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Silhouette images enable estimation of body fat distribution
and associated cardiometabolic risk
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Inter-individual variation in fat distribution is increasingly recognized as clinically important but is not routinely assessed in clinical
practice, in part because medical imaging has not been practical to deploy at scale for this task. Here, we report a deep learning
model trained on an individual’s body shape outline—or “silhouette” —that enables accurate estimation of specific fat depots of
interest, including visceral (VAT), abdominal subcutaneous (ASAT), and gluteofemoral (GFAT) adipose tissue volumes, and VAT/ASAT
ratio. Two-dimensional coronal and sagittal silhouettes are constructed from whole-body magnetic resonance images in 40,032
participants of the UK Biobank and used as inputs for a convolutional neural network to predict each of these quantities. Mean age
of the study participants is 65 years and 51% are female. A cross-validated deep learning model trained on silhouettes enables
accurate estimation of VAT, ASAT, and GFAT volumes (R% 0.88, 0.93, and 0.93, respectively), outperforming a comparator model
combining anthropometric and bioimpedance measures (AR* = 0.05-0.13). Next, we study VAT/ASAT ratio, a nearly body-mass
index (BMIl)—and waist circumference-independent marker of metabolically unhealthy fat distribution. While the comparator
model poorly predicts VAT/ASAT ratio (R% 0.17-0.26), a silhouette-based model enables significant improvement (R 0.50-0.55).
Increased silhouette-predicted VAT/ASAT ratio is associated with increased risk of prevalent and incident type 2 diabetes and
coronary artery disease independent of BMI and waist circumference. These results demonstrate that body silhouette images can

estimate important measures of fat distribution, laying the scientific foundation for scalable population-based assessment.
npj Digital Medicine (2022)5:105; https://doi.org/10.1038/541746-022-00654-1

INTRODUCTION

Body-mass index (BMI) is a routinely measured proxy for overall
fat burden. Increased BMl—used to define obesity in clinical
practice—is a leading risk factor for cardiovascular disease, type 2
diabetes, and all-cause mortality'=*. While BMI is a useful guide for
disease risk at a population level, individuals with the same BMI
can have markedly different fat distributions and cardiometabolic
risk profiles°®. Prior work utilizing medical imaging such as
magnetic resonance imaging (MRI), computed tomography (CT),
and dual-energy X-ray absorptiometry (DEXA) has identified
certain fat depots as key drivers of “within BMI-group variation”
in cardiometabolic risk'®. At any given BMI, increased visceral
adipose tissue (VAT) has been associated with cardiometabolic risk
while abdominal subcutaneous adipose tissue (ASAT) may have a
net neutral effect, and gluteofemoral adipose tissue (GFAT)
appears to be a protective “metabolic sink” for excess adipose
tissue''14,

These findings suggest potential value in quantifying fat depot
volumes—either for identifying high-risk individuals based on
metabolically unfavorable characteristics or for tracking response
to a given weight reduction therapy. Based on the increased risk
conferred by visceral fat, recent professional society guidelines
suggest inclusion of waist circumference as a “vital sign” within
clinical practice'®. This is supported by the observation that waist
circumference is correlated with VAT volume as well as a strong
association of waist circumference with cardiovascular and all-
cause mortality'>'5"'8, However, for any given individual, waist

circumference may be driven by fat surrounding internal organs
(VAT) or fat accumulation just under the skin (ASAT), with
potentially important differences in corresponding risk.

Hence, a large gap exists between anthropometric measures
such as BMI and waist circumference—easily quantified in clinical
practice, but providing limited resolution—and medical imaging,
which allows for more precise characterization of fat distribution,
but has not been practical to deploy at scale. Images of an
individual’s silhouette—if adequately predictive—could close this
implementation gap. Prior seminal studies have suggested that
estimation of fat distribution using various proxies for medical
imaging may be feasible, but have several limitations'-2%, First,
most studies in this area have focused on predicting overall fat
and fat-free mass rather than specific fat depots, which is likely to
be significantly more diffcult'®-23?%, Second, no prior study has
aimed to predict ratios between fat depots, which are poorly
captured by BMI and waist circumference and hence may add the
most clinical value®*=2”, Third, prior studies in this area have been
limited by sample sizes of up to several hundred healthy
participants, limiting the ability to perform robust cross-
validation or assess generalizability'®=%. Fourth, no prior study
has demonstrated that fat distribution predicted by an individual’s
outline stratifies risk of cardiometabolic disease independent of
BMI and waist circumference.

