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City-wide electronic health records reveal gender and age
biases in administration of known drug—drug interactions

Rion Brattig Correia
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The occurrence of drug-drug-interactions (DDI) from multiple drug dispensations is a serious problem, both for individuals and
health-care systems, since patients with complications due to DDI are likely to reenter the system at a costlier level. We present a
large-scale longitudinal study (18 months) of the DDI phenomenon at the primary- and secondary-care level using electronic health
records (EHR) from the city of Blumenau in Southern Brazil (pop. =340,000). We found that 181 distinct drug pairs known to interact
were dispensed concomitantly to 12% of the patients in the city’s public health-care system. Further, 4% of the patients were
dispensed drug pairs that are likely to result in major adverse drug reactions (ADR)—with costs estimated to be much larger than
previously reported in smaller studies. The large-scale analysis reveals that women have a 60% increased risk of DDI as compared to
men; the increase becomes 90% when considering only DDI known to lead to major ADR. Furthermore, DDI risk increases
substantially with age; patients aged 70-79 years have a 34% risk of DDI when they are dispensed two or more drugs
concomitantly. Interestingly, a statistical null model demonstrates that age- and female-specific risks from increased polypharmacy
fail by far to explain the observed DDl risks in those populations, suggesting unknown social or biological causes. We also provide a
network visualization of drugs and demographic factors that characterize the DDI phenomenon and demonstrate that accurate DDI

prediction can be included in health care and public-health management, to reduce DDI-related ADR and costs.
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INTRODUCTION

Adverse drug reactions (ADR) from drug-drug interactions (DDI) is
a well-known public health problem worldwide.'™ Most efforts to
measure the scale of ADR from DDI focus on hospitalizations and
emergency visits* ' or literature meta-analysis.>'""'? Very few
studies so far have been able to characterize this problem in
primary and secondary-care settings. Lack of access to long-
itudinal data from Electronic Health Records (EHR) of large
populations continues to be the main barrier to measuring the
prevalence of DDI and characterizing the phenomenon in medical
care.”>™"® For instance, Molden et al.'® searched 43,500 patients in
pharmacy databases in southeastern Norway, studying only DDI
from CYP inhibitor-substrate drugs. Pinto et al.'” studied DDI
prevalence in a small cohort of forty elderly hypertensive patients
in a primary health care unit in Brazil. lyer et al.'® mined 50 million
clinical notes from the private EHR database STRIDE,'® to identify
signals of unknown potential DDI from clinical text. While STRIDE
contains EHR from multiple care levels, this analysis did not
address the concomitant dispensation of pairs of drugs with
known DDI in primary- and secondary-care. Lastly, Guthrie et al.*°
performed a repeated cross-sectional comparison of 84 days in
1995 and 2010, to study the increase in polypharmacy and DDI at
the primary- and secondary-care level in the Tayside region of
Scotland (pop. 405,721); DDI was defined according to the British
National Formulary, a private publication. This study estimated
that 13% of adults (=20 years old) were prescribed a “potentially
serious” known DDI in 2010, and that the number of drugs
prescribed was the characteristic most predictive of DDI. Patients

prescribed 15 or more drugs had an almost 27 fold DDI risk
increase over those prescribed two to four drugs. However, by
using only 84-day windows, this analysis misses potential co-
administrations from separate prescriptions made outside of the
relatively short windows; it also analyzed prescription, rather than
dispensation data.

Here we pursue a large-scale longitudinal study of the DDI
phenomenon at the primary- and secondary-care levels in an
entire city, using considerably larger time-windows and relying on
public DDI and ADR standards. We obtained 18 months of EHR
data for the city of Blumenau in Southern Brazil (pop. 338,876), a
city with a very high Human Development Index (HDI = 0.806%")
—at the level of the top quartile of countries according to this
United Nations Development Programme index.> Brazil has a
universal public health-care system, and Blumenau possesses a
city-wide Health Information System (HIS) with prescription and
dispensation information for its entire population. The analysis of
Blumenau’s EHR data is thus an opportunity to understand the DDI
phenomenon in a highly developed city in a country where DDl is
known to occur similarly to other nations.'®"" The study provides
an understanding of both prevalence and bias in the dispensation
of known DDI outside of hospital settings. Dispensation data are
only a surrogate for administration of DDI, as we are not certain
that patients actually take the medications that are dispensed
concomitantly. However, dispensation data can only be a better
surrogate of administration than prescription data that was used
in previous studies (e.g., ref. %), as a prescription may ultimately
not be dispensed.
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From a public-health perspective, the concomitant administra-
tion of drugs with adverse interactions is of great concern.>'%'
Since over 30% of all ADR are thought to be caused by DDI,'®
better identification and prediction of administration of known
DDI in primary- and secondary-care could reduce the number of
patients seeking urgent care in hospitals, resulting in substantial
savings for health systems worldwide>”'* A systematic review
from 2009 showed that the proportion of hospital inpatients with
ADR (in general, not DDI only) ranged from 1.6 to 41.4%."
Furthermore, an estimated 52% (45%) of ADR in outpatients
(inpatients) were preventable.'? In the elderly population alone
(>65 years old), the yearly financial burden of ADR was estimated
to reach $11.9 million for the province of Ontario (pop. 12M),° or
about $1 per capita, per year. As we report below, the yearly cost
of major DDI estimated from the Blumenau EHR dispensation data
for the same age group is higher, at least $2 per capita, per year,
after adjusting for inflation and exchange rates—though for less
stringent assumptions it can be as high as $7 per capita, per year.
This suggests that the financial burden of DDI is more severe than
previously thought. Moreover, the rate of major DDI found to be
dispensed in Blumenau is smaller than what was reported to be
prescribed in Scotland.?® Therefore the financial burden of DDI is
likely higher in other health-care systems, especially those with
older populations.

To characterize the significant factors in DDI, we study
demographic variables such as gender and age, as well as the
drugs involved in DDI in greater detail, and reveal previously
unknown factors in this phenomenon. We show that women in
Blumenau are at a greater risk of being dispensed known DDI than
men, with a 1.6 risk multiplier. This increased risk for females is not
confounded by the larger number of women present in the data
nor their age. The analysis also identifies the drug pairs that most
lead to DDI in women which, surprisingly, are not attributable to
female-specific medicines (e.g, hormone therapy). We also
demonstrate that there is a significant increase of DDI risk with
age, reaching more than 30% for adults over 65 years of age.
Importantly, using a statistical null model, we show that the age
risk growth is not explained simply by the increase in
polypharmacy in older age. This suggests that the specific drugs
dispensed to older populations are more prone to DDI and/or that
insufficient attention is paid to this phenomenon in primary care
for this population.

While the number of drugs dispensed and the number of
concomitant drug dispensations are the best predictors of DDI
(previously only observed for number of drugs prescribed?®), we
show that these quantities by themselves are poor predictors of
DDI. We look at demographic variables such as education and
neighborhood affluence and show they do not play a significant
role in the risk for DDI in our data. Other factors, however, play
very significant roles, chiefly age, gender, and the specific drugs
dispensed. Indeed, we demonstrate that the automatic prediction
of which patients are dispensed known DDI is quite accurate when
those factors are included. This makes decision-support systems
for predicting DDI risk in HIS not only feasible, but necessary to
lower the rates of known DDI being dispensed.

