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Co-evolution of machine learning and digital technologies to
improve monitoring of Parkinson’s disease motor symptoms
Anirudha S. Chandrabhatla1, I. Jonathan Pomeraniec2,3✉ and Alexander Ksendzovsky4

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by motor impairments such as tremor, bradykinesia,
dyskinesia, and gait abnormalities. Current protocols assess PD symptoms during clinic visits and can be subjective. Patient diaries
can help clinicians evaluate at-home symptoms, but can be incomplete or inaccurate. Therefore, researchers have developed in-
home automated methods to monitor PD symptoms to enable data-driven PD diagnosis and management. We queried the US
National Library of Medicine PubMed database to analyze the progression of the technologies and computational/machine learning
methods used to monitor common motor PD symptoms. A sub-set of roughly 12,000 papers was reviewed that best characterized
the machine learning and technology timelines that manifested from reviewing the literature. The technology used to monitor PD
motor symptoms has advanced significantly in the past five decades. Early monitoring began with in-lab devices such as needle-
based EMG, transitioned to in-lab accelerometers/gyroscopes, then to wearable accelerometers/gyroscopes, and finally to phone
and mobile & web application-based in-home monitoring. Significant progress has also been made with respect to the use of
machine learning algorithms to classify PD patients. Using data from different devices (e.g., video cameras, phone-based
accelerometers), researchers have designed neural network and non-neural network-based machine learning algorithms to
categorize PD patients across tremor, gait, bradykinesia, and dyskinesia. The five-decade co-evolution of technology and
computational techniques used to monitor PD motor symptoms has driven significant progress that is enabling the shift from in-
lab/clinic to in-home monitoring of PD symptoms.
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INTRODUCTION
Parkinson’s disease (PD) is a complex neurodegenerative disorder
commonly characterized by motor impairments such as tremor,
bradykinesia, dyskinesia, and gait abnormalities1. Proper assessment
of PD motor impairments is vital for clinical management of the
disease2,3. Appropriate timing of dopaminergic medications4 to avoid
sudden increases in symptom severity5 and selection for interven-
tions such as deep brain stimulation6 both require precise under-
standings of symptom fluctuations in patients with PD. In addition,
objective characterization of non-motor manifestations of PD such as
sleep disorders, gastrointestinal symptoms, and psychiatric symp-
toms are needed to understand long-term disease progression3.
Characterization of motor and non-motor PD symptoms

traditionally relied on the Unified Parkinson’s Disease Rating Scale
(UPDRS), a PD severity rating system with four parts related to (I)
Mentation, Behavior and Mood, (II) Activities of Daily Living, (III)
Motor, and (IV) Complications7. The UPDRS was eventually
updated by the Movement Disorder Society (MDS), creating the
MDS-UPDRS, in an attempt to reduce subjectivity in the scale8.
Clinicians also use other rating systems such as the WHIGET
Tremor Rating Scale for action tremor9 and the modified
bradykinesia rating scale (MRBS) for bradykinesia10. However,
these rating systems suffer from two main flaws. First, they lack
granularity during disease or medication cycles, as they only
provide a snapshot view of a patient’s symptoms as seen during
in-clinic visits. In addition, when assessing PD symptoms outside
of the clinic, physicians must rely on patient diaries or recall, which
can be inaccurate2. Second, these rating systems are inherently
subjective, leading to high inter- and intra-rater variability3.

Addressing these flaws is vital to ensure proper diagnosis and
management of patients with PD. To that end, considerable
efforts have been made to develop objective, at-home, and
automated methods to monitor the main motor symptoms
characteristic of PD. Leveraging motion sensor and, in some
instances, video-based technologies can first enable physicians
to take data-driven approaches to PD diagnoses. Adding at-
home patient monitoring through smart devices (e.g., smart-
phones, watches) could then enable physicians to adjust
treatment plans based on patient activity data. The end goal of
these technologies is to achieve continuous, at-home monitor-
ing, which will require continued research using data from at-
home, continuous studies, rather than applying laboratory data
to develop at-home solutions. This review aims to summarize the
co-evolution of the technologies and computational methods
used to assess and monitor common motor symptoms of PD
such as tremor, gait abnormalities, bradykinesia, and dyskinesia.

Review of literature
Technology. The technology used to diagnose and monitor PD
has evolved significantly over time (Fig. 1A). Most notably, this
technology has progressed from laboratory to at-home/everyday
settings, enabling more robust data collection related to PD
symptoms. This section describes this progression, along with the
purpose and advantages of different technologies.
Laboratory-based technologies to assess PD symptoms had two

main purposes: (1) develop methodologies to diagnose PD/
categorize severity (e.g., distinguish PD from similar neurological
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conditions) and (2) set the foundation for smaller, more portable,
and more user-friendly technologies that could assist in PD
diagnosis and monitoring in the future (Table 1).
Laboratory-based electromyography (EMG) techniques were

among the first technologies used to assess PD. More specifically,
the data collected using these techniques was primarily meant to
help distinguish/diagnose PD from similar conditions or quantify
disease progression. In 1984, Bathien et al. quantified tremor of
the head, hands, and lower extremities with EMG11. The group
found that analyzing phase-shifts between bursts of EMG activity
in agonist-antagonist muscles enabled categorization between
the tremor seen in PD and that of tardive dyskinesia, creating one
of the first quantitative methodologies for distinguishing PD from

other conditions. In-lab EMG was also leveraged to quantify and
monitor gait abnormalities in patients with PD. EMG data helped
distinguish between normal and “Parkinsonian” gait and quantify
response to therapy over time12. Similar studies were conducted
to assess other symptoms of PD. In 1979, Milner-Brown et al.
reported that needle-based hand EMG detected abnormal motor
unit properties during muscle contraction that could be used to
track progression of bradykinesia13. Of note, these EMG-based
techniques were not meant for making initial PD diagnoses, but
were rather used for tracking progression of already established
disease.
Starting in the latter half of the 1980s, researchers began

moving past EMG and towards less invasive methods. The

Fig. 1 A 50+ year timeline illustrating the progression of technology used to assess and monitor symptoms in patients with PD and
illustrating the progression of computational and machine learning techniques used to assess and monitor symptoms in patients with
PD. A In the 1970s, the main technologies used were lab-based, such as EMG and potentiometer measurements. Adoption of lab-based
accelerometers began in the late 1980s and continued until the early 2000s when smaller devices such as tablets and wearable accelerometers
started being leveraged. Since the late 2010s, smart devices and apps on those devices were the primary technologies used for symptom
monitoring. Over time, the evolution of technology has enabled greater and more continuous data collection. B Since the 1970s,
computational and statistical techniques such as frequency domain analyses of accelerometer data have enabled researchers and clinicians to
quantify symptom severity in patients with PD. Improvements in technologies used to monitor symptoms have enabled increased data
collection, allowing for the growth in adoption of machine learning techniques. Supervised techniques were applied first to analyze symptom
data, followed by unsupervised techniques.
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Table 1. Progression of technology used to monitor and assess PD symptoms in laboratory/clinic settings.