In this study, we derive front- and side-facing silhouette images
for 40,032 participants of the UK Biobank from body MRI imaging
data. Cross-validated deep learning models trained on these
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images, using previously calculated whole-body MRI-estimated
volumes as truth labels, demonstrate highly accurate estimation of
VAT, ASAT, and GFAT volumes, significantly outperforming
prediction achievable using anthropometric variables'*. Beyond
measures such as waist circumference, we note that the VAT/ASAT
ratio quantified using silhouette images is a strong predictor of
both type 2 diabetes and coronary artery disease.

RESULTS

Silhouettes allow for accurate estimation of VAT, ASAT, and
GFAT volumes

In all, 40,032 participants of the UK Biobank imaging substudy
with VAT, ASAT, and GFAT volumes previously quantified on the
basis of MRI were included’*?°-32, Mean age was 65 years, 20,597
(51%) were female, and 97% were white on the basis of self-
reported ethnicity (Table 1). Coronal and sagittal silhouettes were
generated for each participant by (1) segmenting the body outline
in axial MRI acquisitions, (2) computing a surface map of the
resulting segmentation volume, (3) projecting this 3-dimensional
surface map into 2-dimensional images in the coronal (front-to-
back) and sagittal (side-by-side) directions, and (4) converting
pixel intensities into binary values, either zeros or ones (Fig. 1A).
These silhouettes were used as inputs to train a convolutional
neural network (CNN) model to predict VAT, ASAT, and GFAT

Table 1. Characteristics of the study population.
Males Females
(N=19,435) (N=20,597)
Age at time of MRI (years) 65.2+7.7 63.8+7.5
Self-reported ethnicity category
White 18,773 (96.6) 19,936 (96.8)
Black 137 (0.7) 192 (0.9)
East Asian 112 (0.6) 137 (0.7)
South Asian 238 (1.2) 133 (0.6)
Other 175 (0.9) 199 (1.0)
Blood pressure
Systolic blood 142.0+17.4 135.8+19.2
pressure (mmHg)
Diastolic blood 80.6+9.9 76.7+10.0
pressure (mmHg)
Anthropometrics
Weight (kg) 83.8+13.2 68.9+12.7
Height (cm) 176.3+£6.6 162.8 £6.35
Body-mass index (kg/m?) 27.1+3.8 26.1+4.6
Waist circumference (cm) 946+ 10.5 828+11.6
Hip circumference (cm) 1009+7.3 100.9+9.6
Waist-to-hip ratio 0.94 +0.06 0.82 +£0.07
Fat depot volumes (quantified by MRI)
Visceral adipose tissue (L) 50+23 26+15
Abdominal subcutaneous 59+25 79+33
adipose tissue (L)
Gluteofemoral adipose 93+26 11.3+3.2
tissue (L)
Cardiometabolic diseases (at time of imaging)
Type 2 diabetes 1266 (6.5) 638 (3.1)
Coronary artery disease 1545 (7.9) 418 (2.0)
Hypertension 7200 (37.0) 5073 (24.6)
Hypercholesterolemia 5386 (27.7) 3168 (15.4)
Values are reported as means = SD or as count (percentage).
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volumes using MRI-derived measurements as truth labels using a
cross-validation procedure (Supplementary Fig. 1)'*.

The CNN trained on silhouettes achieved high performance for
predicting VAT (R? = 0.885; 95%Cl: 0.882-0.887, ASAT (R? = 0.934;
0.932-0.935), and GFAT (R? = 0.932; 0.930-0.934) volumes (Fig. 1B;
Supplementary Data 1; Supplementary Figs. 2-5)'%. Performance
was consistent when the cohort was age-stratified, but attenuated
in sex and BMI subgroups, consistent with the significant
differences in the distribution of these traits according to sex
and BMI (Supplementary Data 1-3; Supplementary Figs. 6 and 7).
Performance was broadly consistent across Black, East Asian, and
South Asian participants—with the exception of somewhat
attenuated VAT prediction in Black participants (R*> = 0.784; 95%
Cl: 0.735-0.823)—although these comparisons were limited by
lower numbers of non-White individuals (Supplementary Data 4).