To better understand which drugs are most involved in the DDI
phenomenon, we integrate all DDI information of the Blumenau
population into easy-to-visualize DDI networks. Looking at gender
differences, for example, analysis of these networks identifies key
drugs and interactions in the DDI phenomenon, and demonstrates
that the higher DDI risk women face is not associated with any
type of hormone therapy. Indeed, drugs that most contribute to
the gender-disparity in DDI risk are not female-specific. This
suggests there may be social or biological processes at play in
primary- and secondary-care that lead to increased DDI risk for
women. A full listing of the drugs that most contribute to the DDI
observed in our study are presented in our DDI network analysis
and accompanying tables.
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RESULTS

DDI demographics, severity, and cost

Our analysis tallied W =1,025754 distinct drug pair co-
administrations. Almost 3% of these, or ® = 26,524, are known
DDI and involve 75 distinct drugs that participate in |A| =181
observed distinct interaction drug pairs. There is very strong linear
relationship between volume of drug dispensation (a") and DDI
(®M) across neighborhoods (N), which fits a regression line almost
perfectly (R*=0.92, p< 10 °); see Supplementary Fig. 12-right.
The distribution of these DDI pairs per severity class is detailed in
Table 1. A majority (69%) are labeled “moderate”, although,
worryingly, 22.5% are classified as “major” DDI. The observed DDI
pairs were dispensed to |U®| =15,527 unique patients, which
represent 12% of the Pronto patient population (and almost 5% of
the entire Blumenau population). Looking only at the adult Pronto
population, this number is raised to 15% (15,336). Almost 4% of all
Pronto patients (5.01% of adults) were administered a major DDI,
and 9.58% (12.15% of adults) were administered a moderate DDI;
these numbers represent 1.54 and 3.75% of the entire Blumenau
population, respectively. See Methods for precise definitions of
symbols and formulae used in this section.

We estimate the financial burden of DDI to Blumenau by
evaluating how many of the 24,592 hospital admissions billed to
this public health system in the same period®* were due to ADR
from DDI. This estimation relies on conjecturing what proportion
(pn) of patients who where dispensed a major DDI are likely to
have an ADR that requires hospitalization (details in Supplemen-
tary Information §9). We focus on the most conservative value
from available literature®, which yields pj, = 2.68%, as well as on a
less conservative estimate also previously reported® of p, = 8.35%.
The most conservative estimate leads to a cost of DDI-related
hospitalization in Blumenau of over $1M in the 18-month period,
or a per capita cost of $2.03. The extrapolated costs to the state
and the country are $21M and $565M, respectively (see
Supplementary Tables 34 and 35). The less conservative estimate
reaches a per capita cost of $6.33, or $3.2M, $61M, and $1.5B, for
the city, state and country levels, respectively. However, all of
these conjectures are likely to err on the side of under-reporting
emergency room admissions due to DDI or ADR, since this is a
well-known problem in studies of this phenomenon.?*%” There-
fore, in Supplementary Information we also report cost estimates

Table 1. Number and proportions of DDI observations and affected
patients per DDI severity class

Severity s @ U®| Ut Ut U > 20
|/|U[y > 20]|

Major 5,968 (22.50%) 5,224 3.94% 1.54% 5.01%

Moderate 18,335 (69.13%) 12,711  9.58% 3.75% 12.15%

Minor 542 (2.04%) 528 04% 0.16% 0.51%

n/a 1,679 (6.33%) 1,493 1.12% 0.44% 1.43%

Major v 24,303 (91.63%) 15,030 11.32% 4.44% 14.35%

moderate

Moderate 18,877 (71.17%) 12,791  9.64% 3.77% 12.22%

V minor

Drugs or interactions identified in DrugBank but not present in Drugs.com
are tallied as n/a, see SM for details. First column: ®, number and
proportion of observed DDI co-administrations. Second column: |U%],
number of patients affected by at least one DDI. Third and fourth columns:
proportion of patients from the Pronto system and entire Blumenau
populations, respectively. Fifth column: proportion of adult patients (y > 20
years old) from the pronto system. v denotes the logical disjunction.
Notice that the same patient may have been administered DDI of more
than one severity class
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Table 2. Top 20 known DDI pairs

Rankp(t,U) o [ ) i j RRIf; Class
(2,4) 0.60 1249 141+£124 ASA Glyburide 0.89 Moderate
(1,12) 0.70 524 243 +188 Haloperidol Biperiden 0.62 Moderate
4,11) 0.58 535 152+132 Atenolol Glyburide 1.22 Moderate
(3,17) 0.60 385 155+ 125 Digoxin Furosemide 0.61 Moderate
(62,1) 0.26 5078 102+ 95 Omeprazole Clonazepam 2.28 Moderate
(8,16) 0.55 470 160 + 133 Diltiazem Simvastatin 1.27 Major
(26,5) 0.45 1190 127 +127 Amitriptyline Fluoxetine 3.55 Major
(82,2) 0.23 2117 53+74 ASA Ibuprofen 1.42 Major
(10,22) 0.55 272 140+ 114 Digoxin Spironolactone 0.58 Minor
(5,46) 0.57 95 140+ 126 Propranolol Glyburide 1.61 Moderate
(15,18) 0.50 377 143+ 138 Fluoxetine Carbamazepine 0.98 Moderate
(91,3) 0.21 1460 54+ 77 Atenolol Ibuprofen 1.88 Moderate
(61,6) 0.27 999 87 + 86 Omeprazole Diazepam 1.21 Moderate
(16,26) 0.49 226 151+ 145 Amitriptyline Carbamazepine 0.99 Moderate
(6,84) 0.56 25 157 +£136 Diltiazem Amiodarone 1.26 Major
(12,47) 0.52 91 154+ 142 Atenolol Diltiazem 1.19 Major
(21,27) 0.47 222 148 + 139 Fluoxetine Lithium 1.79 Major
(40,15) 0.36 496 103+ 87 ASA Gliclazide 0.78 None
(96,7) 0.20 892 56+61 Fluconazole Simvastatin 2.63 Major
(14,48) 0.50 90 161+ 157 Imipramine Carbamazepine 1.35 Moderate
Top 20 known DDI pairs (i, j) by rank product (first column; individual rank in parenthesis) of the ranks of T,J, the strength of DDI association from Eq. (4), and
\U ‘|, the number of patients affected by the DDI (second and third columns, respectively). Mean (s.d.) co-administration length, (A};), is shown in column 4 (in
days) for each DDI pair (i, j) whose English drug names are shown in columns 5 and 6. Relative gender risk of DDI pair co-administration, Rlej is shown in
column 7. DDI severity classification, according to Drugs.com, shown in column 8, with DDIs not found in Drugs.com labeled as None

for various values of pp, so that readers can judge what is an
appropriate value to consider.