Authors, Years Device Primary Symptom(s) Measured

Andrews et al.13 Surface EMG Freezing of gait

Milner-Brown et al.13 EMG Bradykinesia

Bathien et al.11 EMG Resting tremor and dyskinesia

Hacisalihzade et al.14 In-lab potentiometer-based motion tracker Bradykinesia while tracking moving target

van Hilten et al.44 Accelerometer on non-dominant wrist Continuous monitoring of tremor and dyskinesia

Weller et al.16 Infrared-based shoe sensor Straight-line gait

Beuter et al.15 In-lab laser-based system Resting and action tremor

Deuschl et al.141 Monoaxial accelerometer Resting tremor

Dunnewold et al.24 Tri-axial accelerometer Bradykinesia

Someren et al.142 Uniaxial accelerometer Tremor

Dunnewold et al.22 Uniaxial accelerometer Bradykinesia, hypokinesia,

Spyers-Ashby et al.19 Tri-axial accelerometer Postural tremor

Giovannoni et al.38 Computer keyboard to administer the BRAIN TEST Bradykinesia while alternately striking computer keys for a
period of 60 seconds.

Rajaram et al.20 Tri-axial electromagnetic sensors Resting, postural, and intention tremor. Also included
distraction and mental stress conditions.

Manson et al.35 Tri-axial accelerometer on shoulder Dyskinesia in multiple conditions (e.g., sitting, writing)

O’Suilleabhain. et al.17 Electromagnetic motion tracking system Quantitative tremor assessment in multiple conditions (e.g.,
arms horizontal and straight ahead, shoulders abducted to 90°)

Hoff et al.23 Bi-axial accelerometers Dyskinesia during rest, talking, stress, and four activities of daily
life (ADL

Burne et al.45 Tri-axial accelerometer and surface EMG Resting and postural tremor

Hoff et al.21, Uniaxial accelerometers “On” and “off” tremor states

Sekine et al.143 Tri-axial accelerometer and photoelectric sensor Gait

Salarian et al.25 Tri-axial gyroscope Bradykinesia and tremor while performing activities of daily life
(e.g., brushing hair and teeth, putting on and taking off a jacket
and shoes)

Allen et al.39 Computer with videogame joystick and steering wheel Bradykinesia while using videogame joystick and
steering wheel

Rao et al.43 Video Dyskinesia (face and neck) during speech task

Giansanti et al.144 Force sensor/step counter Gait

Salarian et al.29 Tri-axial accelerometer and gyroscope Straight-line gait with turning

Mancini et al.145 Tri-axial accelerometers and gyroscopes. Force plate Bradykinesia

Bachlin et al.41 Accelerometer and headphones for audio cues Freezing of gait

Cole et al.46 Tri-axial accelerometer and surface EMG Scripted (e.g., tooth-brushing) and unscripted action tremor

Espay et al.40 4 m electronic walkway. VR goggles and earphones Straight-line gait with or without feedback from goggles and
earphones

Papapetropoulos et al.48 Tremor pen with bi-axial accelerometer, touch
recording plate, reaction time handle, and force plate

Postural and action tremor (with distraction conditions),
reaction time, and postural stability

Mancini et al.146 Tri-axial accelerometer and gyroscope. Force plate Gait (via postural sway)

Heldman et al.27 KinetiSense motion sensor on heel Bradykinesia

Tsipouras et al.47 Tri-axial accelerometers and gyroscopes Action tremor in scripted conditions (e.g., rising from bed and
sitting on chair)

Mera et al.26 Tri-axial accelerometer and gyroscope Bradykinesia and tremor in multiple conditions (e.g., rest,
repetitive finger-tapping)

Moore et al.30 7 inertial measurement units Freezing of gait from timed up-and-go tasks

Tripoliti et al.33 6 accelerometers and gyroscopes Freezing of gait during simulated activities of daily life

Morris et al.147 Animations generated from inertial sensors Freezing of gait

Zach et al.34 Tri-axial linear waist-mounted accelerometer Freezing of gait during walking tasks

Ginis et al.148 Inertial measurement units and smartphone app Gait

Phan et al.28 Tri-axial accelerometer, gyroscope, and compass Axial bradykinesia in multiple conditions (e.g., pouring water
from a jug into 9 cups)

Pulliam et al.36 Kinesia motion sensor (tri-axial accelerometer and
gyroscope) on each wrist and ankle.

Motor fluctuations (“ON” vs “OFF” state) during simulated
activities of daily life

Rodriguez-Molinero et al.37 Waist-worn accelerometer, gyroscope, magnetometer Dyskinesia while performing activities of daily life (e.g.,
brushing teeth, drying a glass)
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technologies developed during this era also attempted to
diagnose PD in addition to monitoring/quantifying symptoms.
The initial techniques developed varied widely. Some groups
tested potentiometer-based systems that could monitor multiple
symptoms at once14, allowing for “one stop” assessments of, for
example, how patients were responding to pharmacologic
therapy. Laser-based technologies were also popular. Beuter
et al. developed a laser system that could measure hand
movements to distinguish between healthy controls and patients
with PD15, while Weller et al. developed a system to track how gait
abnormalities changed in response to various medications16.
Though these technologies were less invasive and more portable
than EMG, their use was often limited to special laboratory
environments (e.g., areas with laser-safety equipment) and
required significant expertise to operate17. Accelerometers and
gyroscopes addressed both of these concerns, thereby solidifying
them as two of the main technologies that defined the next era of
PD monitoring. The use of accelerometers and gyroscopes
enabled increased data collection, thereby improving the
granularity with which researchers were able to monitor and
assess patients with PD. Early use of accelerometers and
gyroscopes collected in-lab data in one axis and looked to
differentiate between PD and other conditions. Deuschl et al. used
a monoaxial accelerometer to demonstrate that time series
analysis alone was sufficient to differentiate between PD and
essential tremor18. The use of tri-axial accelerometers and
gyroscopes improved classification accuracy and allowed for more
robust in-lab measurements. The tri-axial accelerometers
employed by Spyers-Ashby et al. in 1999 lead to greater than
60% classification accuracy between control, essential tremor,
multiple sclerosis, and PD19. Additionally, Rajaraman et al.
demonstrated that using an increased number of tri-axial
accelerometers on various parts of the hand, forearm, and arm
allowed for quantification of tremor despite altered hand positions
and orientation20. Seminal studies by the van Hilten group also
demonstrated that tri-axial accelerometry was beneficial in
identifying and characterizing tremor, bradykinesia, and dyskine-
sia21–24.
The use of wearable accelerometers and gyroscopes extended to

