 Thermal (heat & cold) Thermode Non-dominant hand 18 (3/15) 31.9 ± 5.5 fNIRS 2019
43 Sickle cell disease – – 20 (11/9) 20–66 PPG, EDA, SKT,

GYRO, ACC, Steps
2019

44 Sickle cell disease – –- 29 – PPG, EDA, SKT,
GYRO, ACC, Steps

2019

70 Electrical Neurometer Left thumb 43 (0/43) 26.8 ± 5.6 fNIRS 2019
35† Thermal (heat) Thermode Right arm 87 (44/43) 18–65 EDA, ECG, sEMG 2019
96 Thermal (cold) Thermal probe Left and right teeth 21 (13,8) 27.6 ± 3.5 fNIRS 2019
41 Thermal (heat) &

electrical
T: Thermode
E: TENS

T: Inner forearm on
both arms
E: fingertip of ring finger
on both hands

30 (15/15) F: 33 ± 11.9
M: 35 ± 8

ECG, RESP,
EDA, sEMG

2019

59 Pressure Algometer Hand 9 (2/7) – EEG 2018
36† Thermal (heat) Thermode Right arm 87 (43/44) 18–65 ECG, EDA 2018
49 Pressure Periodontal probe 47 (13/34) 44–69 ECG, PPG 2018
45 Postoperative Pressure/tactile

examination
Abdomen 21 (5/16) 10–15 EDA 2018

53 Sickle cell disease – – 40 – SpO2, BP, PPG,
RESP, SKT

2018

40 Electrical TENS Tibialis anterior muscle of
the right leg

6 (2/4) 22-25 BVP, ECG, EDA 2017

66 Thermal (heat & cold) Thermode Non-dominant hand 18 (3/15) 31 ± 5.5 fNIRS 2017
84 Thermal Thermode Left hand 25 (11/14) 24 EEG 2017
161 Thermal (cold) Thermode Left inner forearm 14 (4,10) – EEG, PPG, EDA 2017
86 Thermal (heat & cold) Thermode Non-dominant hand 18 (3/15) 31 ± 5.5 fNIRS 2017
62 Thermal (heat) Thermode Left forearm 30 (16/14) 20 ± 2 EEG 2017
61 Thermal (heat & cold) Thermode & cold

pressor test
Non-dominant hand 81 (45/36) 64.5 ± 12.5 EEG 2016
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increase or decrease) with respect to each type of sensor and the
location of the recording sensor on the participants of each study
are also reported. This information is important for the interested
reader who wants to explore the use of these sensors and
replicate similar results.

Physiological measures. In the search for an accurate and
objective method for pain recognition, various physiological
signals have been explored as potential indicators for pain. These
sensors are: Electrodermal activity (EDA), surface Electromyogra-
phy (sEMG), Electrocardiogram (ECG), Respiration (RESP), Oxygen
saturation (SpO2), Blood Pressure (BP), Electrocardiogram (ECG),
Movement (MOVE), Skin temperature (SKT), Pupillary response
(PUPIL), and Photoplethysmography (PPG). A summary of
physiological sensors used in the assessment of pain is presented
in Table 2.
Among all of the physiological signals identified in the

literature, electrodermal activity (EDA) was the most popular. In
addition, EDA has been one of the most widely used physiological
indicators in psychology, psychiatry, and psychophysiology
research27. It is also refered as galvanic skin response (measuring
changes in the skin’s electrical resistance) or skin conductance
response (measuring changes in the skin’s electrical

conductance)28. This type of sensor measures the changes in
sweat gland activity which are affected by the sympathetic
nervous system29. Increased sweating reduces (↓) skin resistance
level (SRL), or in other words, the skin conductance level (SCL)
increases (↑). When external stimuli are presented (e.g., visual,
auditory, noxious, etc.), the skin momentarily becomes a better
conductor of electricity27. These phenomena is normally recorded
from palmar and plantar surfaces because of the higher density of
glands in these areas30. In the searched literature, most studies
used the palmar surface of two fingers (e.g., index and middle
fingers) using electrodes29,31–41, while a small number of studies
used a wristband to measure EDA on the wrist42–45.
Another popular physiological measure for indicating pain

perception is electrocardiography (ECG). Since the autonomic
nervous system regulates internal bodily functions involuntarily
(e.g., those of the cardiovascular system), the heart plays a primary
role. The heart provides a consistent flow of oxygenated blood
(HbO), first by pumping deoxygenated blood (HbR) into the lungs
(pulmonary circulation) for re-oxygenation, and then by sending
HbO to the rest of the body (systemic circulation)27. The ECG
signal is an indication of the heart’s contractile activity. The most
significant parameters related to pain that have been derived from
ECG signals are heart rate (HR) and heart rate variability (HRV)46.

Table 1 continued

Study Type of pain Stimuli Location of stimulation Population (F/M) Age μ ± Std Sensor Year

37† Thermal (heat) Thermode Right arm 87 (43/44) 18–65 sEMG, EDA, ECG 2016
72 Thermal (heat) Laser – 96 (51/45) 21.6 ± 1.7 EEG 2016
71 Thermal(cold) Cold pressor test Hand 19 (10/9) – fNIRS 2016
92 Thermal (cold) Cold pressor test Non-dominant hand 13 – EEG 2016
38‡ Thermal (heat) Thermode Right arm 87 (43/44) 18-65 sEMG, EDA, ECG 2015
93 Thermal (cold) Cold pressor test Dominant hand 17 23.22 ± 1.72 EEG 2015
39‡ Thermal (heat) Thermode Right arm 87 (43/44) 18-65 sEMG, EDA, ECG 2015
33 Pressure Blood pressure cuff Non-dominant arm 217 (120/97) 20 ± 1.80 ECG, EDA, SKT, PPG 2015
94 Thermal (heat) Laser Dorsum of right hand 23 (14/9) 19-35 EEG 2013
103 Thermal (heat) Laser Dorsum of left hand 29 (9/20) 17–25

22.2 ± 1.9
EEG 2013

Studies using datasets (◇ = MIMIC-III, † = BioVid Part A, ‡ = Biovid Part B, ⋆ = SenseEmotion, § = X-ITE, ♯ = Brain Mediators of Pain). Type of stimuli (T =
thermal, M = mechanical, E = electrical).
EDA electrodermal activity, fNIRS functional near-infrared spectroscopy, ECG electrocardiogram, Pupil pupillometry, EEG electroencephalography, sEMG surface
electromyography, RESP respiration, PPG photoplethysmography, SKT skin temperature, GYRO gyroscope, ACC accelerometer, Steps step counter, SpO2 oxygen
saturation, BP blood pressure.

Fig. 2 Summary of type of sensors used in the reviewed literature. EDA electrodermal activity, ECG electrocardiogram, EEG
electroencephalography, PPG photoplethysmography, EMG electromyography, fNIRS functional near-infrared spectroscopy, RESP respiration,
SKT skin temperature, MOVE gyroscope/accelerometer/steps, Pupil pupillometry, SpO2 oxygen saturation, BP blood pressure.
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HR is a measure of the number (in heartbeats per minute or bpm)
of contractions of the ventricles and HRV is a measure of the
variance in time between heartbeats. An increase (↑) of HR and a
decrease (↓) of HRV is associated with a stress response47,48. ECG
can be measured on the thorax surface or in the limbs. Most
surveyed studies used the thorax34–41,49, while other studies used
either the wrists or the ankles33,46 to monitor the heart activity.
Electromyography (EMG) is another typical physiological

recording method used to assess pain. This technique measures
the electrical muscle activity originated by muscle contractions
and propagated through the surface of the skin (i.e., surface EMG).
In general, muscle contractions are associated with reflexes and
actions characteristic of behaviour27. Electrical muscle activity is
also a sign of general psychophysiological stimulation, as higher
muscle tone is related to increased sympathetic nervous system
activity and reduced somatomotor activity is primarily due to
parasympathetic stimulation39. Although there is no a single

muscle that can be targeted to be used as indicator of pain, in the
area of affective computing, increased activity (↑) of the trapezious
muscle is related to high stress39, while increase (↑) activity in the
zygomaticus and corrugator muscles has been linked to an elicited
response to unpleasant imagery50. In the reviewed literature, the
trapezious muscle (located in the upper back, neck, near the
shoulder area)34,35,37–39,39, and the zygomaticus major and
corrugator supercilii muscles (located in the cheek and above
brow, respectively)41 were used to measure muscle activity.
Another effective technique in detecting physiological changes

is photoplethysmography (PPG). It is an optical method for
detecting blood volume changes in the microvascular bed of
tissue. It is frequently used to take measurements at the skin’s
surface in a non-invasive manner, either by transmittance mode
(e.g., a clip in the earlobe or finger) or by reflectance mode (e.g., a
wrist watch)51. The PPG signal is multi-functional because it
enables the extraction of many physiological indicators such as HR

Table 2. Summary of neurophysiological sensors used in the reviewed literature, including the anatomical location of recording sensor and the
expected neurophysiological response to pain.