Silhouette-based predictions outperform anthropometric
models

We next set out to compare the performance of silhouette-derived
predictions of VAT, ASAT, and GFAT volumes with models based
on anthropometric measurements. We constructed sex-stratified
models combining age with one of—or a combination of—
weight, height, body-mass index (BMI), waist circumference, hip
circumference, waist-to-hip ratio (WHR), and five bioelectric
impedance measurements (Supplementary Data 5).

BMI-based models offered considerable predictive capacity for
each fat depot volume, with the lowest performance observed in
male participants for prediction of VAT (R?>=0.608; 95% Cl:
0.599-0.618) and the best performance observed in female
participants for prediction of ASAT (R>=0.833; 95% Cl:
0.828-0.837) (Fig. 2 and Supplementary Data 6). These models
reflect the high correlation between BMI and any given fat depot
volume in the body (Supplementary Fig. 7). Silhouette-based
models outperformed BMI-based models by AR? = 0.220-0.241 for
VAT, AR? = 0.114-0.172 for ASAT, and AR? = 0.248-0.263 for GFAT,
suggesting that significant BMI-independent variation in these
three fat depots was captured. In contrast, waist circumference-
based models displayed only a small improvement for prediction
of VAT (R? Male: 0.637; 95% Cl: 0.628-0.645; R? Female: 0.659; 95%
Cl: 0.650-0.667) over BMI-based models and performed worse for
the prediction of ASAT and GFAT. Finally, we combined all
anthropometric and bioimpedance measures in a single model.
While improved performance compared to the BMI-based models
was observed for VAT (R*> Male: 0.724; 95% Cl: 0.717-0.732; R?
Female: 0.731; 95% Cl: 0.723-0.739), ASAT (R?> Male: 0.829; 95% Cl:
0.823-0.835; R? Female: 0.898; 95% Cl: 0.895-0.901), and GFAT (R?
Male: 0.793; 95% Cl: 0.785-0.801; R?> Female: 0.856; 95% Cl:
0.852-0.860), silhouette-based models outperformed these mod-
els by AR? = 0.101-0.125 for VAT, AR? = 0.049-0.065 for ASAT, and
AR? = 0.092-0.098 for GFAT.

We next compared our silhouette-based model for VAT
prediction with a recently developed multivariable model for
predicting DEXA-derived VAT mass based on 17 anthropometric
variables (Supplementary Data 7). These multivariable models
performed similarly to the combined anthropometric model in this
study for VAT prediction (R* Male: 0.719; 95% Cl: 0.709-0.728; R®
Female: 0.710; 95% Cl: 0.694-0.724)—silhouette-based models
outperformed these by AR? = 0.122-0.130.

Taken together, these data suggest that a deep learning model
trained on silhouettes can outperform models combining anthro-
pometric and bioimpedance measurements for prediction of VAT,
ASAT, and GFAT volumes.

Silhouette prediction of VAT/ASAT ratio overcomes a key
limitation of measured waist circumference

Waist circumference is often used as a proxy for VAT, but the
parameter it aims to estimate—central adiposity—can be driven
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Fig. 1 Silhouettes enable estimation of fat depot volumes. A Silhouettes were created from body MRIs by segmenting the outline of axial
acquisitions, projecting the resulting volume onto a two-dimensional surface map, and binarizing pixels. B Silhouette-predicted VAT, ASAT,
and GFAT plotted against MRI-derived measurements'?. Solid black lines denote the linear fits, while the solid gray lines correspond to the
identity line. Sex-stratified performance metrics and Bland-Altman plots are available in Supplementary Data 1 and Supplementary Figs. 2-5.

by a preponderence of either ASAT or VAT'®. As an example, a pair
of age, sex, BMI, and waist circumference-matched participants are
shown in Fig. 3A with highly discordant abdominal fat distribution
—one participant has significantly greater VAT (VAT: 9.2 L, ASAT:
4.5, VAT/ASAT ratio = 2.0), while the other has much more ASAT
(VAT: 3.7 L, ASAT: 9.3 L, VAT/ASAT ratio = 0.4).