quantifying other PD symptoms. Data from tri-axial accelerometers
and gyroscopes on various parts of the body (e.g., wrists, index
finger, back) allowed for models to estimate UPDRS scores and
determine bradykinesia severity under both scripted and unscripted
conditions25–28. Salarian et al. investigated using tri-axial acceler-
ometers and gyroscopes along with inertial sensors to track postural
instability gait difficulty (PIGD sub score of UPDRS III) during gait-
assessment turning trials, reporting that patients with PD had
significantly longer turning duration and delay before initiating a
turn29. Similar findings were reported by Moore et al., who showed
that freezing-of-gait (FoG) identification based on frequency
characteristics of lower extremity motion correlated strongly
(interclass correlation >0.7) with clinical assessments by specialists30.
The use of accelerometers to identify FoG has been reported by
many other groups as well31–34. Multiple studies investigating
dyskinesia severity used tri-axial accelerometers, gyroscopes, and/or

magnetometers on various body parts (e.g., shoulder, wrist, ankle,
waist) and found strong correlations between the magnitudes of
dyskinesia measured by devices to those observed by clinicians35–37.
At the same time, in-lab methodologies were being developed

specific to quantifying and better understanding certain manifesta-
tions of PD. Unique to bradykinesia was the use of computer game-
based technologies. In 1999, Giovannoni et al. introduced the BRAIN
TEST as a computer-based way to monitor the progression of
bradykinesia in PD. By requiring participants to use their index
fingers to alternately strike the “S” and “;” keys on a standard
computer keyboard, the BRAIN TEST provided a rapid and objective
measurement of upper-limb motor function38. Allen et al. built
upon Giovannoni’s work and developed a joystick and toy steering
wheel-based computer test that was able to discriminate patholo-
gic bradykinesia of varying severity39. Espay et al. studied the effect
of virtual reality (VR) and audio-based gait feedback in identifying
and correcting gait abnormalities in PD patients as they walked on
an in-lab four meter GAITRite electronic walkway. Overall, nearly
70% of patients improved by at least 20% in either walking velocity,
stride length, or both40. Bachlin et al. developed a similar
correction-focused platform that detected FoG in patients with
PD and provided audio cues to resume walking. The system
detected FoG events in real-time with a sensitivity of 73% and
specificity of 82%41. Visually cued FoG correction platforms have
been developed using technologies such as Google Glass42. Finally,
Rao et al. reported a video-based facial tracking algorithm that
assessed severity of face and neck dyskinesia during a speech task.
The calculated severity scores showed a high correlation to
dyskinesia ratings by neurologists43.
Leveraging the data and analyses from in-lab studies, researchers

began to develop methodologies for not just monitoring, but also
diagnosing PD outside of the lab. Initial studies in this area included
work by van Hilten et al. in which patients wore small
accelerometers over the course of six days and completed quality
of life surveys, enabling the first objective measures of dyskinesia44.
Tremor analyses continued incorporating progressively more
wearable accelerometers and enabling accurate classification
between PD, essential tremor patients and controls while starting
to step outside the boundaries of the lab45,46. Tsipouras et al.
demonstrated that using multiple, wearable accelerometers and
gyroscopes allowed for effective monitoring of patients while
performing activities of daily life under real-life, but simulated,
conditions47. Finally, using accelerometers embedded in a pen
along with other sensors (e.g., touch recording plate), Papapetro-
poulos et al. showed the ability of multiple, small sensors to
discriminate types of pathological tremor48.
Over the past decade, monitoring of PD symptoms has

experienced two thematic changes. First, monitoring has become
more remote and accessible due to the ease of use and widespread
availability of more wearable accelerometers/gyroscopes and
smartphones with those devices built-in. Second, monitoring has
become more continuous through the use of web and mobile
applications. Together, these changes are making way for more
smart technology-mediated assessment of PD, with platforms for
diagnosis currently in development (Table 2).

Table 1 continued

Authors, Years Device Primary Symptom(s) Measured

Reches et al.32 Opal sensors (tri-axial accelerometer, gyroscope, and
magnetometer)

Freezing of gait during walking tasks

Lee et al.42 Google Glass Freezing of gait during walking tasks

Mancini et al.31 Opal sensors (tri-axial accelerometer, gyroscope, and
magnetometer)

Freezing of gait during walking tasks and during activities of
daily life

All data were collected in controlled environments (e.g., laboratories, hospitals).
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Table 2. Progression of technology used to monitor and assess PD symptoms in the home setting.

Authors, Years Primary study
setting

Device Primary symptom(s) measured

Holmes et al.134 Controlled Professional microphone Voice recordings

Keijsers et al.68 Controlled
(home-like)

Tri-axial accelerometers Fluctuations in Levodopa-induced dyskinesia

Banaszkiewicz et al.64 Controlled Tablet with stylus Bradykinesia while drawing spirals

Patel et al.69 Controlled Uniaxial accelerometers Tremor, bradykinesia and dyskinesia severity and
fluctuation

Chen et al.58 Home Wearable sensors, web services for live streaming
and storage of data, and web-based graphical user
interface client

Home monitoring of tremor, bradykinesia,
dyskinesia, medication compliance, and other
qualitative patient data

Chen et al.58 Controlled In-lab video Straight-line gait

Kostikis et al.62 Controlled iPhone Postural tremor

Yang et al.49 Controlled Tri-axial accelerometer Straight-line gait

Cavanaugh et al.149 Home StepWatch 3 Step Activity Monitor Number of complete gait cycles completed

Cancela et al.59 Home Web interface, tri-axial accelerometers, and belt
sensor with accelerometer and gyroscope

Monitoring of tremor, medication (dose, time),
meals (type of food, amount, time), and PDQ-39

Daneault et al.60 Controlled Smartphone with accelerometer Resting, postural, intention, and kinetic tremor

Klucken et al.50 Controlled Tri-axial gyroscopes and accelerometers Straight-line gait and lower extremity
coordination (e.g., heel/toe tapping)

Cancela et al.59 Home Four tri-axial accelerometers. Waist-worn
accelerometer and gyroscope.