Sensor Effect of pain
(↑) Increase, (↓) Decrease

Location of recording sensor Studies

EDA (↑) Skin conductance
(↓) Skin resistance

Palmar surface of index and ring fingers 28,34–40

Palmar surface of index and middle fingers 29,31–33,98,160

Palmar surface of two fingers 41

Abode and below second knuckle of hand 161

Wrist 42–45

sEMG (↑) Trapezious muscle activity Upper right trapezious 28,34,35,37

Corrugator supercilii 98(↑) Corrugator supercilii muscle activity

Trapezious, corrugator supercilii, and zygomaticus 38,39,160(↑) Zygomaticus major muscle activity

Cheek and corrugator supercilii 41

RESP (↑) Inspiration
(↓) Breathing rate

Thorax 34,41,98

– 53,136

SpO2 (↑) Oxygen saturation – 53,136

BP (↑) Systolic BP
(↓) Diastolic BP

– 53

ECG (↓) HRV
(↑) HR

Right and left wrist 46

Thorax 28,34–41,49,160

– 136

Wrist and ankle 33

MOVE (↓) Movement
(↓) Steps

Wrist 43,44

SKT (↓) Skin temperature Wrist 43,44

– 53

Fingertip of non-dominant hand 33

PUPIL (↓) Pupillary diameter Eyes 56,136

PPG (↑) HR or pulse rate
(↓) Blood volume pulse
(↓) Pulse transit time

Left index finger 40,49,52,117,161

Wrist 43,44,118

– 53

Left ring finger 98

Thumb of non-dominant hand 33

EEG N2 and P2 activation
(↓) Alpha
(↓) Beta
(↑) Delta
(↑) Theta
(↑) Gamma

Full head 61,62,72,83,84,94,103,129,161

Head circumference 59,63,64,92,93

fNIRS (↓) HbR
(↑) HbO

Somatosensory area 66,69,85,86

Prefrontal and somatosensory area 96

Prefrontal area 70,71

R. Fernandez Rojas et al.

6

npj Digital Medicine (2023)    76 Published in partnership with Seoul National University Bundang Hospital



(or pulse rate), peripheral oxygen saturation (SpO2), and respira-
tion rate reflecting the autonomic nervous system reaction52. The
most common place to measure blood volume are the finger or
the earlobe27. The thumb33 and the index finger40,49,52 of the non-
dominant hand, and the wrist43,44 were the most popular
anatomical locations in the reviewed literature. A decrease (↓) of
blood volume pulse33,40, an increase (↑) in HR43,44,49,52,53, and an
decrease (↓) of pulse transit time33 have been reported during
different pain stimuli.
Skin temperature (SKT) is another metric for the identification of

pain in the reviewed literature. The skin is a natural barrier that
prevents the entry of external matter into the body and also
allows the transmission of bodily fluids from the bloodstream to
the exterior of the body27. The skin helps in the maintenance of
water balance and core body temperature, which is achieved by
generation of sweat (thermoregulation). Evidence suggest that
generation of sweat changes the skin resistance, i.e., the higher
the sweat, the lower the skin resistance27. Similar to EDA, this
metric can be measured in palmar and plantar surfaces because of
the higher density of glands in these areas30. In refs. 43,44, the skin
temperature was measured in the wrist, while in ref. 33 it was
measured in the finger tips. In addition, a decrease (↓) of local skin
temperature has been observed after painful stimuli53.
Other various metrics such as respiration (RESP), oxygen

saturation (SpO2), blood pressure (BP), movement (MOVE), and
pupil changes (PUPIL) were also identified as possible indicators of
pain. Respiration rate (also know as breathing rate) is a measure of
the number of breaths per minute and it can be measured using
an elastic belt worn around the thorax34,41. Respiratory changes
often occur in response to pain, for instance, an inspiratory gasp
with a subsequent breath-hold in response to acute pain54. In the
reviewed studies, an increase (↑) in inspiration34,41 and a decrease
of breathing rate were reported53. Although, RESP, SpO2 and BP
can be obtained using PPG, in ref. 53 there was no indication of the
method used to acquire these metrics; in this study, it was
reported a decrease (↓) of breathing rate, an increase (↑) of oxygen
saturation, and decrease (↓) of systolic and diastolic blood
pressure. Movement metrics have been used to indicate changes
in motor behaviour (e.g., slow movement, shorter duration, or
fractionated movement)55. In ref. 53, a decrease (↓) in movement
and number of steps as measure by 3-axial accelerometer and
3-axial gyroscope were reported. Finally, pupillary response to
pain was investigated using cameras mounted on eye tracking
glasses, it was reported that a decrease in pupillary diameter (i.e.,
dilation) was observed as a response to painful stimulation56.

Neurological measures. As human brain is the centre of any
response to a certain stimulus, it is believed that neurological
signals are highly correlated to complex integrative functions,
such as sensory and motor integration57. In the reviewed
literature, two types of neurological sensors were used to assess
pain: (1) electroencephalography (EEG) and (2) functional near-
infrared spectroscopy (fNIRS). Table 2 also presents a summary of
the reviewed studies using neurological sensors.
In the reviewed studies, the most popular method of

assessment of pain using neurological sensors was electroence-
phalography (EEG). EEG measures the brain’s electrical activity
and pattern analysis of this activity is used to indicate neural
activation associated with pain under certain frequencies.
Spectral analysis is employed to decompose EEG signals into its
constituting frequency components, between 1 and 60 Hz58.
Typically, EEG data are partitioned into five bands (from slowest
to fastest: delta, theta, alpha, beta, and gamma). The power
spectral density (PSD) in each band is computed and used to
compare the conditions being studied (i.e., pain vs. no pain). EEG
is considered the most popular approach in the literature to
objectively assess other cognitive states such as attention,
cognitive workload, or vigilance.

EEG studies have identified correlations between pain and the
power at different EEG frequency bands. Power in Delta band
(1–4 Hz) has exhibited an increase (↑) after mechanical (pressure)
pain59 and cold pressor test60,61. Power in Theta band (4–8 Hz)
has also shown an increase (↑) after mechanical59 and thermal
pain62. Power in Alpha band (8–12 Hz) was the most common
indicator in the literature, the power in this band showed a
decreased (↓) after cold pressor test60,61,63 and noxious laser
stimulation64. Power in Beta band (12–30 Hz) showed an increase
(↑) after heat stimulation65. Finally, power in Gamma band
(30–45 Hz) exhibited an increased (↑) after heat stimuli62,65 and
cold pressor test63.
The second approach to assess pain with neurological sensors

is to measure activation of different brain regions using function
near-infrared spectroscopy (fNIRS). This technique examines the
levels of oxygenation (HbO) and deoxygenated (HbR) haemoglo-
bin concentration in the cerebral cortex66,67. fNIRS is commonly
used in this regard to measure the amount of HbO, due to its
better signal-to-noise ratio than HbR, in a given brain region in
response to a noxious stimulation68. Different studies have
reported that increased (↑) levels of HbO in different cortical
areas correlates with increased stimulation after heat and
cold66,69, mechanical and electrical70, and cold pressor test71.
Although, neither of these studies reported the use of HbR, it is
well known that HbR has an opposite effect than HbO.

Techniques for the analysis of sensor data in pain assessment
Several studies have addressed the problem of automatic pain
assessment using machine learning or deep learning methods by
analysing both individual or multiple physiological signals.
Traditional machine leaning methods rely on the design of
manual feature extraction and feature optimisation to improve
model performance. On the other hand, deep learning methods
learn the intrinsic representations of the data to extract features
directly from the data without the need of hand-crafted features.
Despite of the method for feature derivation, two type of learning
problems were identified in the reviewed literature: (1) classifica-
tion, which qualitatively predicts the pain intensity by classifying
trials into two (e.g., pain, no pain) or more levels (no pain, low,
medium, high pain); and (2) regression, which quantitatively
predicts the pain intensity as a continuous value (e.g., 0–10)72. In
this section, we present the analytical methods used to decode
pain from neurophysiological signals in the reviewed literature.
Table 3 exhibits a summary of the analytical methods used in the
reviewed studies. In addition, Fig. 3 presents the data analysis
pipeline, this diagram is used to present the findings from the
literature into four main categories: pre-processing, feature
extraction, feature optimisation, and learning models (classifica-
tion/regression).

Pre-processing methods. The first step in the data analysis
pipeline is pre-processing, which is generally done after signal
acquisition. It is imperative to reduce or eliminate noise present in
the captured data by implementing different pre-processing
strategies, which are generally specific for each type of sensor.
Noise (e.g., artefacts) can be defined as the unwanted changes
that a signal may capture during data acquisition73. The signal
within each sensor is typically a combination of the neurophysio-
logical response to pain (or to the presented stimulus), environ-
mental noise (e.g., power lines, electronic equipment),
confounding factors (e.g., respiration or heartbeat in fNIRS data),
or motion artefacts (e.g., body movement, poor sensor contact
with the skin). When the noise components are stronger than the
physiological data, the quality of the data may interfere with the
analysis, its interpretation, and the validity of the data. The
objective of pre-processing is to improve the quality of the signal
by removing trends, filtering noise and artefacts, and in some

R. Fernandez Rojas et al.
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cases, re-sampling the signal to reduce complexity in the analysis.
Thus, pre-processing methods are an important step in the data
analysis pipeline. In the following paragraphs, the processing steps
for each individual sensor are presented.
EDA is vulnerable to several types of noise, including those

generated from electronic noise, or movement between the skin and
the recording electrodes. In the reviewed literature, the most widely
used technique to remove signal artefacts and noise is using low-pass
filters. This technique is able to smooth variations (e.g., movement,
electrode pressure) in the signal31,34,35,45 and also to remove noise
from the power source (50 Hz or 60 Hz)42 by attenuating unwanted
(high) frequencies from the signal above a given cutoff frequency. A
similar technique to reduce high-frequency components associated
with artefacts is using moving windows, the moving media
window29,31,32 and the moving average window37,38,40,42,43 are two
examples of this technique. These windowing techniques eliminate
extraneous data by computing the median and mean value within
the window width (e.g., 5-s width), respectively. Another popular pre-
processing technique used in the reviewed literature is downsampling
the original signal. Downsampling is often used to reduce the data
rate or the size of the data to speed up computation and reduce
complexity29,31,32,40,42,44,45.
sEMG data are also susceptible to different types of noise. For

instance, electromagnetic radiations from the power sources, high
skin impedance, contamination due to relative motion of the sensor
on the skin, cross-talk from nearby muscles, interference with the
electrode cable or sensor detachment (also known as clipping), or
ECG artefacts often observed from the muscles in the trunk74.
Common motion artefacts, such as, electrode interface or electrode
cable detachment, can be reduced by a better design of the system
set-up75. On the other hand, inherent noise due to muscle cross-talk
or instability of sEMG signals is believed to affect frequencies in the
region of 0 to 20 Hz, which is the firing rate of the motor units75. In
the reviewed literature, these kind of noise were attenuated with a
band-pass filter to remove low and high frequencies from the
signal34,35,37–39,41. The low-frequency cutoff (typically around 20 Hz)
of the filter removes muscle cross-talk and inherent sEMG
instability, while the high-frequency cutoff (typically greater than
200 Hz) removes high-frequency interference, such as movement
artefacts, cable interference and clipping76.
ECG signals are mainly affected by sources of noise such as