We aimed to investigate the extent to which VAT/ASAT ratio—a
marker of metabolically unhealthy fat distribution—could be
predicted using anthropometric models. In contrast to their
performance for fat depot volumes, sex-specific models combin-
ing weight, height, BMI, waist circumference, hip circumference,
WHR, and five bioimpendance measures yielded poor predictive
performance for VAT/ASAT ratio (R*> Male: 0.171; 95% Cl:
0.161-0.181; R? Female: 0.262; 95% Cl: 0.252-0.272) (Fig. 3B and
Supplementary Data 6). Notably, WHR-based models (without
other anthropometric measures) achieved comparable perfor-
mance (R? Male: 0.138; 95% Cl: 0.129-0.148; R? Female: 0.246; 95%
Cl: 0.235-0.256).

This marked reduction in performance compared to similar
anthropometric models used to predict VAT, ASAT, and GFAT
volumes demonstrates the challenge of predicting regional
adiposity out of proportion to the overall size of an individual.
Much of the predictive performance for fat depot volumes with
variables such as BMI and waist circumference comes from an
underlying correlation of all of these variables with the overall size
of an individual—VAT/ASAT ratio is unique in this regard, being
relatively independent of BMI (Pearson r Male = 0.14; r Female =
0.22) (Supplementary Fig. 7).

We hypothesized that a deep learning model trained on
silhouettes could predict VAT/ASAT ratio better than what might
be achieved with anthropometric measures, despite the fact that
the anatomical boundary between VAT and ASAT cannot be
directly ascertained from an individual’s silhouette. Silhouette-
based models demonstrated marked improvement over anthro-
pometric models for prediction of VAT/ASAT ratio (R> Male: 0.553;
95% Cl: 0.542-0.562; R®> Female: 0.504; 95% Cl: 0.492-0.516)

Published in partnership with Seoul National University Bundang Hospital

(Fig. 3B). Compared to the best anthropometric model, this
represented an improvement of AR? = 0.382 in male participants
and AR? =0.242 in female participants.

We additionally confirmed that waist circumference was
strongly correlated with silhouette-predicted VAT (R?> Male 0.72;
R? Female 0.76) and silhouette-predicted ASAT (R?> Male 0.73; R?
Female 0.74), but a poor proxy for silhouette-predicted VAT/ASAT
(R> Male 0.07, R?> Female 0.20), suggesting that information
independent of waist circumference was learned (Fig. 3C and
Supplementary Fig. 7).

Silhouette-predicted VAT/ASAT associates with
cardiometabolic diseases
We next investigated associations of silhouette-predicted VAT/
ASAT with type 2 diabetes, coronary artery disease, hypertension,
and hypercholesterolemia (Supplementary Data 8)3%. In sex-
specific logistic regression models adjusted for age and imaging
center, silhouette-predicted VAT/ASAT was associated with
increased prevalence of type 2 diabetes in both males (OR/SD
1.78; 95% Cl: 1.69-1.87) and females (OR/SD 1.97; 95% Cl:
1.85-2.09) (Fig. 4A and Supplementary Data 9). Additionally
adjusting for BMI and waist circumference minimally attenuated
effect sizes for silhouette-predicted VAT/ASAT ratio (OR/SD Male
1.70; 95% ClI: 1.61-1.80; OR/SD Female 1.74; 95% Cl: 1.62-1.86),
consistent with the relative independence of VAT/ASAT ratio with
these two anthropometric measures. Similar trends were observed
with coronary artery disease, hypertension, and hypercholester-
olemia with attenuated effect sizes—for example, in models
adjusted for BMI and waist circumference, silhouette-predicted
VAT/ASAT associated with increased prevalence of coronary artery
disease in both males (OR/SD 1.22; 95% Cl: 1.16-1.29) and females
(OR/SD 1.21; 95% Cl: 1.09-1.33) (Supplementary Fig. 8).

This procedure was repeated with MRI-derived VAT/ASAT in lieu
of silhouette-predicted values to compare disease associations.
Trends were broadly consistent between MRI-derived VAT/ASAT
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Fig. 2 Silhouettes outperform anthropometric models in predict-
ing VAT, ASAT, and GFAT volumes. Sex-specific linear models
combining age and various anthropometric metrics measured at the
time of imaging were compared to a linear model combining age
and silhouette-predicted fat volume (Supplementary Data 5 and 6).
Model definitions; BMI: age -+ BMI; Waist: age + waist circumference;
Anthro: age + weight + height + BMI 4 waist circumference + hip
circumference + waist-hip ratio + body impedance measures; Sil-
houette: age + silhouette. Error bars represent 95% confidence
intervals obtained from bootstrapping with 1000 resamples.