Drugs Involved in Interactions

Table 2 lists the top 20 DDI pairs, ordered by the rank product of
their strength of DDI assocratlon, %, with the number of patients
they were administered to, \ 11e complete list of DDI pairs,
including the severity class and other measures, is provided in
Supplementary Table 7 ordered by the number of affected
patients (see also Supplementary Note 7). 1;; is largest (smallest)
for DDI pairs (i, j) that are more (less) likely to be co-administered
when either one of drugs i or j is administered. Computing the
rank product between T and |U‘D| identifies DDI pairs that are
very prevalent in the populatlon but which also tend to be co-
administered.

Only 2% of the observed DDI administrations are considered of
minor risk, affecting 542 patients. The highest ranked one (nineth)
in Table 2 is (Digoxin, Spironolactone) and it was administered to
|US| = 272 patients (for (A/;) = 140 days on average); it leads to
mcreased levels of Dlgoxrn while decreasing the effect of
Spironolactone. The vast majority (almost 70% per Table 1) of
observed DDI administrations fall in the moderate risk class. For
instance, (Digoxin, Furosemide) can cause “possible electrolyte
variations and arrhythmia” (4th, [UD| = 385, (X)) = 155). Others,
like the pair (Haloperidol, Biperiden; second, \U3| = 524,
(Al;) = 243) give rise to various ADR, such as central nervous
system depression and tardive dyskinesia; despite the known ADR
this pair has been used clinically,”® which explains the large value
of T,q_} = 0.7, meaning that these drugs are more likely to be co-
administered. In hot weather this DDI increases the risk of
hyperthermia and heat stroke, and Blumenau has a humid
subtropical climate with temperatures reaching 30 °C with 100%
humidity during summer.

Scripps Research Translational Institute

(Omeprazole, Clonazepam) is the most frequent DDI pair
observed, by a large margin to the second (fifth, |U‘D\ = 5078,
(A7) = 102). Omeprazole is used to treat acid reflux and other
gastroesophageal problems, while Clonazepam is a benzodiaze-
pine anti-epileptic. This prevalent dispensation requires particular
attention to dosage since “Omeprazole may increase the
pharmacological effect and serum levels of certain benzodiaze-
pines via hepatic enzyme inhibition”.?®?° Similarly, (Acetylsalicylic
Acid (ASA), Glyburide) is the top ranked pair in Table 2 and very
frequently dispensed (1st, \U“’| = 1249, (X;) = 141). This pair is
especially problematic for dlabetlc patlents since “the salicylate
increases the effect of sulfonylurea;” It causes hypoglycemia by
enhancing insulin sensitivity, partlcularly in patients with
advanced age and/or renal impairment.?

Major DDI pairs represent 22.5% of all observed DDI adminis-
trations per Table 1. The top 20 major DDI pairs are listed in
Supplementary Table 11 and include:

® (Diltiazem, Simvastatin), sixth, |U‘D\ = 470, (A};) = 160, where
“Diltiazem increases the effect and toxicity of simvastatin”
possibly causing liver damage as a S|de effect.’

® (Fluoxetine, Amitriptyline), seventh, |U®| = 1190, (/\“) =127,
where “Fluoxetine increases the effect and toxrcrty of
tricyclics” 32 The same ADR affects (Fluoxetine, Imipramine),
23rd |U; \—257 and (Fluoxetine, Nortriptyline), thirty-third,

o'~ 154,

° é Ibuprofen), eighth, [Uf| =2117, (A/) =53, where
"Ibuprofen reduces ASA cardloprotectlve eflfects" In 2015
the European Medicines Agency issued an updated advice
that occasional use of Ibuprofen should not affect the benefits
of low-dose ASA>? Our analysis shows that patients were
dispensed this pair concomitantly on average for 53 days
(£74 s.d.), conflicting with occasional use. However, since
these are common medications we cannot rule out the

npj Digital Medicine (2019) 74



npj

R. Brattig Correia et al.

Nodes

PI(i) 2% 0.03%

®
Gentamicin
@ Cardiovascular agents
® CNSagents
Hormones
Anti-infectives . : y
Psychotherapeutic agents Am|0d|p|ne

O
O
© Metabolic agents
© Respiratory agents
O

Gastrointestinal agents Epinephiine

Nutritional Products

Topical Agents

Coagulation modifiers eno e\)l N

Edges /

» 070 |
Tig  —
<001 Atenolol

RRIf;  RRIM
5 5
4 4 Gliclazi
3 3 o
L, L, @ o promazme v ‘
Timolol
m! !

Enalaprll Losartan

Fig. 1

o ‘
hyldopa .
Bi

ASA\AM\U Metocl
Maprotiline exﬁéfﬁﬁwl

DDI network. A weighted version of network A where weights are defined by r

FONK Clona eph
Omeprazole

Propylthioli ®
)azepam Acetaminophen

/.
Allopurinol ®

Azithromycin
I_efhyroxme W rfarin\ i
() @
M yIp‘enidate Trimethoprim

— 7\ 1. ( Ny

P
cychne

/@ulanate
!

o><|C|II|n

L)
Diclofenag
\w\.

Alendronate

periden Ammo

Norfloxac

Hydrocortisone
Captoprll

Metronldazole

. Nodes denote drugs i involved in at least one co-

administration known to be a DDI. Node color represents the highest level of primary actlon class, as retrleved from Drugs.com (see legend).
Node size represents the probability of interaction PI(i), as defined in text. Edge weights are the values of r obtained from Eq. (4). Edge colors

denote RRI;‘]J,

that is, values are clipped at 5

possibility they were dispensed to be taken as needed.

® (Fluoxetine, Lithium), seventeenth, |U | =222, ()\“} = 148),
where “the SSRI increases serum levels of lithium” potentlatlng
the risk of serotomn syndrome, which is rare but serious and
potentially fatal.*®

® (Fluconazole, Simvastatin), nineteenth, |U%| = 892, (A7) = 56),
which leads to “increased risk of myopatﬁy/rhabdomyolysw
Also from the azole class, Ketoconazole and ltraconazole are
considered potent inhibitors generally causing less clinically
significant interactions with Simvastatin than Fluconazole.?®
Both substitutes are available free of charge in the public
health care system.>*

In addition, the top 20 DDI pairs ranked by a normalized drug
“footprint” in the population are listed in Supplementary Table 12.

Gender risk and DDI networks

The set of patients who were co-administered known DDI was
comprised of [UPM| =4, 793 (30.54%) males and |U®F|= 10, 734
(69.46%) females (see Supplementary Fig. 4). To understand
whether this difference in the proportion of DDI per gender was
due to Pronto having more female patients (59%), or because
women tend to be prescribed more drugs in general®® we
computed two measures of relative risk of for women. The relative
risk of co-administration (RRC) for women is RRC" = 1.0653 while
their relative risk of interaction (RRI) is RRI" = 1.5864. If the risks
were equivalent for both genders, we would observe RRC" =~ RRCT
= 1 and RRM™ = RRIF = 1. While the relative risk of drug co-
administration is only slightly larger (=7%) for females, the relative

npj Digital Medicine (2019) 74

where g € {M, F}, to identify DDI edges that are higher risk for females (blue) or males (red). Color intensity for RRI varies in [1,5];

risk of drug interaction is much larger (=59%). This risk becomes
even higher when we look only at the most dangerous severity
class: RRIF .., = 1.8739, while RRIF,, ., = .8059 (see Supplementary
Table 22). Removing female anti-contraceptive drugs only slighly
lowers RRI" from 1.59 to 1.55.