baseline drift, artefacts due to electrode motion, muscle contrac-
tions, and power source interference77. Baseline drift is a type of
noise that presents an erratic up and down movement in the
baseline signal, which is often a result of improper electrode
placement or movement78. Muscle noise (i.e., EMG cross-talk) also
affects the ECG signals, in particular in recordings involving human

activity or exercise. In the reviewed studies, a moving average
window40,46 or a linear detrend37,49 were used to smooth the signal
and remove baseline drift (0.05–1 Hz). A band-pass filter35,38,39 was
used to remove the baseline drift, movement (muscular and
electrode) artefacts, and muscle cross-talk. A high-pass filter40 can
be used to remove powerline interference (50 or 60 Hz), or motion
artefacts and muscle cross-talk (ranging from 20 to 1000 Hz)79.
PPG is corrupted by various kinds of noise regardless of the type

of the sensor design (reflectance or transmission). A typical PPG
signal contains two main components, a large DC component due
to the light absorbed when passing through the skin, tissue, and
bone; and a small AC component due to the light passing through
pulsating arteries caused by the heartbeat80. Common sources of
noise in PPG signals are, powerline noise caused by electromag-
netic interference (e.g., ambient light, computer screens), motion
artefacts from sensor and/or body movements affecting the optical
path, and physiological confounders (e.g., breathing). In the
reviewed literature, a Savitzky-Golay filter49 was used for smoothing
artefacts. A combination of low-pass and high-pass filter to remove
high-frequency interference and to baseline drift (low-frequency),
respectively52. Similarly, a band-pass filter40 was used to remove
both low- and high-frequency noise. The application of a moving
average window at two different periods were used to make the
vasoconstriction and heartbeat intervals more salient in the PPG
signal and remove motion artefacts52.
Other physiological signals such as, RESP, MOVE (gyroscope,

accelerometer, and steps count), PUPIL, and SKT are also susceptible
to noise. For instance, MOVE signals are highly affected by large
voluntary and involuntary movement81. Similarly, respiration data
are affected by movement artefacts. Blinks is the major source of
noise in pupillometry. Skin temperature sensors are affected by
movement artefacts or sensor detachment. In reviewed literature, a
band-pass filter was used to compensate for movement artefacts in
RESP data34, a moving average window was implemented to
smooth the signal and reduce artefacts in the MOVE and SKT data43,
and pupil diameter velocity method was used to remove high-
frequency noise56.
EEG signals are also susceptible to various forms of noise, which

affect their data quality. Often sweating and drifts in electrode
impedance lead to slow changes in the measured potential,
producing amplifier saturation, distortions, and lost data in the EEG
signals. Similarly, muscle contractions typically affect the EEG
signals above 100 Hz82. For these reasons, it is recommended to
filter the frequencies below 0.01 Hz and above 100 Hz. In the
reviewed literature, two types of filters were implemented to filter
these type of noise. In ref. 62, a high-pass filter with a cutoff
frequency of 0.25 Hz, while in refs. 63,64,72,83,84 a band-pass filter with

Fig. 3 Data analysis pipeline of machine learning and deep learning models. After signal acquisition, the first stage in the data analysis
pipeline is signal processing, followed by either the classical machine learning or deep learning pipelines.
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a low- and high-cutoff frequency of 0.01–1 Hz and 30–100 Hz, were
used respectively. Another common source of noise is the power
line interference at 50 or 60 Hz, in ref. 64 a Butterworth band-stop
filter (49–51 Hz) was used to remove the power source frequency
interference. Another distinct source of noise is eye movements
and blinks, in ref. 63 a visual inspection and a subsequent manual
rejection was implemented; while, in refs. 62,72,83,84 independent
component analysis (ICA) was used, and in ref. 72 the multiple
artefact rejection algorithm (MARA) was implemented.
fNIRS data is generally contaminated by different sources of

noise and pre-processing is required. Motion artefacts are
generally seen as large spikes in the fNIRS data and in the
reviewed literature, two hybrid methods were used to remove
these artefacts: a discrete wavelet transform and statistical
analysis66,69, and spline interpolation and Saviszky-Golay filter70.
In addition, it is expected that high-frequency oscillations in the
fNIRS data do not have a neural basis and are contaminated by
cardiac pulsation (0.8–1.5 Hz) and respiration (0.16–0.6 Hz)68.
Thus, in the work of refs. 66,69–71,85,86, a low-pass filter with a
cutoff frequency below 0.16 Hz was applied to remove high
frequency noise. Another distinct problem in fNIRS data is the
inclusion of extracerebral hemodynamics from the scalp, skull,
and systemic variables (e.g., blood pressure) that affect the data,
in refs. 69,66 a de-noising procedure using principal component
analysis (PCA) was implemented to identify and delete those
components representing spurious signals in the fNIRS signals.

Feature extraction. The second step in the data analysis pipeline
is feature extraction and its subsequent feature optimisation. A
feature can be defined as an individual independent variable that
serves as input data in a predictive/learning model. Feature
extraction refers to the process to convert the sensor signals into
numerical features (i.e., properties or characteristics) that can be
used to create a predictive model using machine learning or deep
learning. Features that better discriminate between input data
from different classes (e.g., low, moderate, high pain), generally
produce simpler and more accurate results. Since, features directly
influence the performance of the predictive models and their
results, thoughtful consideration to the feature extraction process
(also called feature engineering) should be placed during the data
analysis process. There are several feature extraction techniques
that are applicable to most signals (e.g., statistical features),
however, there are also some that are specific for each type of
sensor (e.g., QRS-complex from ECG signals).
Statistical metrics are the most widely used features in many

signal classification tasks. These kind of features often result in a
good approximation to describe changes over time (e.g., summary
statistics) across the values in the processing window (also called
epoch)87. There are several popular statistical metrics including
mean, standard deviation, range, kurtosis, or skewness. In the
reviewed literature, in ref. 39 several statistical features were
further divided into stationarity, entropy, linearity, variability, and
similarity. In addition, statistical features were obtained from most
sensors, PPG33,40,43,44, ECG36–41,46, sEMG34,37–39,41,
EDA33,34,37,38,38,40–44, MOVE43,44, PUPIL56, RESP34,41, and SKT33,43,44.
Time-domain features are also popular features in time series

analysis. These type of features are used to understand the shape of
the signals within each window. Time-domain features are useful to
find specific information about the signal, e.g., height (amplitude),
length, or time to specific events (e.g., peaks, peak-to-peak
amplitude). These metrics are important to compare the signals in
different conditions (e.g., no pain and high pain) and also with
respect to each sensor. Some of the most popular metrics obtained
in the time domain include, maximum (max) and minimum (min)
values, peak-to-peak values, time to peak, root mean square (rms),
wavelength, slope, and area under the curve (AUC). Similar to the
statistical features, time-domain features were obtained from most
sensors in the reviewed literature, EDA33,34,37–39,41, PUPIL56,

sEMG34,37–39,41, ECG33,37–39,41,46, RESP34,41, SKT33, EEG83, and
fNIRS69,86.
Frequency-domain features allow to observe several character-

istics of the signals that are not evident in the time domain. In signal
processing, frequency refers to the number of cycles completed by a
signal per unit of time, i.e., frequency is a measure of the occurrence
of events in a specified time period88. When the information of
interest repeats over time, frequency-domain analysis can be used
to isolate oscillatory information within and across frequencies
presented in the time series signals89. It is worth noting that, each
type of sensor has distinctive characteristics in their frequency
spectrum and therefore, appropriate analysis requires identification
and processing for the unique frequency spectrum. For instance,
EEG analysis is often based on the frequency decomposition of
distinctive bands (e.g., δ (0.3–4 Hz), θ (4–8 Hz)), α (8–13Hz), β
(13–30 Hz), and γ (30–50Hz)), which can be associated with specific
functional characteristics. The most popular technique for frequency
analysis is the Fourier Transform, which is mathematical technique
that transforms a function of time (e.g., x(t)) into a function of
frequency (e.g., x(w)), characterised by sine and cosines. Frequency-
domain features include mean power in a specific frequency band,
maximum power, or median frequency. In the reviewed literature,
frequency-domain features were obtained from sEMG34,38,39,
ECG33,38,39,46,49, EDA33,34,38,39, RESP34, PPG33,49,52, SKT33, EEG59,61–64,
fNIRS69,86.
Time-frequency features are a useful technique in various forms of

signal analysis. There are two main methods for time-frequency
analysis, the short-time Fourier transform (STFT) and wavelets88. A
clear property of time-frequency features is that they provide local
information simultaneously, in both, time and frequency domain90.
Time-frequency features allow to observe at which frequencies the
signal oscillates and at which time these oscillations occur91, which
can be helpful to study the frequency content during specific time
periods or events (e.g., onset of pain). In the literature, wavelet-
based features were computed from ECG37,49, PPG49, sEMG37, EDA37,
fNIRS36,66,69,86, and EEG84,92,93, while STFT-based features were used
from ECG72,94.
Other specialised features were also identified in the reviewed

literature. Deep learning-based features, are obtained by deep
neural networks able to automatically learn complex mappings
(features) from input data (e.g., sensor data) to output classes or
labels for classification problems or numeric values for regression
problems, in an end-to-end manner95. In83 autoencoder-based
features were obtained by training an autoencoder neural network,
which compress the input EEG data into a lower-dimensional
representation and then reconstruct the output from this repre-
sentation. Similarly, in a fNIRS study85 and a multimodal (EDA, ECG,
sEMG) study35, deep learning-based features were obtained from
sensor data to automatically learn and extract relevant information
in the pain data. Other specialised feature extraction techniques
found in the literature are EDA-based features29,31,32,36, these
features are based on the assumption that EDA signals have two
salient attributes, the tonic (slow changing) and the phasic (fast
changing) components; both tonic and phasic components are
widely used to assess sympathetic arousal.