and silhouette-predicted VAT/ASAT. Interestingly, the association
between MRI-derived VAT/ASAT ratio and type 2 diabetes was
slightly attenuated compared to silhouette-predicted values in
BMI and waist circumference-adjusted models (OR/SD Male 1.43;
95% Cl: 1.35-1.51; OR/SD Female 1.50; 95% Cl: 1.40-1.62)
(Supplementary Fig. 9 and Supplementary Data 10). In contrast,
the association with coronary artery disease was nearly identical
(OR/SD Male 1.18; 95% Cl: 1.12-1.25; OR/SD Female 1.19; 95% Cl:
1.08-1.30).

Disease associations with waist-hip ratio (WHR) in place of VAT/
ASAT ratio yielded comparable effect sizes, with a somewhat
reduced effect size in male participants (Supplementary Fig. 10 and
Supplementary Data 11). For example, WHR was associated with
increased risk of hypertension in BMI-adjusted analyses (OR/SD
Male 1.20; 95% Cl: 1.15-1.25; OR/SD Female 1.17; 95% Cl: 1.13-1.22)
with attenuated effect size compared to silhouette-predicted
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VAT/ASAT ratio in males (OR/SD Male 1.31; 95% Cl: 1.27-1.35;
OR/SD Female 1.23; 95% Cl: 1.18-1.27). Notably, WHR ratio was
only modestly correlated with VAT/ASAT ratio (Pearson r range:
0.35-0.58), suggesting that VAT/ASAT ratio and WHR ratio may
independently contribute to disease associations (Supplementary
Fig. 7).

We next set out to understand the gradients in disease
prevalence rates according to quintiles of silhouette-predicted
VAT/ASAT. We estimated prevalence rates for males and females
separately across clinical BMI categories of normal, overweight,
obese, and severely obese participants with either normal or
elevated waist circumference based on previously recommended
BMI-specific cutoffs (Supplementary Data 12)'>2°. This analysis
revealed substantial gradients in prevalence of cardiometabolic
diseases according to silhouette-predicted VAT/ASAT quintiles,
even after stratification within BMI and waist circumference bins
(Fig. 4B and Supplementary Data 13). For example, men with
overweight BMI and normal waist circumference with silhouette-
predicted VAT/ASAT in the top quintile had a higher probability of
type 2 diabetes (9.5%; 95% Cl 8.6-10.4%) compared to both (1)
men with overweight BMI and elevated waist circumference with
silhouette-predicted VAT/ASAT in the bottom quintile (3.7%; 95%
Cl 3.0-4.5%) and (2) men with obese BMI and normal waist
circumference with silhouette-predicted VAT/ASAT in the bottom
quintile (4.2%; 95% Cl 3.4-5.1%). Similar trends were observed for
coronary artery disease (Supplementary Fig. 11 and Supplemen-
tary Data 13).

Over a median follow-up of 2.8 years after imaging, 235 (0.6%)
and 607 (1.5%) participants had a new diagnosis of type 2
diabetes or coronary artery disease recorded in the electronic
health record. Silhouette-predicted VAT/ASAT associations with
incident disease were broadly consistent with prevalent analyses.
In BMI- and waist circumference-adjusted Cox regressions,
silhouette-predicted VAT/ASAT associated with increased risk of
incident type 2 diabetes (HR/SD Male 1.33; 95% Cl: 1.13-1.57; HR/
SD Female 1.51; 95% Cl: 1.30-1.74) and increased risk of incident
coronary artery disease in males (HR/SD 1.19; 95% Cl: 1.08-1.30)
(Supplementary Data 14). A directionally consistent association
was observed with incident coronary artery disease in females,
although interpretation was limited by sample size (HR/SD 1.09;
95% Cl: 0.94-1.27). Similar effects were observed when MRI-
derived VAT/ASAT was used in lieu of silhouette-predicted VAT/
ASAT (Supplementary Data 15). Taken together, these data
support silhouette-predicted VAT/ASAT ratio as a strong, BMI-
and waist circumference-independent predictor of cardiometa-
bolic diseases.