To understand the DDI phenomenon at large as well as which
drugs are most responsible for the higher risk of DDI women face
over men, we also computed DD/ networks that characterize drug
pairs according to measures of patient volume (|U |) and DDI
association strength (T; ) One of these networks is shown in Fig. 1
(others shown in Supplementary Note 6). The 75 drug nodes
involved in DDI are colored by their primary action class. Node size
represents the probability of interaction (Pl) of a drug, PI(i), with
larger nodes identifying drugs most contributing to potential ADR
from DDI. To better grasp gender differences in the DDI
phenomenon, edges are colored according to the relative risk of
drug pair interaction for each gender, RRI with g € {F, M}, such that
red (blue) edges denote increased DDI r|sk for women (men).

Of the |A|]=181 DDI edges, 133 are associated with an
increased risk for women, whereas only 48 denote an increased
risk for men—a ratio of 2.8. Removing hormone therapy drugs
from the network changes the number of edges associated with
increased risk for women from 133/181 =73.48% to 116/158 =
73.42%; for men the ratio changes from 48/181 = 26.52% to 42/
158 = 26.58%. In other words, there is virtually no change when
hormone therapy drugs are removed from the network. Looking
at the subgraph comprised only of very gender-imbalanced pairs,
RRIg >3, we find 49 drugs in interactions that affected 3,327
women (4.28% of female Pronto population), but only 13 drugs in

Scripps Research Translational Institute
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Table 3. Top 10 known major DDI pairs
OF f . DM . .
[l i j RRI,FJ [ i j RRI{‘;T
13 Carbamazepine Ethinyl Estradiol e 29 Digoxin Amiodarone 1.78
13 Levonorgestrel Carbamazepine o0 1 Diclofenac Warfarin 1.19
1,411 ASA Ibuprofen 1.42 -
992 Amitriptyline Fluoxetine 3.55 -
703 Fluconazole Simvastatin 2.63 -
209 Imipramine Fluoxetine 3.08 -
302 Diltiazem Simvastatin 1.27 -
159 Fluoxetine Lithium 1.79 -
122 Fluoxetine Nortriptyline 2.70 -
28 Propranolol Salbutamol 6.61 -
Top 10 known major DDI pairs (i, j) with increased risk of co-administration per gender, g € {M, F}, which affected at least 10 patients of each gender. Rows
ordered by the rank product of the ranks of Rlej, the relative gender risk of co-administration, and |U3-‘g|, the number of patients of given gender affected by
the DDI
A RC v B Rl C Patients with interactions
0.99 —— e e e e s S By B s S s
0.08 0.35H g grinul REEE 2000 @ ry® v e T (169) ]
' — 0.30 1 s Rrbwowl* (gra] [5-5 Ko US| g [
0.97 |+ 025 1 1500 pr—r——rrr——t. g
0.96: 0.20 i T
09515 015 o ™LA
0.94 N EgE® 010 e 7 500X et RS AU
0.93 0.05 * g : :
' : 0.00 |o-¢ Lol RE=0.997 0 9
092 Il Il L L L L L L L L Il Il Il Il L L L L L 1 L L1 1 L L] Il L] 1 I L1 Il
JogtogdogdogdogdotatTosto JodogdodoadTotoOtTOaTOT O +
COHAANNMMIETITININOONNOD0 o COAHANNMMTITNINOOMNN0Oo
SNONomonomonomonond SNONonomomomnmdnonond
OCOHHNNMMS TN LN O WONMN W0 COAHAANNMMS TN OO0

Fig. 2 Risk of co-administration and interaction per age range. a, b Co-administration (RC»2]y and interaction risk (RIV1¥2)) per age group,
computed via Eq. (8). Solid orange line is the cubic regression for RCY1¥2 while solid red line is the cubic regression for RI¥'¥2! (linear and
quadratic regressions in Supplementary Information). ¢ Absolute number of patients with at least one co-administration known to be a DDI.
For all plots, age groups [90,94], [95,99], were aggregated into [90+]. Stars () depict values computed from the null model, Hg”d, with
background filling denoting the 95% confidence interval based on 100 runs

interactions that affected 64 men

(0.01%

of male Pronto

population). The 65 (9) such interactions for women (men) contain
16 (3) that are considered major (see also Supplementary Figs. 18
and 19). Table 3 shows the top major DDI pairs per gender which
affected at least 10 patients; interestingly, only two DDI pairs that
affect at least 10 patients were observed with a higher relative risk
of interaction for males—see Supplementary Tables 18 and 19 for

full listings.

Age risk

To investigate the role of age in DDI co-administration we
calculated two additional measures, the risk of co-administration
(RC) for age group, RCY1¥2, and the risk of interaction (RI) for age
group, RIV1¥2! If the number of DDI observed were proportional to
the number of co-administrations, the latter quantity would be
essentially flat across age groups (see Eq. 8 in Methods). As shown
in Fig. 2, center, Rl increases substantially for older age groups (see
also Supplementary Table 23), varying from near zero for younger
age groups to 0.35 for groups over 70. While there is some
variation, RC varies a lot less than RI—no more than 6% across all
age groups as seen Fig. 2-left (note the difference in scale). This
shows that risk of co-administration is largely proportional to the
number of dispensed drugs, while risk of interaction seems to
grow more than the increase in co-administrations (polyphar-
macy) observed with age.

The risk of co-administration is overall quite high for all age
groups (RCY1¥l € [.92,.98]), with increasing values as patients
age. Patients dispensed at least two drugs are almost always being
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dispensed drugs concomitantly. Conversely, the risk of interaction
starts from almost nonexistent at age [0-14] and reaches more
than 25% after the age of 55.

The relationship among the number of drugs dispensed (v“), co-
administrations (W), and interactions (®“) for all users is shown in
Fig. 3. While there is a strong nonlinear (quadratic) relationship
between v“ and W (Fig. 3-d), there is no evidence of a nonlinear
relationship between W and @ (Fig. 3-f), which could explain the
observed growth of Rl with age—which implies that interactions
grow faster than co-administrations with age. In contrast to
previous reports,?® co-administrations (¥“) predict interactions
(D) better than number of drugs prescribed (v“), though neither
do so particularly well.

To further investigate whether factors other than increase in co-
administration cause the increase of DDI risk with age, we
developed a statistical null model; values reported for the null
model are identified with a star (x) and associated 95% confidence
intervals (for 100 runs) in Fig. 2. The idea is to explore if the growth
of RV is an expected phenomenon of increased polypharmacy
with age, which necessarily results in a combinatorial increase of
possible drug pairs that can interact. The null model was not able
to reproduce the observed behavior of R (X* = 2840.6, p <.01),
especially for older and younger ages (see Figs. 2 and 4 and
Supplementary Information 7 for additional details).