Feature optimisation. In the context of this review, feature
optimisation refers to the process of reducing the size of the
input variables (i.e., number of features) by means of feature
selection or dimensionality reduction. In both cases, the aim of
feature optimisation is not only to decrease the computational
cost by reducing the number of features, but also to improve the
performance of the predictive models by removing the irrelevant
features or noisy data.
Feature selection is the process to reduce the number of

features by identifying and selecting those features that have a
strong relationship with the target variable (e.g., level of pain) and
are believed to be the most informative for the design of
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predictive models. Feature selection methods can be organised
into two main streams: model-based (wrapper and embedded
methods) and model-independent (filter methods) methods.
Wrapper methods search the space of possible feature subsets
using the evaluation (e.g., training and testing) of a specific
learning model; thus a search algorithm is “wrapped” around the
model. Examples of wrapped methods in the literature are:
recursive feature elimination (RFE)44,71, forward feature selection
(FFS)39,43,49, back feature elimination (BFE)43, and genetic algo-
rithm (GA)40,56. Embedded methods look for an optimal subset of
features during the model’s construction, i.e., the learning models
have their own built-in feature selection methods; embedded
methods found in the literature are: least absolute shrinkage and
selection operator (LASSO)44, random forest (RF)44, and Elastic Net
(Enet)44. Filter methods, on the other hand, evaluate the features
independently of any classification model by assessing the
intrinsic properties of the data according to a certain criteria.
Common objective criteria identified in the literature by filter
methods are: Gini Index42,46, Information Gain94, Joint Mutual
Information61,69, Wilcoxon Test52, Analysis of Variance (ANOVA)52,
and Partial Least Squares Regression (PLSR)72.
Dimensionality reduction, on the other hand, refers to the

methods that project features (input data) into a lower-
dimensional feature space, resulting in entirely new input
features87. Dimensionality reduction methods identified in the
literature were based on principal component analysis (PCA)40,45,
which works on the idea of finding a number of principal
components that explain a specified amount of the variance in the
data. In the machine learning literature, PCA can also be
considered a feature extraction technique, since the identified
principal components, that exhibit most of the variance, are
considered a linear combination (a new set of features) of the
original features. One of the limitations of dimensionality
reduction is the fact that the obtained features are an abstract
representation from the initial set of features, and this often
affects the explainability of the learning models.

Learning models. Several studies have addressed the problem of
automatic pain assessment using machine learning or deep
learning methods. Traditional machine leaning methods rely on
the design of manual feature extraction and feature optimisation
to improve model performance. On the other hand, deep learning
methods learn the intrinsic representations of the data to extract
features directly from the data without the need of hand-crafted
features. Despite of the method for feature derivation, two type of
learning problems were identified in the reviewed literature,
classification and regression. In this section, we summarise the
type of learning problem based on the learning models as
presented in Table 3.
Classification methods qualitatively predict the pain intensity by

classifying trials into two (e.g., pain, no pain) or more levels (e.g.,
no pain, low, medium, high pain). This type of learning problem
focus on discrete nominal outputs, however, a numerical variable
(e.g., numerical value between 1 and 10) can be converted to an
ordinal variable by dividing the range of the numerical variable
into bins (e.g., 1–2, 4–6, 8–10) and assigning values to each bin,
process commonly know as discretisation87. A popular machine
learning model used in the literature is support vector machines
(SVM)43,94, which often solves learning problems by using kernel
functions to map the input data into higher-dimensional space in
which the data can be separable (e.g., no pain or pain); kernel
methods identified in the reviewed literature are Linear (L-
SVM)45,53,59,61,72 and Gaussian (G-SVM)31,39,40,46,62,69,71,92, with
G-SVM showing better results than L-SVM. Other popular
classification methods in the literature are random forest
(RF)29,34,37,38,42,49,84, logistic regression (LR)32,36,70,83, k-nearest
neighbour (KNN)66,86,93, discriminant function analysis (DFA)33,
sparse Bayesian extreme learning machine (SBELM)64, and artificial

neural networks (ANN)41,56,63. In addition, deep learning models
such as deep belief network (DBN)52, convolutional neural
networks(CNN)35,96, and bi-directional long-short term memory
networks (Bi-LSTM)85 were implemented to decode pain from
sensor data.
Regression methods, on the other hand, quantitatively predict

the pain intensity as a continuous value (e.g., 0–10)72. In the
reviewed literature, regression models are used to obtain a
continuous pain intensity based on the numerical values from the
verbal numeric rating scale, where the subject or patient grades
their pain sensation on a scale between 0 and 1097. Identified
regression models using classical machine learning models are
support vector regression (SVR)43,72, random forest (RF)37, and
using deep learning models such as long-short term memory
networks (LSTM)36. Another identified method is stacking or
stacked model44, which is based on a combination of two or more
regression models with the aim to harness the advantages of the
individual models and obtain better performance than any single
model in the assemble87.

Practical implications
In order to understand the practical implications of each sensor, it
is important to understand their advantages and disadvantages
with respect to their use. In this section, we present a summary of
the identified implications from the reviewed literature. The aim is
not only to understand the main limitations, restrictions, and
barriers but also, to identify the benefits and possible solutions to
the application of these sensors in more realistic scenarios (e.g.,
clinical settings). Table 4 presents a summary of the limitations
and advantages for each individual sensor.
The use of EDA sensors is well-established in clinical practice

and research. Applications using EDA include psycho-physiology,
physical and cognitive stress, sleepiness, or affective computing33.
EDA signals are modulated by autonomic changes in the
sympathetic nervous system31,42,45, which not only drives
elements of pain, bu also drives elements of human behaviour,
cognitive states, or emotion31,33. For instance, there is a well-
known association between EDA and emotional arousal, as the
electrodermal activity changes in response to the emotional state
(e.g., stressed, happy, sad). However, this high sensitivity to
sympathetic function makes the discrimination between pain and
emotional states difficult to accomplish31; this is a possible cause
of false positives in pain detection29. EDA has exhibited promising
results when used in isolation29,31,32,42,45 and has showed better
results when compared with other sensors, such as, sEMG and
ECG35,36, and RESP, BVP, and EGM98.
sEMG sensors are used to measure the electrical activity of

muscle contractions propagated through the skin. Two main
anatomical regions were used, the trapezius muscle (upper back
of the torso)35,37,38, and the facial muscles (corrugator supercilii,
zygomaticus major, risorious, orbicularis oculi, levator labii super-
iors)39,41. A clear disadvantage in the use of sEMG sensors to
measure pain is that changes in muscle tone are highly associated
with different affective states (e.g., stress, happiness, or anxi-
ety)35,39. An advantage to use facial sEMG is that facial expressions
serve as a direct means to communicate pain to other people,
since individual’s affective state can be obtained by observing the
face37. Pain assessment by means of facial expressions implies
continuous tracking of a patient’s face, which can be difficult and
cumbersome in clinical settings using cameras37. A possible
solution is to use facial sEMG as it is more sensitive to muscle
activation than camera-based monitoring99.
The use of SKT sensors to measure the temperature of the

human body has been widely used in clinical assessment. In
pathological conditions (e.g., locomotor, vascular, or malignant
diseases), skin temperature serves as a valuable diagnostic
information and well-being43,100. A clear advantage of SKT sensors
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Table 4. Summary of the practical implications from each sensor in their use for the assessment of acute pain as described in the reviewed literature.

Sensor Limitations Advantages

EDA Physiological response can be caused by other factors than pain (e.g.,
surprise, stress)31

Well-established in the area of psychology, cognitive workload, stress, or
affective computing27

Stress is a strong confounding parameter, and a possible cause for
false positives in pain detection29

High response to autonomic changes in the sympathetic nervous
system31,42,45

EDA cannot discriminate between stress and pain as both induce a
positive response32

Small size, non-obstructive, and allows high mobility29

It cannot differentiate source of pain (e.g., left or right side of body)29 It has shown better response than other physiological signals (e.g., ECG,
sEMG) when used in a multimodal approach35,36,98

Phasic EDA in response to a stimulus normally exhibits a latency of
1–3 s45

It can be used in an unimodal approach and has shown promising results in
pain identification29,31,32,42,45

Tonic signals can fluctuate within an individual, making it difficult to
interpret45

Information about pain stimulation resides mostly in the phasic component
of EDA31

In the case of acute pain, the latency period may be confounded by
anxiety and stress experienced in anticipation of the pain stimulus45

It can be used for quick and effective pain identification in clinical settings
and in often difficult to assess populations (e.g., babies, children)45

sEMG Facial expressions can be generated by other situations, so they can be
misinterpreted29 or they can be feigned28,29

Increased muscle activity can be linked to increased activity in the
sympathetic nervous system39

Facial recording can be obstructive or interfere with other sensor
technologies (e.g., pupillometry)99

Decreased somatomotor activity can be linked to parasympathetic
stimulation39

Increasing muscular tension in the trapezious muscle is associated
with psychological stress35,39

Use of facial sEMG is more sensitive to muscle activation than camera-based
monitoring99

Facial expression-driven pain assessment can be very cumbersome in
clinical settings37, in particular with oxygen masks160

Well-established in the area of sport science, rehabilitation, psychology, and
affective computing39

Facial sEMG have been found to be less significant than HR, BR, and
GSR in the identification of acute pain41

Facial expressions of pain can serve as behavioural representation of pain41

and serve as direct mean to communicate pain37

Facial sEMG is higly contaminated by eye movements and blinks41

Activity of zygomaticus muscle is linked to happiness39

SKT Environmental temperature and air movement is a confounding
factor33,162

It can be easily integrated into a wireless wearable sensor with multiple
sensors for continuous monitoring of pain44

Changes in skin temperature can be generated by other situations
(e.g., illness or fever)100

Skin temperature features have shown higher feature importance agains
features from other vital signs53

Stress is a strong confounding parameter in pain33 Available data can also be used to monitor well-being43,100