DISCUSSION

In this study, we developed a deep learning model trained on an
individual's silhouette that predicts VAT, ASAT, GFAT volumes, and
VAT/ASAT ratio using cross-validation analyses of 40,032 indivi-
duals. These silhouette-based predictions are significantly more
accurate than those based on anthropometric and bioimpedance
measures, particularly for VAT/ASAT ratio, a metric of unhealthy fat
distribution34, VAT/ASAT ratio as quantified using silhouette
images—Ilargely independent of BMI and waist circumference—
was strongly associated with cardiometabolic disease, including
diabetes and coronary artery disease. These results have at least
three implications.

First, deep learning models trained on simple, less data-rich
imaging modalities may help close the gap between sophisticated
imaging-based markers of adiposity and clinical impact. The present
study is proof-of-concept that input data as simple as the outline of
an individual is likely to harbor considerably more information about
that individual’s fat distribution compared to models that combine
several clinical measurements such as BMI and waist circumference.
These silhouette-predicted estimates—while crude in comparison to

Published in partnership with Seoul National University Bundang Hospital
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Fig. 3 Silhouettes estimate VAT/ASAT ratio, a metric of unfavorable fat distribution. A Two-dimensional (2D) MRI projections and silhouettes
of an age, sex, BMI, and waist circumference-matched pair of participants with drastic differences in abdominal fat distribution. While both

participants have an elevated waist circumference for their sex- and

BMI-group, participant 1 primarily has ASAT-driven central obesity, while

participant 2 primarily has VAT-driven central obesity. B A linear model combining age and silhouette prediction markedly outperforms
anthropometric models for the prediction of VAT/ASAT ratio (Supplementary Data 6). Error bars represent 95% confidence intervals obtained from
bootstrapping with 1000 resamples. C Waist circumference is strongly correlated with silhouette-predicted VAT (VATs,) and silhouette-predicted
ASAT (ASAT,) (R? 0.72-0.76), but nearly independent of silhouette-predicted VAT/ASAT (VAT/ASATg,) (R? 0.07-0.20).

MRI-derived measurements—may be sufficient for cardiometabolic
risk screening. Our findings extend prior work focused on prediction
of fat-free mass and related measures from DEXA, to measures of fat
distribution trained using more sophisticated MRI-based assess-
ment'®2, Recent advances in three-dimensional optical scanners
have enabled accurate whole-body surface reconstructions capable
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of predicting body volumes, waist circumference, and overall fat
mass, with some of these products available to the public?>2+36-38,
Although accurate and non-invasive, the quantities that are most
often predicted by these tools are likely to be highly correlated with
BMI, waist circumference, and the overall size of an individual. The
present study proposes VAT/ASAT ratio as one useful benchmark for
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A VAT/ASAT(SIL)
Disease Sex Model P value
OR (95% Cl)
Type 2 Diabetes Male Unadj. 1.78 (1.69-1.87) 2.0e-101
1,840/38,676 (4.8) BMI adj. 1.74 (1.65-1.83) 2.8e-88
BMI and Waist adj. 1.70 (1.61-1.80) 4.9e-80
Female Unadj. 1.97 (1.85-2.09) 1.8e-108
BMI adj. 1.83 (1.72-1.95) 1.8e-78
BMI and Waist adj. 1.74 (1.62-1.86) 5.8e-55
Coronary Artery Disease Male Unadj. 1.24 (1.18-1.31) 2.0e-17
1,892/38,676 (4.9) BMI adj. 1.21 (1.15-1.27) 6.1e-13
BMI and Waist adj. 1.22 (1.16-1.29) 4.9e-14
Female Unadj. 1.27 (1.17-1.38) 3.1e-08
BMI adi. 1.19 (1.09-1.30) 9.7e-05
BMI and Waist adj. 1.21 (1.09-1.33) 1.8e-04
| E—
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Fig. 4 Association of silhouette-predicted VAT/ASAT ratio with type 2 diabetes and coronary artery disease. A Disease associations with
silhouette-predicted VAT/ASAT ratio in sex-specific unadjusted and adjusted logistic regression models. All models were adjusted for age at
the time of imaging and imaging center—"BMI adj” refers to additional adjustment for BMI, while “BMI and Waist adj.” refers to additional
adjustment for BMI and waist circumference. Full data are available in Supplementary Data 9. B Sex-stratified standardized prevalence of type
2 diabetes across the bottom quintile (light orange), quintiles 2-4 (neutral orange), and the top quintile (dark orange) of silhouette-predicted
VAT/ASAT ratio within BMI-bins and waist circumference categories. High waist circumference was defined in a sex- and BMI-subgroup specific
fashion as described in Supplementary Data 12. Error bars represent 95% confidence intervals.