We observe that for younger ages, RI®*? is much lower than
the model's predicted RI%2) (Fig. 2-b); the same is true for the
number of patients affected (Fig. 2-c). The largest discrepancies
between model and real data occur at this age range, especially
[0,4] and [20,24]. However, this expected behavior is inverted for
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ages [50+], with the transition occurring around age [40,44] (Fig.
2-b). For older ages, the largest discrepancies between model and
reality occur for age groups in [50,70], where the predicted
number of patients with DDI (|U®*|) for age group [60,64] is 16%
lower than what is observed (see Fig. 2-c).

We additionally parse age risk by gender by computing
RCY1%219 and RIV1¥219, shown in Fig. 4 (see also Supplementary
Tables 24 and 25). Both genders have overall similar risk of co-
administration in all age groups. Even during childbearing age, the
co-administration risk is similar for the numbers of drugs
dispensed, even if slightly larger for females (see filling in Fig. 4-
a). Interestingly, for RIV1¥219 a clear difference between genders
occurs after childbearing age, maximized between 50 and 69
years old (see filling in Fig. 4-b and absolute number of patients in
Fig. 4-c). The gender difference in Rl appears after the age of 35,
reaching more than a 9% difference for age group [60,64].

Figure 4-d-e show the null model’s gender risk of interaction
Riv1¥2l.9% i comparison to observed values, RIV1¥219, for men (d)
and women (e), respectively. For both genders, we still observe
that the real RI for children and young adults ([0,34]) is well below
the null model. However, the transition observed for older age is
much more pronounced for women. In fact, after age 40, observed
male Rl is largely consistent with the null model, while female risk
is higher.

Prediction of patients with DDI

We computed several multiple regression (MR) models. These
show that the inclusion of additional variables does not improve
much at all the prediction of the variance of ®“. For instance, a MR
with both v and ¥ leads only to very marginal increase in the
explained variance of O“ adjusted R?=0.492. Adding higher
order, nonlinear models also does not improve upon the original
regression between W“ and ®". Even the inclusion of demographic
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variables in MR models does not lead to improvement of R* for
®“—we analyzed many neighborhood-level variables such as
average income, robbery, theft, suicide, transit crime, trafficking,
and rape rates. Restricting the analysis to the subset of patients
who reported education, and using it as an independent
categorical variable also yields no improvement (see Supplemen-
tary Information 102 for MR and ANOVA details).

Interestingly, even the inclusion of gender as a categorical
variable, does not improve R? for ®“. At first glance, this seems a
somewhat counter intuitive result, given the observed high risk of
DDl for females in comparison to males. However, the MR analysis
revealed that even though women certainly face a much greater
risk of DDI, the number of DDI pairs they are administered (®") is
on average similar to that of men, and both have large variance of
@ (see Supplementary Fig. 5). Thus, while gender clearly is a very
strong factor in the risk of at least one DD, it is not a good
predictor of the specific number of interactions per patient.

Therefore, we sought to answer the question of how well we
can automatically predict patients with at least one DDI (not the
number of interactions per patient)? Using binary classifiers we are
able to achieve very good performance on this task. Classifiers
perform well above null models, with MCC =0.7 and excellent AUC
scores: AUC ROC =0.97 and AUC P/R =0.83.

DISCUSSION

Our 18-month longitudinal analysis of EHR data of the entire city
of Blumenau allowed us to study the DDI problem in primary and
secondary care in greater detail and for a longer period of time
than what has been hitherto possible. In summary, the DDI
phenomenon is stable across the city, and proportional to
population size—demonstrating no major inequalities due to
income, education, crime, or other neighborhood social factors,
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which suggests a balanced and fair access to medical care in
Blumenau. Our analysis revealed that =12% of all patients of the
Pronto HIS where administered known DDI, which represents 5%
of the entire Blumenau population. If we consider only the adult
population, =15% were dispensed a known DDI (more than 6% of
the Blumenau adult population). Looking at the type of DDI, we
observe that 4% of all patients (5% of adults) were dispensed a
major DDI likely to result in a very serious ADR—almost 2% of the
city’s population.

Given the lack of similar studies, we cannot directly compare
the rate of DDI severity observed in Blumenau to other public
health systems. The Tayside study (with a smaller, 84day
observation window) reported a rate of 13% “potentially serious”
DDI for adult patients.”® This severity class was derived from the
British National Formulary, a private publication we do not have
access to. If this severity is similar to the Drugs.com major DDI

Scripps Research Translational Institute

class, then Blumenau has a considerably lower rate of this type of
DDI than Tayside—5-13%. If, on the other hand, “potentially
serious” encompasses both the major and moderate Drugs.com
DDI classes, then the rates observed in Blumenau are similar to
those observed in Tayside—14.35% to 13%.

We uncovered 181 DDI pairs that most likely could have been
prevented.'” These drugs known to interact were nonetheless
dispensed for co-administration to 15,527 people, including more
than five thousand who were administered a major DD, likely to
require medical attention. In addition to the human suffering
caused, patient hospitalization due to major DDI may lead to a
large financial burden to health-care systems. All our estimates
lead to very substantial costs for the various levels of government,
suggesting that the financial burden of DDI is at least double what
was previously reported—$1 per capita in Ontario>—even when
considering the most conservative estimate of the proportion of
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hospitalizations that derive from co-administration of known
major DDIs. Thus, our large-scale longitudinal analysis suggests
that previous estimates based on smaller studies likely under-
estimate the cost of the DDI phenomenon.

We provide comprehensive lists of the DDI pairs uncovered in
the data, allowing others to look at specific drugs of interest. The
data can be seen from different angles, such as the volume of
people affected or the likelihood that certain drugs are co-
administered. These include common medications such as proton-
pump inhibitors (Omeprazole), anti-depressants (Fluoxetine), or
common analgesics (Ibuprofen), as well as not so common drugs
(e.g., Erythromycin). It is noteworthy that the DDI co-
administration of CYP(3A4 and 2D6) inhibitors with their
respective enzymes substrates was often found in our results.
From our dataset CYP[3A4] inhibitors include Omeprazole,
Fluconazole and Erythromycin and their respective substrates
include Clonazepam, Simvastatin, and Carbamazepine. Recently,
the FDA included a comparison list*” of in vitro and clinical
inhibitors, inducers and substrates for CYP-mediated metabolisms.
In agreement with previous work,'® our analysis revealed several
such DDI, including the most common DDI pair in our data
(Omeprazole, Clonazepam). Many other major interactions, while
not ranked at the top, are nonetheless of concern due to severe
ADR. For instance, in 2011 the FDA issued a warning®® contra-
indicating the concomitant use of Simvastatin with Erythromycin,
due to increased risk of myopathy by “possibly increasing the
statin toxicity”. Still, our analysis identified 10 patients concomi-
tantly administrating this major DDI (117th, \U}’H =10), also
known for its increased risk of liver damage and a rare but
serious condition of rhabdomyolysis that involves the breakdown
of skeletal muscle tissue.?®>°