Gait and bradykinesia

Ferreira et al.54 Home Accelerometers and angular rate sensors, Wii
Balance Board, SENSE-PARK app

Feasibility of and compliance with continuous
sensor-based monitoring

Fisher et al.55 Home Tri-axial accelerometers Feasibility of and compliance with continuous
sensor-based monitoring.

Bank et al.76 Controlled In-lab video Bradykinesia

Heldman et al.53 Home Wireless motion sensor and touch screen tablet Resting and postural tremor and bradykinesia

Silva de Lima et al.65 Home “Fox Wearable Companion” app on a smartwatch
and smartphone

Continuous monitoring of tremor and qualitative
surveys on quality of life

Lakshminarayana
et al.150

Home Smartphone with uMotif app Motor: Bradykinesia Other: Sleep, mood,
cognition

Rusz et al.79 Controlled Smartphone and professional microphone Voice recordings

Zhan et al.72 Home Smartphone Gait, finger tapping, and voice samples

Lo et al.61 Home Smartphone (7+models were used) Falls, FoG, postural instability, cognitive
impairment, difficulty doing hobbies, need for
help at home

Prince et al.66 Home iPhone Dexterity, gait, phonation, and memory

Isaacson et al.151 Home Kinesia 360 motion sensor and mobile application Tremor, bradykinesia and dyskinesia severity and
fluctuation

Aich et al.71 Controlled Tri-axial accelerometers Gait kinematic features

Erb et al.57 Controlled
(home-like)
and Home

Accelerometers, gyroscopes, magnetometers,
barometers, EKG, EMG, and/or galvanic skin
response

Feasibility of and compliance with continuous
sensor-based monitoring Dynamics of tremor,
dyskinesia, and bradykinesia over the
medication cycle

Evers et al.56 Home Accelerometer, gyroscope, magnetometer,
barometer, galvanic skin response,
photoplethysmogram, thermometer, and Android
smartphone

Gait abnormalities via unscripted, real-world
collection

Ghoraani et al.70 Controlled
(home-like)

Tri-axial gyroscopes Fluctuations between medication ON and
OFF states

Lu et al.74 Controlled Video Straight-line gait

Mahadevan et al.52 Controlled Tri-axial accelerometer, gyroscope, and
magnetometer

Identification of resting tremor constancy,
bradykinesia MDS-UPDRS scores, and gait
abnormalities. Assessment of medication state
(“ON” or “OFF”) related changes in tremor

Pfister et al.73 Controlled Microsoft Band 2 (Tri-axial accelerometer and
gyroscope along with Bluetooth capabilities)

Fluctuations between “ON”, “OFF”, and
“Dyskinetic” states

Sajal et al.80 Controlled Smartphone-based accelerometer Tremor and voice recordings

Singh et al.78 Home Smartphone Voice recordings
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Wearable sensors are making way for more remote assessment
of PD symptoms. Yang et al. found that a single, small tri-axial
accelerometer attached to the belt buckle enabled estimation of
multiple gait parameters such as cadence, step regularity, stride
regularity and step symmetry to be estimated in real-time, allowing
for immediate quantification of gait49. Klucken et al. also reported
the use of a small, heel-clipped device that achieved a classification
accuracy of 81% differentiating between PD patients and healthy
controls50. More recently, a study of insole sensors enabled
detection of PD-related FoG episodes with 90% accuracy51 and
wrist-worn accelerometers achieved “good to strong” agreement
with clinical ratings of resting tremor and bradykinesia, in addition
to discriminating between treatment-caused changes in motor
symptoms52. Though some of these studies were conducted in
laboratory settings, the collective results indicate that patients
could wear similar devices at home, enabling remote mobility
assessment. Studies specifically assessing wearable technologies’
ability to track motor symptoms in at-home settings have reported
high compliance and clinical utility26,53–57.
In 2011, Chen et al. introduced MercuryLive, a web-based system

that integrated data from wearable sensors and qualitative patient
surveys for real-time, in-home monitoring of symptoms. Specifically,
the system was used to guide potential changes in medications for
patients with later-stage disease58. The advantage of such systems
over sensor-only platforms is the ability to more seamlessly collect
qualitative patient data, allowing clinicians and researchers to
better contextualize quantitative sensor data. Other web
application-based systems, like the PERFORM system presented by
Cancela et al. in 2013, continued deploying wearable acceler-
ometers and gyroscopes, but expanded the functionalities of the
associated web application to include medication adherence
questionnaires, food diaries, and the PDQ-39 questionnaire59,
further expanding the qualitative information that supplements
the objective data collected by wearable devices.
In-home monitoring became even more practical following the

adoption of smartphones and other smart devices60,61. In 2011,
Kostikis showed the feasibility of remote tremor monitoring using
an Apple iPhone 3 G’s built-in accelerometer and gyroscope62. As
recently as 2020, van Brummelen et al. tested seven consumer

product accelerometers in smartphones (e.g., iPhone 7) and
consumer smart devices (e.g., Huawei watch) and found that these
products performed comparably to laboratory-grade acceler-
ometers when assessing the severity of certain PD symptoms63.
Smart tablets have also been shown to be helpful through the use
of spiral drawing tests whose results significantly correlated with
UPDRS scores and with the results of other tests including the
BRAIN Test64.
Further expansion of smart devices came with the advent of

user-friendly mobile applications such as the Fox Wearable
Companion app developed by the Michael J. Fox Foundation. Silva
de Lima et al. showed that using the app along with an Android
smartphone and Pebble smartwatch resulted in high patient
engagement and robust quantitative and qualitative data collection
for clinicians to monitor PD progression and medication adher-
ence65. Prince et al. report success using an independently
designed iOS application66. Use of smartwatches in conjunction
with such mobile applications also allows for cloud-based data
storage, thereby enabling research and clinical teams to more
effectively monitor symptom progression and severity in real-
time67. In 2021, Powers et al. developed the “Motor fluctuations
Monitor for Parkinson’s Disease” (MM4PD) system that used
continuous monitoring from an Apple Watch to quantify resting
tremor and dyskinesia. MM4PD strongly correlated with evaluations
of tremor severity, aligned with expert ratings of dyskinesia, and
matched clinician expectations of patients 94% of the time2.
Multiple other groups, including Keijsers et al., have presented
solutions that can assess motor fluctuations in real or simulated
home settings using either wearable sensors68–71 or smart
devices72,73. These types of solutions are particularly important for
PD monitoring since assessing symptom fluctuations can give
clinicians insight into medication dosing, disease severity, and even
symptom triggers (e.g., a patient has worse tremor when driving
compared to washing dishes). Monitoring fluctuations using smart
devices can be particularly useful, as the device can document what
a patient was doing when symptoms worsened, what time of day it
happened, among other important environmental factors, provid-
ing clinicians a more wholistic picture of a patient’s disease. Data
collected from fluctuation monitoring could also inform whether