determining how much information has been learned about fat
distribution independent of BMI. Alongside advances in smartphone
camera technology such as LiDAR (light detection and ranging) and
recent evidence that smartphone images can quantify overall body
fat, our results lay the scientific foundation for a scalable approach to
population health management that incorporates assessment of fat
distribution,

Second, waist circumference is more strongly correlated with
central obesity than BMI, but is unable to distinguish between VAT
and ASAT, indices with differing implications for cardiometabolic
risk'*15, Consistent with this limitation, models incorporating
anthropometric measurements did not allow for accurate predic-
tion of VAT/ASAT ratio, which we establish as a largely BMI-
independent measure of local adiposity. By contrast, our deep
learning model showed good predictive performance for VAT/
ASAT ratio, even though the boundary between visceral and
subcutaneous fat is not explicitly available in silhouette images.
The striking gradients in disease patterns observed for VAT/ASAT
ratio were minimally attenuated after additional adjustment for
BMI and waist circumference. In light of renewed calls for the
routine measurement of waist circumference to better stratify
cardiometabolic risk associated with body habitus, our work
suggests that VAT/ASAT ratio could provide important additional
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and largely independent information to inform clinical risk
estimation'”.

Third, the conceptual approach outlined here could be
leveraged to identify individuals with undiagnosed lipodystro-
phies or similar phenotypes currently “flying under the radar”
within clinical practice®. As an example, familial partial lipody-
strophy is a genetic disorder characterized by relative depletion of
subcutaneous fat with relative maintenance or excess of visceral
fat*®1, Prior proof of principle data suggests that it may be
possible to differentiate lipodystrophy patients versus controls
using a “fat shadow” derived from clinical-grade DEXA imaging®'.
Given that this condition remains under-recognized within
practice, systematic assessment of large populations may prove
useful in identifying additional individuals who would benefit
from genetic testing or a targeted therapy. For example,
metreleptin improves the metabolic profile of patients with partial
lipodystrophy and tesamorelin selectively reduces visceral fat in
patients with HIV despite no impact on BMI and overall
weight*>~*4, Beyond monogenic lipodystrophies, there is increas-
ing evidence of a less severe, “polygenic” form of lipodystrophy
common in individuals with insulin resistance and less pro-
nounced perturbations in fat distribution*>~*. Identification of
such individuals could, in principle, enable a clinical trial or other
assessment of this population to characterize clinical utility.
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This study has several limitations, providing opportunities for
future investigation. First, the majority of participants in the UK
Biobank are white, and the imaged substudy investigated here is
of mean age 65 years. Although our data suggests similar
performance within participant subgroups based on age and
self-reported ethnicity group, additional validation across ances-
trally and geographically diverse populations would be of
considerable value, especially given prior evidence of significant
variability in fat distribution indices across racial groups*®. An
important example relates to the South Asian population, where
abnormal fat distribution has been postulated as a key driver of
the markedly increased rates of cardiovascular disease and
diabetes observed, often in the context of a relatively normal
BMI**2%, In addition, training on dedicated cohorts with higher
BMI is likely to improve predictive accuracy at the extremes of the
phenotype distributions. Second, silhouettes in this study were
derived by taking the outline of whole-body MRI images, rather
than a more cost-effective modality such as photos taken with a
smartphone. A future study that utilizes silhouettes obtained from
smartphone images would need to additionally account for
heterogeneity in user image acquisition technique and require
independent validation. Third, we were unable to assess the
accuracy of silhouettes in estimating fat depot volume changes
over time. Investigation of multiple silhouette-predicted fat depot
estimates over time, ideally in the context of a specific lifestyle or
clinical intervention, is likely to be of considerable interest.

In conclusion, we demonstrate that a deep learning model
using silhouettes can quantify fat distribution phenotypes with
important potential clinical implications for cardiometabolic
health. These results lay the scientific foundation for a population
health effort that allows for tracking of these traits in the general
population without the requirement for medical imaging.

METHODS

Study population

All analyses were conducted in the UK Biobank, a prospective cohort study
that recruited over 500,000 individuals aged 40-69 in the UK from 2006 to
2010. In this study, we analyzed 40,032 participants of the imaging
substudy with fat depot volumes previously quantified using whole-body
MRI'2%, This analysis of data from the UK Biobank was approved by the
Mass General Brigham Institutional Review Board and was performed
under UK Biobank application #7089.