Skin temperature is considered a relatively slow indicator of changes
in pain33

Skin temperature serves as a surrogate marker of blood flow changes that
result from vascular reactivity33

It has not been used in isolation to measure pain33,44

RESP Chest strap sensors can be obstructive to other sensors attached to
chest of the patient (e.g., ECG) and clinicians41,52,101

High response has been seen in cutaneous pain stimuli, even under
anaesthesia34

It has showed low effect against other metrics (e.g., temperature, BP,
SpO2) to estimate pain53

It can be easily integrated into a wireless chest strap with multiple sensors to
improve pain monitoring41

Chest strap sensors can be uncomfortable for long periods of time and
restrict movement, which makes it limited at measuring pain in clinical
settings52,101

Available data can also be used to detect patient respiratory health, recovery,
and monitor well-being53

It has not been deployed in isolation34,41,53

fNIRS Respiration and cardiac pulse are confounding factors of fNIRS
signals69,86

It allows measuring multiple cortical regions with large number of channels66

Haemodynamic activity measured by fNIRS has a delayed response
(2–5 s)69,71,85

fNIRS signals present higher spatial resolution than EEG, which allows better
accuracy in identifying specific cortical areas71,86

Large number of channels may not be suitable for practical
applications in pain assessment70,71

fNIRS has the potential to differentiate the anatomical area where pain
originates based on the cortical activity66,96

Measuring occipital areas might be impractical for patients in supine
position70

If patients are in a supine position, fNIRS can be used to measure cortical
activity in the frontal area with the ability to avoid hair contamination, easier
installation process, and more patient comfort70

fNIRS has shorter set up time as compared to EEG, which makes it more clinic
friendly for applications such as pain measurement or management in the
clinic71

EEG EEG data is highly affected by noise, e.g., eye movement, blinks,
motion artefacts64,94

Well-established as a neuroimaging technique in the medical field for the
diagnosis of epilepsy or sleep disorders61,72

EEG systems need conductive EEG gel or saline solutions to increase
the conductivity between the electrodes and the surface of the scalp59

If patients are in a supine position, it can be used to measure cortical activity
in the frontal area with the ability to avoid hair contamination70

EEG has lower spatial resolution than fNIRS129 EEG offers higher temporal resolution than fNIRS59,83,84

Large number of electrodes are not suitable for practical applications
as sensor preparation is time consuming59

It allows measuring multiple cortical regions with large number of
channels62,103

Measuring occipital areas might be impractical for patients in supine
position70

EEG responses elicited by acute pain can serve to study the peripheral and
central processing of nociceptive sensory input103

EEG head caps are uncomfortable for long periods of time, which may
not be suitable for practical applications in pain assessment92

A strong relationship between the N2 and P2 amplitudes in LEPs and the
intensity of pain perception has been reported103
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to measure pain is that, SKT can be easily integrated into wireless
wearable sensors with other sensors, which allows continuous
monitoring53. Features from SKT data have shown higher feature
importance against features from other vital signs (BP, SpO2, Pulse,
and RESP)53. The main disadvantage of SKT sensors is that skin
temperature is markedly affected by environmental temperature
an air movement33,100. In addition, skin temperature has shown a
rapid change due to emotional stress, which can confound data
interpretation33.
RESP sensors are commonly used in clinical settings to monitor

a patient’s respiration for intervention or diagnosis. In the
reviewed literature, respiration data were obtained using chest
straps34,41. An advantage in the use of RESP sensors to monitor
pain is that multiple sensors can be integrated with the chest strap
to monitor simultaneously different physiological signals (e.g.,
ECG, SKT)41. Data obtained from continuous respiration can also
provide evidence on a patient’s respiratory health and recovery53.
In addition, increased respiratory response has been observed in
cutaneous pain stimuli, even under anaesthesia, which allows pain
recognition while patients are under surgery34. On the other hand,
a clear disadvantage in the use of chest strap is that they are
prone to slippage (leading to inaccuracies), can be cumbersome to
wear for long period of times (leading to uncomfortable patients),
and can be also obstructive to other sensors and to clinicians41,101.
Finally, this type of sensor has not been used in an unimodal
approach, and it has showed low effect against other metrics (e.g.,

temperature, BP, SpO2) to estimate pain, while used in a
multimodal approach53.
fNIRS systems provide a method for non-invasive monitoring of

brain dynamics. These systems are used in different clinical
settings as a neuroimaging technique in the field of neuroscience.
The use of several sensors affords monitoring of different cortical
areas simultaneously. fNIRS are safe to conduct brain monitoring
in prolong time intervals66. fNIRS offers superior spatial resolution
than EEG, which allows better accuracy in identifying specific
cortical areas responding to changes in pain71,86,102. Its superior
spatial resolution has the potential to identify the anatomical area
where pain originates, based on the cortical activity66. However,
the use of large number of channels is not practical for clinical
applications, since some cortical areas (e.g., occipital, temporal, or
parietal) are not accessible for continuous monitoring while the
patient is in a supine position71. In these cases, a possible solution
is to focus on the frontal area, with the additional advantage to
have less hair contamination70. Other factors to consider when
using fNIRS systems is that, fNIRS data are affected by cardiac
pulse and respiration signals69,86, and the haemodynamic activity
measured by fNIRS presents a temporal delay from the onset of
the neural activity69,71,85.
EEG is also considered a brain imaging technique that allows

non-invasive monitoring of neural activity. EEG systems measure
the electrical activity of the brain. It has been widely used in the
medical field in the diagnosis of epilepsy or sleep disorders61,72.
EEG has higher temporal resolution than fNIRS, which affords a

Table 4 continued

Sensor Limitations Advantages

Pupil Pupil size has showed lower classification accuracy than HR and SpO2
in the detection of pain136

There is not invasive contact between the patient’s skin and the data
collection device56

Data may be discontinuous or not available for long periods of time
due to blinking56

Pupil size has exhibited better results than respiration rate in the detection of
pain136

Pain assessment based on pupillary response will be difficult to
obtained in babies or unconscious patients45

Pupillary Diameter has been found more sensitive than heart rate or blood
pressure during noxious stimulation56,163

ECG HR can vary due to positive or negative emotions such as surprise, fear,
or stress33,34,40,49

Well-established in the medical field to measure the rate and regularity of
heartbeats33,39,40

ECG signals have shown high intra- and inter-subject variability in pain
responses, which may limit its usability36,40,46

ECG shows an strong response to sympathetic and parasympathetic
activity33,46

Variations in ECG signals in response to different pain levels are more
difficult to differentiate in comparison to different pain levels versus
baseline46

Time and frequency domain features based on HRV have been found
specially useful during acute physiological changes (e.g., acute pain) for
analysis of short time series (<1 min)46

ECG signals have shown lower classification accuracy than other
physiological signals35–37,40

ECG data can be used to monitor cardiovascular activity and overall well-
being40

It requires multiple electrodes, which makes ECG more obstructive
and less convenient to be embedded into wearable devices37,40,49

PPG PPG signals are susceptible to motion artefacts (e.g., hand
movement)43

Various parameters can be extracted, such as heart rate (HR) and heart rate
variability (HRV), oxygen saturation (SpO2), blood pressure (BP), or respiration
rate40,52,104

PPG data can vary outside of pain when a patient is at rest due to
factors including stress, excitement, and breathing33,43

PPG is less obstructive than ECG, as it can be placed anywhere on the body40

HR-based features were found to be less important in pain assessment
than EDA-based features44

It can be easily integrated into a wireless smart wristband with multiple
sensors or a smart ring to improve pain monitoring33,43,53,118

Pain quantification via HRV may not be useful in providing accurate
assessment of the sympathetic nervous system29

Available data can also be used to detect cardiac conditions and monitor
well-being40,104

PPG data can be affected due to arousal or anxiety117 Decrease in BVP amplitude during pain compared to the baseline state
implies peripheral vasoconstriction associated with arousal33

BVP-based features have shown better classification accuracies than that of
ECG in the detection of pain40

MOVE Body movements can be originated due to daily activities and not due
to pain81

It can be easily integrated into a smart wireless wristband with multiple
sensors to improve pain monitoring43,44

Body movement is negatively correlated with pain scores, which may
reflect that patients in more pain typically move less frequently44

Available data can also be used to monitor well-being (e.g., physical
activity)43

However, lack of body movement can be originated due to other
factors apart from pain such as, patient in rest, sleep, or
anaesthetised44

For body movement measurements, acceleration and steps count have been
identified as significant predictors for pain44
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faster monitoring response (millisecond-scale)59,83,84. Using large
number of EEG electrodes (e.g., 64, 128 electrodes) permits
measuring the entire scalp62,103. A clear disadvantage of these
systems is the need of conductive EEG gel or saline solutions to
increase the conductivity between the electrodes and the surface
of the scalp, which is generally time consuming59. Wearing an EEG
head cap for long periods of time tends to be cumbersome and
uncomfortable92. In addition, EEG is highly affected by blinks and
eye movements, which requires different cleaning procedures64,94.
Pupillary response has been used extensively in human-

computer interaction, attention monitoring, driver drowsiness,
and cognitive workload56. Measures of pupil response can be
obtained with cameras embedded in eyeglasses (e.g., Tobii
Glasses). Thus, there is not invasive contact between the sensors
and the skin, which has the potential to be less uncomfortable for
the patients56. In addition, eyeglasses allow high mobility and
non-obstructive application, as compared to external cameras56.
However, an evident disadvantage is that patients must have their
eyes open, which limits their use in unconscious patients or while
sleeping. In addition, data cannot be available for long periods of
time, or cannot be completely continuous due to blinking.
ECG sensors allow to measure the electrical activity of the heart