Table 2 continued

Authors, Years Primary study
setting

Device Primary symptom(s) measured

van Brummelen et al.63 Controlled 7 consumer product accelerometers (CPAs) (e.g.,
iPhone 7, iPod Touch 5) and laboratory-grade
accelerometer (Biometrics ACL300)

Postural and action tremor

Dominey et al.152 Home KinetiGraph wrist-worn movement recording system. Motor: tremor, bradykinesia, and dyskinesia.
Other: Immobility/somnolence and medication
adherence

Gatsios et al.135 Home Microsoft Band, a sensor insoles, smartphone with
an Android app, and a cloud backend

Motor: Tremor, gait, weight-bearing Other: Heart
rate, skin temperature, sleep quality/duration

Daneault et al.67 Home Smartwatch and smartphone with “Fox Wearable
Companion” app

Bradykinesia and tremor from continuous home
monitoring and in-lab tasks (e.g., finger-to-nose,
typing on a keyboard)

Marcante et al.51 Controlled
(home-like)

Insole sensors consisting of 13 pressure sensors and
a tri-axial accelerometer

Gait in scripted scenarios (e.g., rise from bed walk
to chair)

Powers et al.2 Home Apple Watch Fluctuations in resting tremor and dyskinesia.
Tremor severity and presence of dyskinesia

Hadley et al.153 Home Smartphone and smartwatch Tremor, bradykinesia and dyskinesia severity and
fluctuation

Sundgren et al.154 Home KinetiGraph wrist-worn movement recording system. Motor: tremor, bradykinesia, and dyskinesia.
Other: Immobility/somnolence and medication
adherence

Data were either collected in controlled environments and applied to the home setting or were directly collected in home settings.
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certain patients might be candidates for procedures such as deep
brain stimulation.
Finally, multiple studies have proposed using technologies other

than accelerometers and gyroscopes (either stand-alone or in
smartphones). Instead, some studies used computer vision-based
algorithms to assess data from video cameras, time-of-flight
sensors, and other motion devices74–76. In the future, similar video
analysis technologies could be combined with existing video
platforms (e.g., Zoom, FaceTime) to regularly and reliably monitor
motor impairments outside of the clinic. Significant work has also
been conducted assessing the feasibility of using voice recordings
to monitor and even diagnose PD. Arora et al. analyzed at-home
voice recordings and were able to determine patients’ UPDRS
scores to differentiate between patients with PD and healthy
controls with a sensitivity of 96% and specificity of 97%77. Similar
work on voice data from smartphones has been reported by many
others78–80, indicating that voice analyses might be beneficial when
developing technologies for monitoring and diagnosing PD.

Computational approaches
Non-ML techniques to evaluate PD symptoms have evolved
considerably over the last 30 years (Fig. 1B). Prior to adoption of
machine learning algorithms, researchers used more traditional
statistical and frequency domain analysis techniques. This likely
occurred for two main reasons: (1) requisite computing power for
ML was not as widely available and (2) the datasets collected in
early studies were relatively less complex with respect to size and
noise. Additionally, certain key machine learning techniques (e.g.,
backpropagation applied to neural networks) were not popular-
ized until the late 1980s and early 1990s, with more widespread
adoption occurring many years after with the advent of machine
learning software libraries81,82. One of the first studies was in 1973
where Albers et al. showed that Parkinsonian hand tremor power
spectra were easily distinguished that of control patients83

(Table 3). Statistical testing of frequency power spectrum also
showed a significant correlation between selected features such
as the total power of the frequency power spectrum and clinical
ratings for dyskinesia severity84. Edwards et al. showed that
combining multiple tremor characteristics (e.g., amplitude, domi-
nant frequency) into one single index could also differentiate PD
from non-PD movement85. Further development of computational
techniques included applying more advanced regression models
to data collected through different modalities (e.g., acceler-
ometers, mechanical devices)86,87.
Many studies also found success through standard hypothesis

statistical testing such as t-tests and ANOVAs. Blin et al. used an in-
lab potentiometer-linked string and pulley system to collect data
on stride length. Using a Mann-Whiteney U test and linear
regression, they found that variability of stride length was
significantly more marked in PD patients and increased with
Hoehn and Yahr clinical stages88. ANOVA conducted on finger
tapping data (e.g., RMS angular velocity, RMS angular displace-
ment) showed significant differences between PD and control
subjects89.
To harness insights about gait abnormalities, researchers

incorporated kinematic analyses into their studies. Using ANOVA
on kinematic measurements of gait, Lewis et al. found that
patients with Parkinson’s displayed lower gait velocity and stride
length, but comparable cadence relative to healthy controls while
exhibiting reductions in peak joint angles in the sagittal plane and
reductions in ankle plantarflexion at toe-off of the gait cycle90.
These gait and kinematic characteristics were corroborated using
spatiotemporal analysis conducted by Sofuwa et al., who showed
that patients with PD had a significant reduction and step length
and walking velocity compared to control, with the major feature
defining the PD group being a reduction in ankle plantarflexion91.
More recently, Nair et al. used standard logistic regression onTa
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centroids from k-means clustering of data from tri-axial accel-
erometers to classify PD and control subjects with an accuracy of
~95%, specificity of ~96%, and sensitivity of ~89%92.
In more recent literature, machine learning techniques have

proven to be highly effective in identifying PD symptom
characteristics, especially when applied to varied datasets
obtained using smart devices (Fig. 1B). The literature demonstrates
strong performance across multiple machine learning techniques.
Both neural network and non-neural network algorithms achieved
high sensitivities and specificities in classification of PD symptoms
using both raw and processed data. (Table 4) .
There is still significant research being conducted on optimizing

and refining most of the ML algorithms discussed here, as many
aspects of ML design still work through trial and error. This applies
to both determining model parameters (e.g., learning rates for
gradient descent, impurity levels in decision trees) and selecting
algorithms themselves (e.g., neural network versus decision
tree)93–96. In reality, multiple different models could be effective
in performing the same task on a given set of data97,98. Here, we
present objective measures of ML model performance while also
attempting to provide rationale regarding the design criteria that
may have led researchers to choose one algorithm over another.
Non-neural network machine learning algorithms have proven