Preparing silhouettes from whole-body magnetic resonance
images

Whole-body MRI data was preprocessed as previously described'. In short,
whole-body MRIs were acquired in six separate series with varying
resolutions, which require preprocessing before merging into three-
dimensional (3D) volumes. We resampled each series to the highest
available resolution (voxel = 2.232 x 2.232 x 3.0 mm?3), de-duplicated over-
lapping regions and merged the six series into 3D volumes. The fat-phase
acquisition was used to segment a 3D volume for each individual, as
described in the Supplementary Methods.

In order to generate a “silhouette” encoding information only about the
outline of an individual, pixel intensities were set to one if they were on the
surface of the body and to zero otherwise in either the coronal or sagittal
orientation. For example, a given pixel on a coronal two-dimensional
projection represents the presence or absence of a segmented pixel in the
anterior-posterior direction perpendicular to the coronal plane. Classifying
pixels as belonging to either the body or the background, in a procedure
known as segmentation, was performed on the two-dimensional axial
images. The input to the deep learning models described below was two
such silhouette images concatenated side-by-side—one coronal and one
sagittal—and resized to 237 x 256 pixels.
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Deep learning to predict fat depot volumes using silhouettes
For predicting the target fat depot volumes, we employed the DenseNet-
121 architecture as the base model’'. Additional information regarding
deep learning architecture, parameters, and training procedure can be
found in the Supplementary Methods. In brief, we constructed a
hierarchical multi-task model with the coronal and sagittal silhouettes as
input that jointly predicted VAT, ASAT, and GFAT volumes, and VAT/ASAT
ratio (Supplementary Methods).

To avoid reporting overfit results and to ensure that all participants
received an unbiased prediction, we employed a nested cross-validation
approach. In this approach, the cohort is first split into five non-overlapping
partitions and five models can then be trained using data from three
partitions, then testing and validation is performed using the remaining
two partitions (Supplementary Fig. 1). For each model, predictions from the
validation partition are unbiased and are collected to acquire predictions
for all participants. We found that performing cross-validation within the
partitions improved performance. The final prediction for each fold was
reported as the mean-ensemble of the cross-validation models.

Linear anthropometric models to benchmark performance
Sex-specific anthropometric models were generated by predicting each
MRI-derived fat measurement using one of, or a combination of, age,
weight, height, body-mass index (BMI), waist circumference, hip circum-
ference, waist-to-hip ratio (WHR), and five bioelectric impedance
measurements commonly used for measuring body fat. We utilized the
aforementioned nested cross-validation approach to generate predictions
from these models. R? and mean absolute error (MAE) are reported to
compare performance of models. 95% confidence intervals for R?> were
generated by bootstrapping with 1000 resamples.

Association with cardiometabolic diseases
The primary outcomes were prevalent and incident type 2 diabetes and
coronary artery disease, and prevalent hypertension and hypercholester-
olemia'®. Type 2 diabetes was defined on the basis of ICD-10 codes, self-
report during a verbal interview with a trained nurse, use of diabetes
medication, or a hemoglobin A1C greater than 6.5% before the date of
imaging (Supplementary Data 8). Coronary artery disease was defined as
myocardial infarction, angina, revascularization (percutaneous coronary
intervention and/or coronary artery bypass grafting), or death from CAD as
determined on the basis of ICD-10 codes, ICD-9 codes, OPCS-4 surgical
codes, nurse interview, and national death registries. Hypertension was
defined on the basis of ICD-10 codes, ICD-9 codes, nurse interview, or
diagnosis by a doctor, and hypercholesterolemia was defined on the basis
of ICD-10 codes or nurse interview, as previously described®2.
Sex-stratified logistic regression models adjusted for age at time of
imaging, imaging center, BMI, and waist circumference were used to test
associations of silhouette-predicted VAT/ASAT ratio with prevalent disease.
Cox proportional-hazard models with the same covariates were used to
test associations of silhouette-predicted VAT/ASAT ratio with incident
events. Finally, we used sex-stratified logistic regression models adjusted
for the same covariates to determine the gradient in probability of
prevalent disease across quintiles of silhouette-predicted VAT/ASAT ratio in
BMI- and waist circumference-bins.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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