Our network representation also allows us to integrate,
summarize and visualize the DDI phenomenon. The analysis of
the network itself also reveals nodes with largest degree, that is,
drugs that participate in more known DDI. The top ones,
participating in over 10 distinct DDI are: Phenytoin, Carbamaze-
pine, Phenobarbital, Propranolol, Warfarin, Aminophylline, Fluox-
etine, Fluconazole (see Supplementary Table 27 for others). Drugs
in italic have both high degree and high P/, meaning they interact
with many other drugs and are also more likely to interact with
some other drug when dispensed. The network also allows us to
investigate the roles of individual drugs and DDI pairs, in relation
to others. For instance, Phenytoin, an anti-seizure medication, is
the drug with largest degree and node size: it interacts with 24
other drugs, granting it the highest total degree strength,

-Tg-) =6.51; one in five times that Phenytoin is co-
adjmlnistered with another drug it leads to an interaction, P/
(Phenytoin) = 0.2; and it also has the largest betweeness centrality
(0.30),*° thus acting as bridge between other drugs with
known DDI.

Our characterization of the significant demographic factors in
the DDI phenomenon, shows that women in Blumenau are at a
strikingly greater risk of being dispensed known DDI than men,
with a 1.6 risk multiplier. In other words, women in the Blumenau'’s
Pronto system have an almost 60% increased risk over men of
being dispensed a DDI, but only a 6.5% increased risk of being
dispensed drugs concomitantly. When only major DDI are
considered the risk multiplier is even higher: 1.9. That is, women
have almost double the risk of men of being dispensed a major
known DDI. It is noteworthy that we pursued a relative risk
analysis for all age groups, showing that females face a greater or
similar risk of DDI than males in all age groups, with substantially
higher risk observed after 50 years of age. For instance, in age
group [60—64], one in three women who are dispensed two or
more drugs concomitantly face a known DDI, whereas that ratio is
less than one in four for men for the same age group (see Fig. 4).
Therefore increased risk for females is not confounded by the
larger number of women present in the data nor their age.
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It is known that age is also a factor in predicting the number of
prescribed drugs,*® especially because of increased comorbidity in
older patients. Our analysis shows that one in every four patients
over 55 is likely to be face a known DDI when co-dispensed two or
more drugs. The risk of interaction for older age groups of both
genders is also severe, reaching more than 30% for adults over 70
years of age in comparison to younger age groups. While a greater
risk for older age groups is expected due to increased
polypharmacy with age, a comparison of the observed risk with
a null model accounting for random polypharmacy (and preser-
ving same number of co-administrations per age) shows that it
does not explain the high levels of interactions older age groups
face. This can be contrasted with the almost nonexistent number
and risk of interactions in children, which are considerably lower
than what the null model predicts for polypharmacy at that age. It
is very surprising, indeed shocking, that there are more cases (and
increased risk) of DDI in older age than random (age-conditioned)
dispensation of drugs would yield. We would expect all age
groups to have fewer cases than a random null model, but this is
only observed for younger age groups.

The null model also revealed an additional gender bias, as older
women clearly have a worse-than-random, while older men have
a more similar-to-random risk of DDI in most age groups. In fact,
deviation from the null model in older age is mostly explained by
increased risk for females. In contrast, younger age groups of both
genders have much better-than-random risk of DDI.

These observed gender and age risks suggest two possible
hypothesis: specific drugs dispensed to women or older popula-
tions are more dangerous; and/or that not as much attention to
DDl in primary care is reserved for these populations. The fact that
the specific drugs dispensed greatly improve the automatic
prediction of patients with DDI favors the first hypothesis, but
given the age and gender risks observed, it is also clear that the
same DDI-prone drugs are administered differently between
genders and across age groups. This second hypothesis is
strengthened by the fact that removing female-specific hormone
therapy from the the DDI network of Fig. 1 barely reduces the DDI
gender risk (from 59 to 55%). Indeed, the DDI pairs with increased
risk for women traverse all drug classes and are not gender-
specific, ranging from cardiovascular to central nervous systems
agents.

While it was already known that drugs withdrawn from the
market for ADR presented greater risks for women,*" our study
demonstrates that women (and older populations) in Blumenau
also face a higher risk of being dispensed known DDI. It could be
that in older age groups (especially for women) there are fewer
alternative drugs (with fewer adverse reactions) in the Blumenau
public system, either because they are more expensive or simply
because they are not available anywhere, thus forcing the
prescription of known DDI. These and other possibilities warrant
further study outside the scope of the present article. For instance,
would the introduction of newer and costlier drugs into the public
system, overcome the financial and human burden of current DDI
levels? Nonetheless, since medical care should in principle provide
a better-than-random risk of DDI for all age groups and genders,
our results suggest that factors of a social, biological, or medical-
care nature are at play at the primary- and secondary-care levels
and should be further studied everywhere.

The performance achieved by our classifiers demonstrates that
a useful computational intelligence pipeline can be devised to flag
patients for further assessment by a primary-care physician,
pharmacist, public official, or even to request a home visit from a
community health agent. Existing prescription alert systems
already warn against known DD, still, these are evidently being
prescribed in worrying numbers. This could be because there are
good medical reasons to prescribe certain drug combinations
despite known DDI risk, or because drugs may be prescribed by
distinct physicians, who may not be aware of or check previous
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prescriptions, or simply dismiss HIS alerts**—perhaps due to
physician alert fatigue.**

To be useful, personalized alert systems based on the type of
predictions produced by our classifiers do not necessarily need to
be added to prescription systems. Indeed, their utility lies not in
identifying known DDI pairs—as those are already by definition
available via formularies, web resources like Drugbank, or
prescription HIS—but rather in identifying patients at greater risk
of being prescribed DDI in the future, or subpopulations and
comorbidities that for social or biomedical reasons face greater
risk of DDI. Thus, they should be more useful for those involved in
integrating and managing the care of individual patients or the
entire public-health system. Those are decisions that each public-
health system will have to weight. Still, our work demonstrates
that a personalized alert system for DDI is accurate and can be
used to reduce the DDI phenomenon not only in future versions of
the Pronto HIS, but in other cities that have observed high levels of
DDl—e.g., the Tayside region, in Scotland.®® In future work we
intend to add such a pipeline to Pronto as well as utilize new data
sources such as social media, since Pronto already includes such
patient handles. Indeed, such data may allow early-warning signal
detection of adverse events and DDI.****

Large-scale analyses of EHR to establish the prevalence of
known DDI are rare. Most studies are obtained from small
populations in hospital settings, so they vary by a large
margin.>'""124¢ Our study of the entire city of Blumenau at the
primary- and secondary-care level offers an important new large-
scale measurement of the DDI phenomenon in a public health-
care system—a baseline that can be compared to other world-
wide locations beyond Brazil, as EHR data become available. For
instance, are the gender and age risk levels we observed similar in
other primary- and secondary-care settings? Are there cultural or
public/private differences? Will the health systems of other cities
also prove to be unaffected by neighborhood and income
levels, etc?