effective in Parkinson’s disease classification, as they often provide
more mechanistic insight/interpretability and generally require
less training data compared to neural networks. Multiple studies
have found that decision trees are highly effective in classifying
Parkinson’s versus control patients based on accelerometer and
gyroscope data. Using data from a Microsoft Band smartwatch,
Rigas et al. used decision trees to achieve a tremor detection
accuracy of 94% with a 0.01% false positive rate99. Aich et al.
showed that a decision tree trained on gait characteristics such as
step time and length, stride time and length, and walking speed
distinguished Parkinson’s patients from healthy controls with an
accuracy of ~88%, sensitivity of ~93%, and specificity of ~91%,
outperforming k nearest neighbor (KNN), support vector machine
(SVM), and Naïve-Bayes100. The design choices in these studies
were conducive to using decision trees, as there were multiple
quantitative variables (e.g., stride length) with specific cut-offs
(e.g., stride length <1.2 m) that informed certain diagnoses.
Decision trees also enabled researchers to quantitatively deter-
mine which feature(s) (e.g., tremor frequency) from the data were
most important in determining final classifications, thus improving
the link between data analysis and understanding of disease.
While decision trees can be effective, they can also overfit

training data, thereby limiting their generalizability. Therefore,
many groups have found success using bagged decision trees, a
technique that trains multiple trees using subsets of the training
data and then aggregates the final results. Bagged decision trees
can be particularly useful to mitigate overfitting that can result
from analyzing relatively small datasets. Kostikis et al. used data
from 25 patients with PD and 20 health controls and found that
bagged decision trees on tremor features resulted in an AUC of
0.94, higher than any other algorithm they tested (e.g., logistic
regression, SVM, AdaBoost)101. In a study with 20 patients with PD,
bagged trees showed between 95 and 98% accuracy in classifying
patients as per the MDS-UPDRS 0,1,2 scheme when using tremor
data from motion sensors rather than accelerometers or
gyroscopes102.
Results continued to be strong with a variant of bagged

decision trees known as random forests (RF), which can be useful
in improving accuracy and further reduce overfitting, with the
tradeoff of longer training times. RF performed better than logistic
regression on features from gait analysis, sway tests, and time up-
and-go tasks when classifying between progressive supranuclear
palsy and Parkinson’s and were also useful in estimating clinical
scores of dyskinesia103. At the same time, researchers have
encountered success with another variation of decision trees

known as boosted trees, with gradient tree boosting outperform-
ing a long short-term memory neural network when estimating
UPDRS-III scores based on motion sensor data from the wrist and
ankle104.
To further improve algorithm efficiency and reduce computa-

tional cost, researchers have leveraged feature selection techni-
ques in combination with established machine learning
algorithms. Feature selection is particularly important in the
design of studies that evaluate multiple ML algorithms to identify
the top performers or train algorithms on different datasets105,106.
Feature selection is also commonly used as a tool to help improve
algorithm performance. When used in conjunction with feature
selection techniques such as recursive feature elimination, RF
achieved a classification accuracy of 96% when grading gait
abnormalities of PD patients on and off medications71. Another
type of SVM-based feature selection was useful in achieving high
RF performance when classifying PD vs non-PD patients, resulting
in accuracy of 97%, sensitivity of 100%, and specificity of 94%. In
general, many different feature selection techniques have shown
to be useful with multiple ML algorithms32,106–108. SVMs have
shown to perform well with and without feature selection before
model training32,106.
Feature analysis, however, does not stop with feature selection.

Specifically, post-hoc feature importance calculations can be
beneficial in better understanding why specific models work the
way they do, providing more insight related to the clinical
applications of the model. Rehman et al. built multiple partial least
discriminant analysis models using subsets of gait features
measured in patients with PD and healthy controls, and used
feature importance metrics to identify that, among others, step
velocity, step length, and gait regularity were the most influential
features in the model. This type of analysis is particularly
beneficial, as they can improve clinical decision-making indepen-
dent of using machine learning models, by providing clinicians
with more nuanced signs/symptoms of early disease manifesta-
tion or disease progression109. Similar analyses were conducted on
gait abnormalities by Mirelman et al., who stratified patients based
on their PD disease progression and found that different features
were more important in differentiating between various stages of
PD110. For example, as PD progressed, features related to more
challenging activities such as turning became more important for
patient classification, but Mirelman et al. found that this increase
in importance occurred in earlier stages of disease than one would
normally expect. Similar analyses were reported by additional
groups investigating gait and even other symptoms of
PD104,111,112.
While the choice of which ML algorithm to use can partially be

informed by the type of data, size of the study, etc., some papers
have shown that the accuracy of a machine learning model
depends on the type of tremor being evaluated, further high-
lighting the inherent trial-and-error nature of ML study design.
Jeon et al. found that while decision trees were most accurate
when classifying patients based on resting tremor with mental
stress and intention tremor, resting tremor classification alone was
most accurate with polynomial SVM and postural tremor
classification was most accurate with (KNN)113. In the same vein,
multiple groups have found that KNNs using time and frequency
domain data are highly effective in Parkinson’s versus control
classification80,112,114 using tremor data. Finally, Butt et al. and
Bazgir et al. in 2018 both found that Naïve Bayes outperformed
other tested algorithms when classifying Parkinson’s tremor using
motion and accelerometer/gyroscope data, respectively115,116.
A few unsupervised learning algorithms have been developed

for PD classification. Unsupervised learning can be useful when
designing studies with large datasets that might be too
cumbersome to manually label—a pre-requisite for training
supervised ML models. Unsupervised learning is also beneficial
in exploratory analyses to provide structure and novel insights

A.S. Chandrabhatla et al.
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from large and diverse datasets. Zhan et al. developed a novel
“Disease Severity Score Learning” algorithm that calculated a
“mobile Parkinson disease score” (mPDS) based on 435 features
from gait, finger tapping, and voice tests that were conducted
using smartphones. mPDS scores strongly correlated with MDS-
UPDRS part III, MDS-UPDRS total, and Hoen and Yahr stages. This
work represents ongoing efforts to create more objective
measurements of Parkinson’s disease progression that are not
impacted by interrater variability72.
The development of artificial neural networks to study large

datasets have recently been used for PD symptom classification.
Neural networks have multiple use cases but are most often
utilized on large sets of data whose features must be combined
using complex, non-linear relationships for classification or
regression tasks. That being the case, neural networks typically
require more data to train compared to other ML algorithms and,
as a consequence, are more computationally expensive. Though
neural networks can be powerful tools, they tend to be more
“black box”, lacking in interpretability compared to other ML
algorithms52,117,118. Even so, neural networks are one of the most
popular ML algorithms used today and have achieved strong
performance when applied to diagnosing and monitoring PD.
Moon et al. used 48 features across gait and postural sway