on the skin surface. ECG has been widely used in the medical field
to measure the rate (e.g., HR) and regularity of heartbeats (e.g.,
HRV), as well as the presence of any damage to the heart, and the
effects of drugs or devices used to regulate the heart, such as a
pacemaker33,39,40. In addition, ECG data can be used to monitor
cardiovascular activity and overall well-being40. ECG shows an
strong response to sympathetic and parasympathetic activity33,46.
However, ECG physiological response can vary due to positive o
negative emotions such as surprise, fear, or stress33,34,40,49.
Another limitation is that ECG signals have shown high intra-
and inter-subject variability in pain responses, which may limit its
usability36,40,46. Also, ECG signals have shown lower classification
accuracy than BVP and EDA signals40, and than EDA and sEMG
signals35–37. Due to the number of leads used for ECG electrodes,
ECG measures tend to be more obstructive and less convenient to
be embedded into wearable devices37,40,49.
PPG is an optical method to measure variations of blood

circulation. PPG offers multiple physiological indicators from both
cardiac variations in blood volume (e.g., BVP) that arise from
heartbeats, and from respiration and thermoregulation104. PPG
signals offer an insight into the activity of the sympathetic nervous
system40. PPG sensors can be easily integrated into a smart
wristband with other physiological sensors33,43,53. PPG sensors can
be placed anywhere on the body, with the finger as the most
common location in the reviewed literature40,104. However, PPG
signals obtained from a finger clip are susceptible to motion
artefacts, e.g., hand movements, in and out of the bed or chair, or
use of restroom43. Although, BVP-based features have shown
better classification accuracies than that of ECG40, HR-based
features were found to be less important in pain assessment than
EDA-based features44. A clear confounding factor is that PPG data
can vary outside of pain when a patient is at rest based on factors
including stress, excitement, and breathing33,43.
Body movement (MOVE) can also serve as an important

indicator in automatic pain estimation using sensors. An
advantage of the movement sensors (e.g., accelerometers,
gyroscopes) is that they can be easily integrated with other
physiological sensors into wearable sensors for continuous
monitoring43,44. In addition, body movement data can be also
used to monitor well-being and identify early sings of health
conditions related to sedentarism and lack of exercise in patients.
Body movement measures such as number of steps and
accelerometer information have shown a negative correlation
with pain scores; this might reflect the fact that patients in more
pain move less frequently44. However, lack of body movement can

be originated due to other factors such as sedation, rest, or
sleep44.

DISCUSSION
After a thorough survey of the literature, the challenges and future
opportunities in the use of neurophysiological sensors for the
assessment of acute pain are discussed in this section. Significant
research is currently being done in the fields of sensor design,
signal processing, time series analytics, and machine learning and
deep learning. However, these efforts alone are not enough to
solve a complex problem such as pain assessment. Thus, we
should consider the challenges and limitations of the current state
of the art methods and identify possible opportunities, which can
make possible a smooth integration of the available methods and
techniques for practical real-time applications. In this context, we
highlight several challenges in the assessment of acute pain, and
propose opportunities that can help us move closer towards the
development of a bedside real-time monitor of pain. With that in
mind, we present, in the following subsections, the challenges and
opportunities with respect to each research question.

Sensors to measure physiological changes in pain
Assessing pain based on a single sensor modality has major
limitations. Sensor reliability is an important factor to consider
when using a single sensor, as sensor failure reduces not only the
quality of data, but also it causes loss of the physiological signal
being measured105. In the medical field, data reliability is
imperative to assess the clinical situation of the patient, and
failing to provide reliable data might affect patient care and lead
to patient deterioration106. For instance, the deployment of a pain
monitoring system based on pupillometry alone will impact the
reliability of the system, since the patient will be left unchecked
while sleeping. Sensor uncertainty is another element to consider,
interference (e.g., electrical noise) or confounding variables can
negatively influence the physiological data and make it more
susceptible to errors. For example, in the use of fNIRS sensors to
measure the haemodynamic response, the fNIRS signals are often
contaminated by superficial tissue (scalp and skull) and by other
physiological indicators such as respiration or heartbeat68,107 that
interfere with the expected signal from the cerebral cortex. In
these cases, the use of a single sensor modality will produce noisy
data, since all fNIRS sensors will be affected by the same source of
noise. In addition, sensor sensitivity to a specific autonomic
function (e.g., respiration, heart rate, pupil size) is another factor to
consider. The use of a single sensor modality to monitor a single
physiological parameter will limit the understanding of pain. Pain
evokes multiple simultaneous neurophysiological signals that can
offer a better comprehension of pain39,85. Although, using
multiple sensor modalities will help solve some of the limitations
of single sensor modality, the use of multiple sensor modalities
must be balance against the ease of setup and application in a
clinical setting.
The use of multimodal sensors for the assessment of pain

presents several opportunities. Sensor complementarity is an
important property of multimodal systems in which each sensor
modality contributes to the whole system with specific informa-
tion that cannot be obtained from any other single modality in the
setup108. In the event of pain, multiple neurophysiological signals
are triggered and by using different sensors modalities, it is
possible to provide a different dimension of pain that will allow
the system to obtain a more complete assessment of pain. For
instance, fNIRS and EEG can complement each other to obtain a
better assessment since EEG has higher temporal resolution but
has lower spacial specificity, while fNIRS presents better spatial
resolution yet lacks time precision due to its delayed haemody-
namic response. Another advantage of multimodal systems is
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improved observability. Including multiple sensor modalities
improves the diversity of data to monitor the physical measure.
For example, combining measures (e.g., pupil, EDA, and fNIRS) that
are not related to the same aspect of pain can enhance the
accuracy of the system and provide better insights into the
physical problem, this might not be possible to achieve with a
single sensor modality81. Sensor robustness is another benefit of
multimodal systems, since the use of a single sensor modality
might react to a particular confounding factor, the overall
reliability of the system might be affected. However, with the
use of multiple sensor modalities, validation of sensor data can be
achieved. For instance, if a patient normally suffers from high
blood pressure (HBP), the use of a pulse-based sensor (e.g., PPG)
might have a negative effect on the collected data, on the other
hand, if other sensor modalities (e.g., EEG and EDA) are used in
conjunction with PPG, the collected data will be more reliable as
the other two sensing technologies can be used to validate the
effect of HBP in the affected sensor. Finally, multimodality is not a
new concept and has been naturally performed by animals and
humans to assess different situations in the environment. For
example, animals use a combination of multiple senses (e.g.,
vision, smell, hearing) to avoid risks or threats and improve their
chances of survival109. Therefore, with the use of multiple
modalities (i.e., different dimensions) to monitor the different
physiological changes in pain, medical practitioners can obtain a
better understanding of the pain experienced by the patients.
Obtaining quality sensor data plays a vital role in providing

correct decision-making outcomes. In general, the better the
quality of the sensors and more reliable the data, the more
valuable it is. In applications of health monitoring, good quality
data is imperative, as data not only helps patients receive better
care, but also it makes for better research and analysis110. Three
main categories of sensor quality can be observed in the literature,
consumer-grade sensors, research-grade sensors, and medical-
grade sensors. Although, consumer-grade sensors have gained
popularity in healthcare applications due to their lower cost, data
quality can be insufficient in healthcare applications. For instance,
some fitness trackers (e.g., HRM-Tri by Garmin, FitBit PurePulse,
Microsoft Band) explicitly acknowledge that their devices are not
for medical use and should not be relied upon for detecting health
conditions, including pain111. Another limitation of consumer-
grade sensors is the lack of raw data availability and the inclusion
of proprietary steps in their data analyses112. Research-grade
sensors represent an option to obtain relatively good-quality data
and with the flexibility to access the raw data, which allows the
development and testing of own custom algorithms. This also
allows for algorithms to be easily implemented across other
similar devices, as well as transparency to estimate the outcome
variable. On the other hand, medical-grade sensors can produce
high-quality sensor data, higher measurement accuracy, higher
sensitivity, and are more stable and robust110. A limitation of such
high-quality sensors is their relatively high cost, as having to
deploy many highly accurate but expensive sensors will occur in
higher deployment costs. However, the use of medical-grade
sensors results in less time spent in their maintenance and
calibration, which might lead to reduced overall operational costs
in the long run. Finally, it is important to consider the quality of
sensing systems in healthcare, as decision-making outcomes,
better diagnosis, and improved patient care depend on having
accurate and reliable information.

Analytical techniques for decoding pain
Most of the reviewed studies used classical machine learning (ML)
models, however, they rely heavily on feature engineering.
Although in many cases, ML models such as SVM, RF, and LR
exhibited the best performance in twenty nine of the reviewed
studies, the success of these models mostly depends on the

feature engineering process. A clear challenge in the feature
engineering process is the need of domain knowledge to create
features that are relevant. For example, having knowledge of the
typical physiological response exhibited by patients in pain can
help in the identification of metrics that are more relevant and
valuable for the problem at hand. However, this approach can be
highly subjective and bias to the person’s creativity or expertise,
which might result in missing potentially useful features that
might be ignored113. During the feature engineering process,
large number of features are often generated (e.g., applying
mathematical/statistical functions to the same sensor data), which
can make the ML suffer from the curse of dimensionality. This can
lead to obtaining highly noisy features, correlated features (i.e.,
collinearity), and without significant benefit. This results in trying
to solve more complex problems, decreasing ML model’s
performance, and increasing computation cost114. In the reviewed
literature, dimensionality reduction or feature selection techniques
were implemented as a feature optimisation stage to remove
irrelevant or correlated features, however, this process is often
computational expensive. The feature engineering process is time
consuming and it involves multiple steps, including the design of
the features, test their efficiency with the model, modify some of
features or try other features, and repeat the process until the
model exhibits an acceptable performance. Overall, the feature
engineering process should not be considered lightly as it plays a
major role in determining the outcome of a ML model.
An alternative to the feature engineering problem is deep