Our large-scale epidemiological analysis demonstrates that an
integrated data- and network-science approach to public health
can uncover biases in the DDI phenomenon as well as yield tools
capable of issuing accurate DDI prediction per patient. Both
outcomes contribute to preventing ADR from DDI and thus may
lead to a significant positive impact on the quality of life of
patients and finances of public-health systems. Moreover, the
gender and age risks of DDI we discovered, should inform
physicians and other health professionals anywhere that such
factors are important in the drug management of their patients.
We expect the results to increase awareness of those risks we
uncovered.
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METHODS

Data

Eighteen months of drug dispensing data (Jan 2014-Jun 2015) were
gathered from the Pronto HIS***® (see Supplemental Note 1 for a system
description). Drugs reported in this system are available via medical
prescription only, free of charge, and dispensed to citizens of Blumenau
(population Q =338,876") during the observation period. Doctors
prescribe medications by selecting drug and dosage via the HIS. Low-
cost drugs can generally be directly dispensed at the primary-care facilities,
whereas specialized and higher-cost medication is distributed in three
central facilities across the city. All drugs are dispensed by pharmacists
who must select in Pronto the drug and quantity to be dispensed, allowing
the length of administration to be estimated. It must be noted that
patients are not required to retrieve drugs from the public system. They
can buy prescribed medications from private pharmacies at their own
expense, without such transactions being recorded in Pronto. However,
there is no incentive to pay more at private pharmacies for the same
medication. Indeed, our analysis indicates that use of Pronto is similar
across all neighborhoods of Blumenau, irrespective of their average
income (see Supplementary Fig. 3).

EHR were anonymized at the source and only drug dispensation and
demographic variables, including gender, age, neighborhood, marital
status, and educational level, were kept. Methods were performed in
accordance with guidelines and regulations. All patient consent was
handled at the source prior to the anonymization and outside of the
responsibility of this team. Nonetheless, this study was approved by
Indiana University’s Institutional Review Board (IRB). Drug names originally
in Portuguese were converted to English, disambiguated and matched to
their DrugBank ID (e.g., Cefalexina 500 mg Comprimido and Cefalexina
250MG/5ml Suspenso Oral were matched to Chlorphenamine, DBID
DB01114). Medications with multiple drug compounds (e.g., Amoxicillin
500 mg & Clavulanate 125 mg) were split into their constituent individual
drugs. Other dispensed substances (e.g., infant formula milk or vitamin
complexes) unmatched to DrugBank were discarded. In total, 122 unique
drugs were keep for analysis. Because we have no means to know whether
patients actually took the dispensed drugs, our analysis assumes that
drugs dispensed were administered.

Throughout the year of 2014 and the first six months of 2015,
Blumenau's Pronto HIS registered 1,573,678 distinct drug interval admin-
istrations, dispensed to |U| = 132,722 distinct patients—39.17% of the city
population. The male/female proportions are 41.5/58.5%, respectively. Of
the 46% who declared their education level, a large proportion (46.77%)
reported having incomplete elementary school and 20.49% had finished
high school or above (see Fig. 5 and Supplementary Fig. 5 for details).
|U"®2| = 104,811 patients, corresponding to 78.97% of the Pronto patient
population, were dispensed two or more distinct drugs in the period; only
this set could have been dispensed known DDI.

Methods

A drug interaction between a pair of drugs is measured if both drugs were
concomitantly administered and the pair is identified as a known DDI in
the 2011 version of DrugBank, an open-source drug database containing
DDI information.*® Figure 6 displays a co-administration timeline example.
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More formally (see also Table 4 and Supplemental Note 3), let us denote
patients by u € U and drugs by i, j € D (|D| = 122); U; € U is the subset of
users who were dispensed drug i, DY C D is the subset of drugs
administered to patient u, and v* = |D"| is the number of distinct drugs
dispensed to patient u. Patients can be administered a drug i multiple
times in the observation period, therefore A = {d’¥} denotes the set of
distinct administration intervals a of drug i to patient u, where a € N is
measured in days (n). a¥ = |AY| and AY =", d’¥ denote the number of
times and total number of days drug i was administered to patient u,
respectively.

Similarly, af; and A}; denote the number of times and total number of
days (co-administration length) drugs i and j were co-administered to
patient u, respectively (see Supplementary Note 2 for more details of co-
administration measurement). To identify the co-administration of drug
pair (i, j) to patient u we define a Boolean variable ¢, € {0,1} as:
¢i; = 4;>0) M
a logical variable measuring whether patient u co-administered drug pair
(i, j) for at least one day. Next, we define a symmetrical binary map A:D x D
— {0, 1} to indicate whether drug pair (i, j) € D x D is (§;; = 1) a known DDI
in DrugBank, or not (§;; = 0). Thus, to flag the co-administration of a known
drug interaction (i, j) to patient u we similarly define a Boolean variable
¢, €{0,1} as:
o= Wi =116 =1). ®)

For each DDI pair observed, literature references and a severity score
se{major, moderate, minor, n/a} were retrieved from Drugs.com.?® From
these values, other quantities and sets are computed per patient u, drug i
or drug pair (i, j) as listed in Table 4.

The drug pairs (i, j) with the largest “footprint” in the population, are the
pairs that maximize \U}f’j\. Out of these most co-administered pairs, we are
naturally most interested in those that are known DDI and thus maximize
\U,ﬁ’;\. A normalized version of this measure is computed as

0} |U’a;‘ 3
Yij U 3)
which conditions the number of users co-administered known DDI pair (i, j)
on the number of users that are administered drug i. This measure is not
symmetrical: y=yf. Maximizing it yields DDI pairs (i, j) that tend to be co-
administered to patients who are administered either i or j independently;
see Supplementary Table 12 for top 20 such DDI pairs.

Another facet of the DDI phenomenon we can observe is related to the
co-administration length of drug pairs (A;fj). A normalized version is
computed as: T :)\,.“J./()\§’+)\j“ 7)\;3.), where 1 € [0,1]. This symmetric
proximity measure®' allows us to distinguish drug pairs that tend to be co-
administered to patient u only simultaneously (tj; — 1), or with small
temporal overlap (T,-“J- — 0). A normalized measure for the entire patient
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population is then computed as:

> T}
po @
YUl

This proximity measure defines a weighted graph T*°' on set D; the
graph’s edges, r)’j € [0,1], link drugs that were co-administered in the
patient population. T:‘j is larger when drug pairs (i, j) tend to be co-
administered when either i or j is administered (correlated), and smaller
otherwise (independent). Therefore, rt‘j is a measure of the strength of
drug association in the data for drug pairs (i, j); high values can pick drug
pairs dispensed together for known comorbidities, which physicians
should be aware of, as well as for unknown cormobidities (especially
involving distinct specialists prescribing drugs independently). Since we do
not know the underlying comorbidities, we cannot separate the two cases
with this dataset. However, to focus on the DDI phenomenon (for known
and unknown comorbidity), we obtain a subgraph 7°, restricted to known
DDI pairs by computing 73, = 7,.;;; thus, 7 is a weighted version of A.