collected from six inertial measurement units (IMUs) across
patients’ backs, upper extremities, and lower extremities to
differentiate between PD and essential tremor. After testing
multiple machine learning algorithms (e.g., SVM, KNN, neural
network, logistic regression), the authors found that a neural
network with a learning rate of 0.001 had the highest accuracy
(0.89), precision (0.61), and F1-score (0.61)119. Moon et al.’s paper is
a good example of the design process often times used with
machine learning in that multiple algorithms are tested before
selecting one algorithm with specific hyperparameters (e.g.,
learning rate, number of hidden layers) that are also typically
selected with trial and error120,121. Veeraragavan et al. also used
neural networks, but attempted two different tasks: classifying
between PD and healthy patients based on gait and classifying PD
patients into Hoehn and Yahr clinical stages. Parkinson’s versus
healthy control classification was achieved with an accuracy of
97% using a single hidden layer network with 25 nodes, while
classification into Hoehn and Yahr stages was accomplished with
an accuracy of 87% using a single hidden layer network with 13
nodes122. These results suggest that neural networks are
promising candidates for disease classification and staging.
Early efforts to apply machine learning to PD tremor data

utilized single hidden layer perceptron classifiers of 30 higher
order statistical characteristics of tremor accelerometer data as
inputs to differentiate between Parkinsonian, essential, and
physiological tremor123. Such efforts essentially combined sophis-
ticated feature extraction with relatively simple algorithm
architecture for classification tasks. Other approaches, such as
the dynamic neural network used by Roy et al., aimed to classify
tremor as “mild”, “moderate”, or “severe” (based on UPDRS), using
spectrum data from EMG and accelerometer measurements.
Leveraging input features that required minimal pre-processing,
such as accelerometer signal energy after lowpass filtering, Roy
et al. achieved global classification error rates of less than 10%124.
Others have reported success using neural networks trained on
similar features that require little pre-processing125,126. Alterations
to classical neural networks have also performed well. Oung et al.
showed that extreme learning machines—neural networks
that learn weights without backpropagation—achieved 91%
classification accuracy when tremor and voice data were used as
inputs to the network127.
Convolutional neural networks (CNNs) have recently played a

large role in Parkinson’s disease classification due to their ability to
directly analyze image data. In many cases, this reduces the
amount of feature extraction needed. For example, if using a CNN

to analyze tremor data collected by accelerometers, researchers
do not need to extract features such as frequency, amplitude, etc.,
because the input to the CNN can simply be a processed version
of the accelerometry graph itself. In 2020, Shi et al. used graphs of
wavelet-transformed data (decomposing the data into a set of
discrete oscillations called wavelets) from tri-axial accelerometers,
gyroscopes, and magnetometers as inputs to a CNN to classify
FoG and non-FoG episodes. Overall, the CNN displayed classifica-
tion accuracy of ~89%, sensitivity of ~82%, and specificity of
~96%. The same study found that CNNs using raw time series data
or Fourier-transformed data as inputs did not perform as well128.
This shows that researchers must carefully select pre-processing
techniques when using CNNs, as this choice can significantly alter
the algorithm’s performance. However, using Fourier-transformed
data improved CNN-based tremor classification. Kim et al., in 2018,
reported ~85% accuracy when estimating UPDRS scores using a
3-layer CNN with a soft-max classification final layer. Rather than
extracting specific features from accelerometer data to use as
inputs to the CNN, Kim et al. used a stacked 2D FFT image of the
tri-axial accelerometer and gyroscope data129.
Researchers have experimented with various CNN architectures

and structures as well. Pereira et al. compared CNNs with
ImageNet or Cifar10 architectures to an optimum-path forest,
support vector machine with radial basis function, and Näive-
Bayes using data from 4 drawing (e.g., spiral drawing) and 2 wrist
movement tasks to distinguish Parkinson’s from control patients
based on tremor. Overall, the CNNs outperformed the other
machine learning techniques with respect to classification
accuracy when using data from each aforementioned task
separately (single-assessment case) and when combining data
from each task (combined-assessment case)130. Sigcha et al. in
2020 wanted to model the time-dependencies of FoG and used a
novel CNN structure by combining a classical CNN with a long
short-term memory (LSTM) recurrent neural network to classify
FoG and non-FoG episodes. Using Fourier-transformed data from
an IMU on patients’ waists as an input, the CNN-LSTM combination
achieved an AUC of 0.939131.
CNNs have also been useful beyond classification tasks. In 2020,

Ibrahim et al. used a CNN with perceptron to estimate the
amplitude of future tremor at 10, 20, 50, and 100 millisecond time
steps, with a prediction accuracy ranging from 90 to 97%132. Both
traditional and convolutional neural networks will likely continue
to be useful in machine learning-based analysis of PD symptoms.

Interplay between technology and computational techniques
The technology and computational techniques used to monitor
PD motor symptoms have evolved concurrently. As technology
improves, different computational techniques must be developed
and optimized to handle increasing amounts of data collected by
new devices. The same applies in reverse. As advancements are
made in computation that enable researchers to ask and answer
different questions, new technologies must be developed that can
facilitate these new analyses.
The overarching, major change seen in the technology used to

diagnose and monitor PD over the last ~50 years has been the
transition from laboratory to home monitoring. This technological
evolution has undoubtedly been accompanied by a shift in
computational approaches. Fundamentally, the techniques used to
analyze data collected in well-controlled laboratory settings must be
different from those required to analyze data collected in real-world
conditions. As such, the evolution of technology necessitated
computational methods that could: (1) better denoise signals, (2)
make predictions given large sets of structured data, and (3) make
predictions given large sets of unstructured data.
In-lab diagnosis and monitoring of PD generates data with less

noise compared to data generated from real-world monitoring.
This manifests in two ways. First, the data signal itself contains less
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ambient noise. For example, by using high-quality microphones or
working in sound-treated rooms, researchers can control for room
noise if recording voice samples from patients with PD133,134. At
another level, the data from most in-lab studies are “de-noised”/
simplified due to the inherent structure built into these studies.
Assessing gait abnormalities via the timed up-and-go test or
quantifying tremor via circle drawing tests produces highly
consistent and uniform data since participants have executed
the same task(s) in the same way to generate the data. This is not
the case in real-world settings. As technology enabled real-world
data collection, de-noising became one of the first priorities, both
through simple filtering77 and data labeling (e.g., smartwatch
labeling if a participant was running, swimming, sleeping)135.
Though, apart from adding functionalities to deal with noisy data,
foundational computational techniques such as frequency ana-
lyses and statistical testing were still adequate.
The adoption of machine learning generally correlated with the