learning (DL). A common application of DL models is to
automatically create candidate features directly from data.
Automated feature engineering extends the concept of domain
knowledge as DL leverages the use of multiple hidden layers to
explore different connections and extract the best features to
solve the learning problem. The multi-layer architectures used in
DL are inspired in the process that take place in core sensorial
regions within the human brain, in which the multi-layer data
representation extracts low-level features in the first layers and
high-level features in the last layers115. The main advantage of DL
compared to ML models is that it automatically finds significant
features without the need of feature engineering or human
domain knowledge expertise. This approach has shown to be
successful in different complex tasks and DL models have
outperformed well-known ML techniques in several domains,
including natural language processing, computer vision, bioinfor-
matics, speech and audio processing, among others116. However,
a key challenge in the success of DL models is the need for large
amounts of training data, as the data increases, a well-behaved
performance model can be obtained115. This in part may explain
why most ML models outperformed DL models using the same
dataset35,39 or with the use of the same sensor modality117,118. In
many cases, large datasets (in particular, labelled datasets) may be
too difficult or costly to be collected for many learning problems.
A possible solution to overcome the need for large datasets is the
use of retraining DL models, i.e., transfer learning119. Transfer
learning aims at transferring the knowledge across different but
related domains, this approach has shown that DL models already
trained on a specific dataset and build to solve a specific task can
be reused as the initial phase for training on a different dataset for
a different task120. Although DL have achieved accuracies that are
far beyond that of classical ML models in other domains, the need
for large amounts of training data should be considered in DL
applications for pain assessment.
Although there are some publicly available datasets for the

assessment of pain, there is a need of datasets that combine
neurological and physiological signals. Available datasets include
videos of face121–123, physiological signals (EDA, sEMG, ECG) and
videos of face124, and physiological signals (EDA, sEMG, ECG),
audio signals, video of the body and face, and thermal video of
the face125 in adults. There are also datasets from infants,
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including vital signs (Sp02,HR, RESP, BP) with videos of face126, and
with cry signals alone127. However, these datasets do not explore
neurological and physiological sensing technologies together. In
the reviewed literature, the dataset containing EEG and EDA
data128 was identified through the work of Sun et al.129, but only
the EEG data was analysed. The lack of such datasets can also be
reflected in the limited number of studies that were identified in
this review that explored the combination of neurological and
physiological signals. The combination of neurological and
physiological information has been widely explored in other areas
of research including cognitive workload105,130, neuroergo-
nomics131,132, or learning and training26,133. In addition, recent
studies in multimodal data fusion have found that the combina-
tion of multiple neurological sensing technologies such as EEG
and fNIRS exhibited significantly better results in cognitive
workload assessment tasks134. The combination of EEG and fNIRS
offers a possible stream in pain research that has not been
explored before. Therefore, the inclusion of neurological data in
conjunction with physiological and behavioural data has the
potential to improve the overall accuracy of the assessment
systems, which also helps obtain a more complete understanding
of pain that would be otherwise unavailable from neurological,
physiological, or behavioural data alone.
There is a need for the adoption of context-aware systems that

can use additional information (contextual information) to
improve the performance of objective tools for pain assessment.
In the paradigm of computing, contextual information can be
defined as a set of real world parameters or information that can
be used to characterise the situation of an agent (e.g., person,
place, or physical or computational object)135. In this case, context
could be, for example, the use of health records from the patient,
socioeconomic information, patient’s disease, genetic or familial
variables, or situational or emotional factors that can help (in
addition to the neural and physiological information) to under-
stand in a better way the patients’ pain sensation. In the reviewed
literature, there are some studies43,44,53 in which physiological
data, health records, and medication information were used in
their assessment. While in the work of Fang et al.136, congenering
information was employed to cluster patients based on their type
of disease (e.g., pulmonary, renal, cardiovascular) and trained a
dedicated model for each category, their method exhibited better
results than training a single model with all patients combined. In
another study, Kachele et al.37 designed a personalised model to
focus on each individual rather than the whole group, which also
showed improved classification accuracy. Overall, the use of
contextual information can help improve the perception of
patients’ pain and can serve as the basis of well-informed
decisions, not only by the medical practitioners, but also, by
autonomous systems to trigger actions upon particular
circumstances.
With the use of multiple sensor data and rich contextual

information, intelligent fusion architectures will be needed. The
fusion architecture should be able to fuse different data from
sensors as well as the additional contextual information. An
advantage of the fusion architecture is conflict resolution,
considering that the use of multiple input variable often leads
to contradictions and inconsistencies in the data109. For example,
if increased levels of HR and BP data are observed, which may
indicate an episode of pain, but at the same time, no changes
(e.g., increase/decrease) are detected in other parameters (e.g.,
PUPIL, EDA, or EEG) in the data, this event may create a conflict
(e.g., a false positive) in the pain monitoring system. However,
contextual information (e.g., health records) could indicate that
the patient suffers from hypertension, therefore the intelligent
fusion architecture will control this conflict and resolve it by using
the contextual data. Another advantage of the intelligent fusion
architecture is weighing information, since not all sensor data
convey the same level of reliability, and in the event of pain, some

sensors may provide information that has more value than others
in certain circumstances108. For instance, if the patient is asleep
and in pain, some metrics (e.g., pupillometry or movement) will
not provide reliable information, but other measures (e.g., EDA,
PPG, or RESP) will be more important and relevant to provide
evidence of pain. Therefore, the fusion architecture will be able to
apply individual weights with different divergence measures
based on their relative importance depending on the time of
day137. Eventually, the intelligent fusion architecture will be
particularly useful in clinical settings where real-time decision
making is imperative to deliver decision support to clinicians in
the shortest amount of time.

Practical implications on the use of sensors
Confounding factors represent a major challenge in pain
monitoring using sensors. In the reviewed literature, the most
common reported confounding factor within the physiological
response was stress31,33,34,40,43,49. Pain and stress share conceptual
and physiological similarities, and in both events, changes in all
systems are expected, including cardiovascular, respiratory,
nervous, and muscular systems138. In the cardiovascular system,
for instance, acute stress leads to increased blood pressure, heart
rate, and cardiac output. In the respiratory system, acute stress
causes increased respiration rate and, thus, increased oxygen
consumption. With regards to the musculoskeletal system, stress
causes a reduction of skeletal muscle blood flood, which leads to
contraction of muscles139. With regards to the effect on the
nervous system, stress increases the activity of the sympathetic
nervous system and decreases the activity of the parasympathetic
nervous system140. Given the similarity of physiological responses
in stress and pain situations, it is not surprising that these two are
difficult to isolate from each other13; in fact, this might indicate
one of the reasons for misclassification by the learning models. In
addition, pain can be considered a physiological stressor in the
field of stress research141. Similar to pain, stress is a human
response to physical or emotional strain and is a reaction that
threatens homoeostasis (i.e., maintaining a balanced internal
environment)142. The persistence of any stressor often leads to
compromised well-being and chronic long-term suffering (e.g.,
chronic pain)143. Individuals can also report acute stress as pain.
Other confounding factors identified in the literature, that are
directly related to pain, are fear and anxiety. Finally, by
recognising the role of confounding variables in pain processing,
the scope of pain could be expanded with additional valuable
information that will help us broaden our understanding of
pain142.
A central challenge in establishing an objective and reliable

assessment of pain, using sensing technologies, is variability—
both intra- and inter-individual variability—in the experience of
pain. By definition, pain is not only a subjective experience, but
also a highly personal one144. First, intra-individual differences
exist within the same person and are often observed across
repeated observations at different times (e.g., morning vs evening)
or in different situations (e.g., after anaesthetics, or during
different emotional or cognitive states). Intra-individual differ-
ences affect pain responses within the same person, which reflects
that pain experience is highly influenced by a combination of
different factors unique to the person, making the pain experience
completely individualised103. In this context, pain is fundamentally
dynamic rather than static, with individuals reporting pain
intensity levels varying considerably during different time periods
ranging from moments to hours to days145. Intra-subject variability
is considered to be lower than inter-subject variability146,147.
Second, inter-individual variability is generally observed among
individuals due to differences in gender, age, ethnicity, and
psycho-social processes, among others144,148. In the case of pain
experience, inter-individual differences have been exhibited by

R. Fernandez Rojas et al.

19

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2023)    76 



broad pain variability between individuals as a response to
experimentally induced pain149. In automated pain assessment,
these differences have shown an adverse effect in the modelling
of both neural and physiological signals for the assessment of
pain. In the reviewed literature, several studies using neural (EEG,
fNIRS) or physiological (PPG, EDA, EMG) signals reported notable
inter-subject variability in pain perception and responses; these
reported differences in neural and physiological responses
affected the capacity of machine learning models to generalise
across people28,34,70,71,103,117. Inter-individual differences often
lead to model overfitting, which can be interpreted as the lack
of model’s generalisability to give accurate predictions with new
data117. In addition, intra-individual variability is usually super-
imposed on top of inter-individual variability, which represents an
added confounder to model neural and physiological signals150.
Both intra- and inter-individual variability in pain perception
should be considered in the analysis of neurophysiological signals
when developing pain recognition models.
Therefore, there is a need to build robust analytical methods to

decode pain in the presence of inter- and intra-subject variability.
For instance, in several studies, inter-individual variability in neural
or physiological signals is minimised by a standardisation strategy
(e.g., linear scaling, log scaling, z-score, etc.)34,37,103,107. This
strategy helps to improve the accuracy of machine learning
models trained on a group of individuals and applied on a
different individual (i.e., subject-independent models), which is
desired in most practical applications103. Another option is
capturing an extensive dataset for each individual and, then,
retraining a learning model based on that individual dataset (i.e.,
subject-dependent models) to incorporate individual factors,
which can serve as a tailored approach. However, collecting large
amount of data per individual is often not sufficient to design a
robust model and this method is less practical in real clinical
settings. While, some studies have addressed the inter-individual
variability in pain assessment, little has been done to simulta-
neously address the challenges of intra- and inter-individual
variability. For instance, Lopez et al70. investigated the use of
multi-task learning, a type of transfer learning in which a
personalised learning model that account for individual differ-
ences in physiological responses to pain, while the model is
trained on the entire dataset. This method uses a soft-clustering
mechanism that enables the model to determine the similarities
between the individuals in the dataset and to identify the number
of clusters representing groups of individuals (i.e., tasks) with
common similarities. In Pourshoghi et al.71 and Pouromran et al.28,
another clustering approach based on k-means was employed, in
which population data was clustered and cluster-specific models
were built. In this method, data collected from an individual is
allocated to the closest cluster to then use the cluster-specific
model to assess pain intensity. It is worth mentioning that in the
study done by Pouromran et al.28, EDA signals exhibited
significantly better results in the cluster-specific models compared
to EMG and ECG signals. These results implied that the EDA signals
appeared to be more comparable among different individuals,
while EMG and ECG signals presented substantial inter-subject
variability in response to pain. While automated and objective
pain assessment is still a challenge, designing learning models
based on similar groups of neural and/or physiological response
to pain could be useful to reduce intra- and inter-individual
variability.
There are also opportunities to use an objective assessment of