Gender risk

The relative risk of co-administration (RRC) for women is computed as the
ratio of the conditional probabilities of patients being dispensed at least
one pair of drugs concomitantly, given gender:

P(WU>0lu € UF)  |[U¥F|/|UF|
P(W>0[u € UM) — |U¥M|/|UM|
Naturally, the same risk for males is computed as RRCY'=1/RRC".

Similarly, we also computed the relative risk of interaction (RRI/) for women
as:

RRCT = (5)

P(®'>0lu € UF)  |U®F|/|UF|
P(®“>0lu € UM) — |UOM|/|UM|
with RRIM = 1/RRIF.

RRIF = (6)

DDI network

The DDI Network is a weighted version of graph A where edge weights
between drugs i, j (nodes in graph) are the values T,FB» obtained from Eq. 4—
yielding a proximity between drug pairs according to their co-occurrence
in DDI co-administrations when either drug is administered (a symmetrical
measure of strength of association/correlation®’). Node size represents the
probability of interaction for drug i:

_2%

2 i
which denotes the propensity of drug i to be involved in a DDI with all
drugs it is co-administered with in the data (see Supplementary Table 27

for values); larger nodes thus identify more dangerous drugs in the sense
that they most contribute to potential ADR from DDI in our data.

PI(i) %)
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Table 4. Co-administration and interaction quantities and subsets used throughout the analysis

Quantity notation

Number of

v = |DY|
w5y
ijepv
qJi,j = Z w;fj
uel
o= 3 o
ijep
;=3 ¢}
uel

Distinct drugs dispensed to patient u.
Co-administrations to patient u.

Co-administrations of drug pair (i, j) to all patients.
Co-administrations of known DDI pairs to patient u.

Co-administrations of known DDI pair (i, j) to all patients.

Subset notation

Subset of patients

U'>*={ueUv>x

UY = {u e U9 > 0}

U={ueU:yp4=1}

U® = {u € U®" > 0}

Uﬁ:{ueU:<p}’J:1}

U? = {ueU:gender(u) = g},ge{M, F}

UDI‘IYZ] = {U ev: age(u) € [y1sy2]}7,\’17)’2 eN
UN = {u € U : neighborhood(u) € N},N € N
UE = {u € U : education(u) > E},E € N

Who had at least x € N drug administrations.
Who had at least one co-administration.

Who were co-administered drug pair (i, j).

Who had at least 1 known DDI.

Who were co-administered known DDI pair (i, j).
Per gender.

Per age bracket.

Per neighborhood.

Per education level. Uf = 2 is the subset of patients who did not report
their education level.

From these subsets we also denote their possible intersections by combining the appropriate sub and superscripts

To better grasp gender differences in the DDI phenomenon, edges are
colored according to the relative risk of drug pair interaction for each
gender: RRI,gJ where g € {M, F}. These quantities are computed for each DDI
pair (i, j) via Eq. (6), but using @} (number of co-administrations of known
DDI pair (i, j) to patient u) instead of O, Naturally, RRI,.F_j = 1/RRI{‘§. If RRI,.F_j>1,
the edge is colored in red with intensity proportional to RRI,.FJ., otherwise
the edge is colored in blue with intensity proportional to RRI{‘j (see legend).
Therefore, increased DDI risk for women (men) is identified by darker red
(blue) edges. Supplementary Tables 18 and 19 show the Rlej values for the
top most gender-imbalanced DDI pairs per gender.

For some results we remove the following contraceptive drugs: Ethinyl
Estradiol, Estradiol, Norethisterone, Levonorgestrel, and Estrogens
Conjugated.

Age risk

To investigate the role of age in known DDI co-administration, we
aggregated patients into age groups and computed the risk of specific age
groups to be dispensed a known DDI for the amount of co-administrations
observed for that age group. Thus, a risk of interaction for age group [y;,y-]
is calculated as

P(®“>0[u € U ¥2l)

Ryl — .
P(WU>0lu € Ubial)’

@)

which can be interpreted as the probability of being dispensed a known
DDI given the expected number of co-administrations for a patient in a
specific age range [yy, y,l. A risk of co-administration for age group [y;, yl,
RCbi¥2l s similarly computed, but using v > 2—the number of patients
with at least two drug administrations—instead of W“. This is interpreted as
the probability of being concomitantly dispensed two or more drugs (co-
administration), when a patient of a given age group is dispensed two or
more drugs in the full observation period. Additionally, we also parse age
risk by gender by computing RIY172/9 for each gender g € {M, F} using Eq.
(8), but for users u € UY1¥219, Similarly, RCY'¥219 is computed for the risk of
co-administration per age and gender.

Null model

The null model, Hg”d, aims to capture the expected increase in RF with age,
given the observed polypharmacy and gender for each specific age group.
Thus, the model's assumption is that all drugs that were in reality
dispensed in a given age group are dispensed at random with the same

Scripps Research Translational Institute

overall frequency of co-administration for that age group. Specifically, for
each co-administration observed in the data for an age group [y;,y-], the
null model draws random drug pairs (i, j) from the set of all drugs observed
for that age group, DY'%2l. The random drug pairs are subsequently
checked for DDI status in DrugBank, just like the original analysis. This way,
the null model has exactly the same number of co-administration
occurrences for each age group and gender, but randomly shuffled drug
pairs—and only the drugs dispensed for a certain age are randomly
shuffled for that age group (additional details in Supplementary Note 7).

Machine learning classifiers

We trained linear kernel Support Vector Machine (SYM)*? and Logjistic
Regression (LR)*® classifiers using stratified 4-fold cross-validation to ensure
generalization performance (additional details in Supplementary Note 11).
Age, gender, number of drugs (v“), and co-administrations (®“) were used
as demographic variables features. In addition, all |D| =122 drugs in the
data are used as binary features, whereby if patient u was administered
drug i that feature is set to 1 and to 0 otherwise; this allows classifiers to be
trained on which drugs, and drug combinations, are most likely to be
involved in DDI.

The trained classifiers are compared to two “coin-toss” null models, one
unbiased where each class has equal probability, and a biased one based
on estimated class frequency. A third, more elaborate null model classifier,
finds the best age cutoff for each gender, from which all patients above
the cutoff age are considered as having a DDI. This last “age-gender” null
model represents a baseline comparison of the best we could do if only
gender and age were given for each patient. To assess the performance of
all classifiers, in Supplementary Note 11 we report several measures. Here,
we focus on the Matthew's Correlation Coefficient (MCC),>* which is
regarded as an ideal measure of the quality of binary classification in
unbalanced scenarios such as this.>> We also report two other measures
widely used in machine learning classifier performance, the area under the
receiver operating charactistic curve (AUC ROC), and the area under the
precision and recall curve (AUC P/R).

Other classifiers, feature selection and cross-validation techniques can
be used to increase performance, but such gains when studying the DDI
phenomenon do not typically lead to substantial performance increases,”®
so such optimization is beyond the scope of this article.
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Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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