ability to collect increasing amounts of data, which have enabled
researchers to ask new questions. The prime example of this is the
adoption of smart devices. Before, researchers could ask
participants to wear accelerometers, gyroscopes, heart rate
monitors, etc. to collect varied types of data. Smart devices
enabled device consolidation, improving ease of use for patients,
and therefore increasing the amount of data that could be
collected. Even more, smart devices improved ease of collecting
qualitative data. Instead of relying on patient diaries or recall from
memory, app-based monitoring on phones or tablets allowed
patients to more seamlessly provide qualitative data related to
medication adherence, exercise levels, mood, etc.
With access to increased volumes and types of data, researchers

and clinicians started asking questions that were more suited for
analysis with ML rather than non-ML techniques. These questions
can broadly be assigned into two categories: (1) predictions and
(2) classifications. When investigating PD, researchers were
interested in predicting severity of symptoms and disease
progression, while classifying patients for diagnostic and ther-
apeutic purposes. ML algorithms were specifically suited for this
task given their ability to leverage non-linearities and more
efficiently handle large datasets. For example, neural networks
enabled researchers to uncover complex, non-linear relationships
between quantitative (e.g., tremor frequency) and qualitative (e.g.,
medication adherence) data to predict UPDRS scores, while SVM
allowed for high-dimensional (>3 independent variable) classifica-
tion. With smart devices providing access to vast amounts of data,
researchers leveraged algorithms such as random forest that
parallelized classification and prediction tasks, making data
analyses more efficient and insightful.
It is clear that the computational techniques and technology

used to monitor PD have co-evolved over the years. As
technology advances, new computational techniques will be
required to take advantage of the technologies’ improved
functionalities and vice versa.

DISCUSSION
The technology used to monitor and quantify Parkinson’s motor
symptoms has undergone a rapid transformation in the past few
decades. Early monitoring began with in-lab devices such as
needle-based EMG, transitioned to using in-lab accelerometers/
gyroscopes, then to more wearable accelerometers/gyroscopes,
and finally to phone and mobile & web application-based
monitoring in patients’ homes. The shift from in-lab to in-home
monitoring will enable physicians to make more data-driven
decisions regarding patient management. Along the same lines,
significant progress has been made with respect to the use of
machine learning to classify and monitor Parkinson’s patients.
Using data from multiple different sources (e.g., wearable motion
sensors, phone-based accelerometers, video cameras), researchers

have designed both neural network and non-neural network-
based machine learning algorithms to classify/categorize Parkin-
son’s patients across tremor, gait, bradykinesia, and dyskinesia.
Further advancements in these algorithms will create more
objective and quantitative ways for physicians to diagnose and
manage patients with Parkinson’s.
As machine learning becomes more prevalent in medicine,

regulators such as the Food and Drug Administration (FDA) are
developing new protocols to assess the safety and efficacy of ML-
based health technologies. The plan outlined by the FDA to
improve evaluation of these technologies includes: (1) outlining
“good machine learning practices”, (2) setting guidelines for
algorithm transparency, (3) supporting research on algorithm
evaluation and improvement, and (4) establishing guidelines on
real-world data collection for initial approval and post-approval
monitoring136. As this plan goes into action over the next few
years, trial endpoints for diseases will still likely be established
clinical metrics (e.g., UPDRS) rather than novel metrics generated
by new ML-powered devices137,138. There seems to be, however, a
future in which device-generated metrics replace or are used in
conjunction with traditional clinical metrics. In the case of PD
monitoring, the FDA’s approval of Great Lakes NeuroTechnologies’
KinesiaU device and provider portal to monitor motor symptoms
of PD is a first step in that direction139. ML will undoubtedly play
an increasingly larger role in medicine, and the FDA’s actions to
navigate this new healthcare environment should be carefully
monitored by researchers in this field.
Digital PD monitoring has enabled an understanding of

patients’ symptoms to a level of detail not seen before. Prior to
the adoption of wearable and smart devices in this field, clinicians
were blind to the manifestation of PD motor symptoms outside of
the clinic (e.g., brushing teeth, exercising, driving). Device-based
monitoring has also helped fill in gaps left by sometimes
inaccurate or incomplete patient diaries. However, many barriers
exist to full clinical adoption of digital monitoring, including the
cost of digital devices, lack of secure and reliable pipelines to
transfer data to physicians, and perhaps the technological
capabilities of patients with PD140. These barriers can start to be
overcome through: (1) public-private partnerships that help lower
the cost of digital devices for hospital systems to provide to their
patients, (2) increased focus on data storage and retrieval
infrastructure, and (3) patient education.
In the future, a transition to truly continuous PD symptom

monitoring has the greatest potential by leveraging easy-to-use
mobile applications on smart devices (e.g., smartphones, smart-
watches) that can integrate quantitative and qualitative (e.g.,
quality of life surveys) data for physicians to better understand a
patient’s experience with Parkinson’s. Further development of
these applications, along with live data transmission and storage
to the cloud will enhance the usability and utility of these
technologies. Incorporating machine learning to these function-
alities can then enable more objective disease staging/diagnoses
by physicians and enhanced predictive capabilities for identifying
disease progression. However, there is much work to be done
related to developing better disease biomarkers to train these
machine learning algorithms on. Reliable biomarkers must
accurately identify symptoms of PD across patient populations
and stages of disease. These biomarkers might also need to be
different in different contexts (e.g., tremor during driving is
different from tremor while brushing teeth). Identifying the
nuances of digital biomarkers will be essential in realizing
the full potential of machine learning and high technology in
the monitoring of Parkinson’s symptoms.

METHODS
We queried the US National Library of Medicine PubMed database
(PubMed). Five compound search terms were used to query PubMed
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for machine learning and computational publications and clinical
trials: “Parkinson’s” + SYMPTOM+ (1) machine learning, (2) neural
network, (3) quantification, (4) analysis, and (5) monitoring where
“SYMPTOM” was either “tremor”, “gait”, “bradykinesia”, or “dyskinesia”.
These queries resulted in 10,200 papers. Manuscripts about
technology for monitoring PD symptoms were identified in PubMed
with advanced search terms: ((automatic detection) OR (classification)
OR (wearables) OR (digital health) OR (sensors)) AND “Parkinson’s” +
SYMPTOM. These queries resulted in 2600 papers. Studies were first
de-duplicated and then excluded if they did not: have full text
availability, use data from humans, or evaluate PD specifically. Book
chapters, review articles, and “short communications” were also
excluded. Titles and abstracts were reviewed before further assessing
a sub-set of representative English language papers. These papers
were selected as they best characterized the machine learning and
technology timelines that manifested from reviewing the literature.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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