acute pain to assist in the diagnosis of chronic pain. In general,
acute pain can be considered less complex to be assessed since it
has a specific, treatable cause (e.g., broken bone, torn ligament)
and is generally sudden and intense. For instance, acute pain
typically originates from a response to an injury, illness, trauma, or
medical procedure. Acute pain lasts for a short period of time, and
often ceases when the underlying problem has healed. When pain

persists longer than expected, beyond the expected time for
healing, it is commonly referred to as chronic pain151. Chronic pain
can continue even after the injury or illness that caused it has
healed or gone away, with pain signals remaining active for
months or years. Chronic pain includes conditions such as
complex regional pain syndrome, phantom limb pain, chronic
low back pain, and fibromyalgia syndrome. It is unlike acute pain,
which plays a protective role by eliciting motivation to minimise
harm. Rather, chronic pain is considered a disease in itself152.
Some people experience chronic pain even with no previous
illness or apparent trauma. The assessment of chronic pain is
complex and often comprises several domains, including physio-
logical indicators and contributing factors, with physicians and
other clinicians assessing patients for function, quality of life,
mental and emotional health, and factors that aggravate or
alleviate pain. In addition, the chronic pain data captured by
neurophysiological devices will not be as responsive and
conclusive as that of acute pain29. Chronic pain is, therefore,
considered a complex problem, multifaceted, with multifactorial
causes153. In this context, the assessment of acute pain can
facilitate early diagnosis, monitoring of disease progression, and
overall effective therapeutic evaluation154. In addition, pain
assessment serves other important functions in the management
of pain such as, documenting the intensity and severity of the pain
condition, tracking the course of pain in time, and providing
mechanistic information155. Therefore, reliable and valid assess-
ments of pain can generate important historical information that
can assist clinicians in identifying patients who may develop
persistent pain and, thus, in designing early interventions for the
management of chronic pain.
There are opportunities to use neurophysiological sensors to

estimate pain in diverse applications. A system that serves not
only to diagnose pain, but also has the ability to identify the
location of pain on the body by measuring changes in
neurophysiological response can be of benefit to patients unable
to self-report. In the reviewed literature, only two studies explored
the possibility to find the location of pain, using EEG64 and fNIRS96,
with diverse results. Some studies using physiological data alone
suggested that it is not possible to find the location of pain
without the use of neurophysiological sensors (e.g., EEG,
fNIRS)29,32. In this context, Hu et al.96 used augmented reality
(AR) as a visualisation interface, which can help clinicians
determine when and where the patients are suffering from pain.
AR offers the advantage to be used as smart glasses, in contrast to
tablets or smartphones, which allows clinicians to be hands-free to
perform other tasks. Another possible application is the use of a
pain assessment system as a means of biofeedback in physical
rehabilitation tasks. For instance, in guiding the intensity of
physical rehabilitation to identify the efficacy of treatment and to
decrease the risk of re-injury, as well as in helping to design
programs tailored to the specific pain sensitivity of each
patient156. In this regard, Badura et al.98 designed a study to
monitor pain in patients during fascial therapy, with the intention
to use it as real-time feedback on the intensity of the therapy, to
avoid any tissue damage, and to improve therapy outcomes.
Another opportunity to the use of neurophysiological indicators of
pain is guiding audiologists in finding the most suitable
stimulation level for each patient in cochlear implants. The
neurophysiological indicators have the potential to provide an
objective measure to inform audiologist whether the electrical
stimulation of the cochlea is comfortable to the patient and,
therefore, not too loud or uncomfortable. In addition, it will help
to guide post-implant programming as cochlear implants need to
be reprogrammed frequently to ensure they convey the sound
information to the auditory nerve157.
This literature review presents some limitations. The choice of

databases for article search may be a possible limitation of this
reviewed. Although, we used three well-known databases, it could
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be argued that studies have been missed. However, to mitigate
this, we searched for other articles in the reference list of the
identified studies. In addition, there are studies that used facial
expressions based of images or videos in combination with
physiological sensors, in particular those studies using available
datasets, such as the Biovid and X-ITE datasets. Many of these
studies were not included because, in many instances, a separated
analysis of the physiological data alone was not presented. Those
identified studies that presented a separated analysis on the
physiological data were included.
To conclude, pain is a complex and subjective experience that

presents diverse measurement challenges. Despite the difficulty
inherent in measuring an individual’s experience of pain, there are
different sensing technologies that can be used as a surrogate
measure of pain. Currently, there is no valid and reliable metric of
objectively quantifying an individual’s pain experience. Therefore,
the field of pain management would benefit greatly from an
objective, neurophysiological marker of pain14. In this work, we
aim to conduct a systematic review of the published literature to
identify relevant non-invasive sensing technologies that can be
used for the assessment of human pain in real-time applications.
In this context, three main research questions (please refer to
“Methodology” section for more details) were defined and the
main findings are presented in the following paragraphs.
Q1. What sensors can be used to quantify an individual’s

pain experience? Two main types of non-invasive sensors were
identified in the reviewed literature: neurological (fNIRS, EEG) and
physiological (EDA, sEMG, ECG, PPG, Resp, Pupil, and SKT). Among
these sensing technologies, EDA, EEG and ECG were the most
popular in the literature (refer to Fig. 2). While the majority (two-
thirds) of studies used a single sensor, the use of different sensor
modalities (i.e., multimodality) provides more measures for
different dimensions of pain. Multiple sensing modalities presents
a more complete understanding of pain, that would be otherwise
unavailable from a single sensor. In addition, the use of a single
sensor modality presents different disadvantages against multi-
modal sensing including, low reliability due to sensor failures,
uncertainty to data quality, and low sensitivity to capture a
complete understanding of the individual’s experience of pain.
Quality sensor data not only offers more value for research and
analysis, but also allows better decision-making and diagnosis.
Q2. What analytical techniques are used for the decoding of

pain? Most of the reviewed studies used classical machine learning
(ML) models. From those studies, support vector machines (SVM),
random forest (RF), and logistic regression (LR) exhibited the best
individual performance in twenty six of the reviewed studies.
However, classical ML models rely on the generation of hand-
crafted features, which can limit the performance of the models. On
the other hand, deep learning (DL) models can automatically obtain
features directly from data. Nevertheless, DL models require large
amounts of training data. Although, there are several available
datasets, there is no dataset that combines both neurological and
physiological sensors. In addition, contextual information such as
health records, genetic and familial data, situational or emotional
factors have the potential to improve learning models in decoding
an individual’s pain experience.
Q3. What are the practical implications on the use of

sensors in the assessment of pain? Confounding factors represent
a major challenge in the application of sensors for the assessment of
pain. Stress is the most common confounding factor in the reviewed
literature, stress shares conceptual and physiological similarities with
pain that make these two difficult to isolate from each other. In
addition, intra- and inter-individual variability should be considered
when designing learning models to decode pain from sensing
technologies, since these often affect the capacity of learning models
to generalise across people. Finally, there are also opportunities to
use an objective assessment of acute pain to assist in the treatment

of chronic pain and help clinicians to identify earlier individuals who
may develop persistent pain.

METHODOLOGY
Research questions
The aim of this literature review is the identification of relevant
sensor technology that can be used for the objective assessment
of human pain. In this context, two main technologies are of
interest, the type of sensors that can be used for the assessment of
pain, and the data modelling techniques (i.e., machine learning,
deep learning) that are implemented for the recognition of pain. It
is also of interest, to understand the main implications in the
application of these technologies for the design of a real-time
monitor that could assist medical practitioners in the assessment
of pain in non-verbal populations. A summary of the main
research questions of this review are as follows158:

● Q1. What sensors are used for the assessment of pain?
● Q2. What analytical techniques are used for the decoding

of pain?
● Q3. What are the practical implications on the use of sensors

in the assessment of pain?

Search strategy
This review was performed according to the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA) metho-
dology159. The PRISMA method is based on four stages that fall
under the scope of the review: Identification, screening, eligibility
checking, and selection. A keyword search was completed in
PubMed, Web of Science, and Scopus in July 2022. Search terms
were used in a combination, using variations of the keywords
including in the following two groups: ((machine learning OR deep
learning OR artificial intelligence OR automatic) AND (pain AND
(assess* OR measure* OR intensity OR scale OR recognition))). In
addition, the reference lists in the identified studies were examined
to find additional publications of interest (i.e., snowballing).

Inclusion and exclusion criteria
Studies that met all of the following criteria were included in the
review: (1) peer-review publication in the English language; (2)
studies published within the last decade (January 2013–July 2022);
(3) studies that conducted objective pain assessment by using at
least one sensor to measure neurological (e.g., EEG, fNIRS),
physiological sensors (e.g., HR, EDA, PPG), and/or their combina-
tion; (4) the objective of the study should be related to pain
assessment or pain recognition applying machine learning, deep
learning, or artificial intelligence; (5) methods that report the
effectiveness of the models (e.g., accuracy, mean absolute error) in
identifying pain (e.g., numerically or categorically).
Studies were excluded from the review if they met any of the

following criteria: (1) use of sensor technologies that are: not
portable, not cost effective, or impractical for the design of a
bedside monitor; (2) technologies that are still in a proof of
concept stage; (3) studies that present invasive methods for pain
assessment; (4) studies that present protocols for pain assessment;
(5) studies that based their analysis on the use of video
recognition, facial expressions, gesture, posture, behaviour, or
voice analysis; (6) studies that focus on fibromyalgia, chronic,
neurogenic, or neuropathic pain; and (7) letters to the editor,
commentaries, or abstract-only publications.
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